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What is the arc length, the length of the curve, of  y = f(x),  a ≤ x ≤ b?
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dy
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Y

y = f(x)

Theorem  Let  y = f(x)  be differentiable for  a ≤ x ≤ b. Then its arc length on that interval is

s  = ∫
a

b     
1 +  dy

dx
2

dx.

Derivation 
f  is differentiable on the interval. So  f  is differentiable at  x  and therefore locally linear or equivalently 
'asymptotically straight' there. Therefore

Theorem of Pythagorasds2 ≈  dx2 + dy2          

dx
⟹ s  = ∫

a

b
1 +  dy
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ds   ≈       1 +  dy 


2 dx 


2 

dx.

Arc Length

Department of Mathematics
and Computing Science,

Improper Integral

∫-∞
+∞ xdx

1+ x2

+∞ 2 dx=  ∫-∞ 1
x

+x2

+∞

1
2

=  
1
2 ln(1 + x2)  

-∞ -10 -5

5 10
X

-0.4

-0.2

0.2

0.4

x

x2 + 1

 _dy=  [1 + (dx 
2
 dx2

u = 1 + x2
du = 2x dx 

=  {∞ - ∞},     
indeterminate form

 Does Not Exist.

_

-

Bill
Typewritten text
CONTRIBUTIONS     Lyryx Calculus

Bill
Typewritten text
10.1, 2, 3



 6.1    Theory of Inverse Functions
 6.2    Exponential Functions Review
 6.3    The Natural Logarithmic Function. Other Bases
 6.4    Inverse Trig Functions Algebra
 6.5    Calculus of  Inverse Trig Functions 
 6.6    Hyperbolic Functions
 6.7   Inverse Hyperbolic Functions

7   Techniques of Integration
7.1a    Method of Substitution Review  

7.2    Integration by Parts  
7.3    Trig Integrals  

Trig Substitutions
7.5     Partial Fractions  

       7.6   Improper Integrals  

8   Applications of Integration 
8.1    Area between Curves
8.2    Volumes: Method of Slicing. The Disk Method 
8.3    Volumes: the Shell Method
8.4    Arc Length: Surface Area
8.5    Work Problems
8.6    Present and Future Value   Exam #3  

9   Generalized Functions
 9.1    Generalized Functions
 9.2    Geometric Calculus of Generalized Functions
 9.3        Analytic Calculus of Generalized Functions

10  Differential Equations 
         10.1    First order Differential Equations. Variables Separable
         10.2    Homogeneous First Order Linear Equations
         10.3    Nonhomogeneous First Order Linear Equations   Exam #4

 6.8    L'Hôpital's Rule  Exam #1

 6.1    Theory of Inverse Functions

7.4  

       7.7 Numerical  Integration   Exam #2 

7.1b    Method of Substitution Advanced

CLICK on desired section 

Volume II Review 1- Infinitesimals.    Review 2 - Derivatives and  Integrals

6   Other Elementary Functions. Inverse Functions.



Preface
Infinitesimal Calculus, Volume II

In Volume I we set up, in detail, the basics of hyperreal calculus. The payoff was being able to do a 

thorough, elementary and intuitive development of calculus. Proofs of the all basic operational 
formulas and theorems were accomplished as well as more difficult foundational theorems such as the 
Extreme Value Theorem and the Riemann Integrability of Continuous Functions over a Closed 
Interval.
     In this Volume II, early/late transcendentals, we continue the theoretical development - especially 
applications of integration - using hyperreal analysis. Historically, the fundamental starting point of 
calculus was the differential . This is because the basic laws of science and geometric are often simpler 
to discover over an infinitely short interval of space or time. Now, with the basics of elementary 
applications better understood, it makes sense to start where students have better mathematical strengths.

     To find the rate of change of  Q  with respect to  t, the derivative ,  you divide the differential by  dt.  To 
find the change in  Q  from time  t1 to  t2 , the aintegral of  f(t) over the interval, you sum the infinitesimal  
f(t) dt’s  from  t1 to  t2  and find the closest real number to this sum.

dQ
dt

= f (t )

↑ 
the differentialdQ = f (t) dt

  ↓
 ΔQ =  ∫t    1

   t2 f(t)dt

    The greatest benefit of infinitesimal methods is providing a reliable, intuitive 
and  foolproof guide to setting up applications of integration. 

      The differential in modern textbooks is a real number and is relegated to a method of approximating 
a function near a point. It is also used somewhat dishonestly and without further explanation in order to 
be able to employ powerful infinitesimal techniques such as the method of change of variable in 

and needs no                 awkward discussion and the chain rule  is obvious and proves itself (check it out 

integration and separation of variables in differential equations. The symbol   now is a fractiondy 
dx  

in
Volume I.

     The great tools of infinitesimal calculus are infinitesimals, which facilitates the ultra-precise 
calculations used to do calculus and the equivalence relation  ≈  which enables the rapid 
comparison and simplification of hyperreal expressions.
     Later misuse of the key comparison symbols  =, ≈     and  ≈>  is not a big problem because their 
outputs tend to differ only by an infinitesimal. ≐  is the approximate equality for real numbers.



Chapter 6  Advanced Transcendental Functions  

6.1  Inverse Functions Theory - a Review
The main purpose of the inverse function is to solve for the independent variable  x  in  y = f(x):

y = f(x) ⟺ x = f-1(y)

I. When does  f  have an inverse?  Answer: if for each  y  in the range of  f,  there is exactly one  x.

y=f(x)

x

y ⟶

↓

X

Y

y=g(x)

x1 x2

y ⟶

↓ ↓
X

Y

Each y, one  x. Some y's, more than one  x.

We say that  f  is one-to-one or invertible if for each  y,  there is exactly one  x (or equivalently  f  passes the 
Horizontal Line Test.)  Note that increasing functions are invertible; so are decreasing functions.

II. How to find the formula for  f-1

y = f(x) 
Solve for  x:

x = f -1(y)

III. The inverse function  y = f-1(x)   We prefer as usual, in working with or studying   f -1 to call the dependent
variable y. So interchanging  x  and  y:

y = f -1(x)

(In applications, f -1 is usually of interest only when it cannot be found exactly! f -1 is then found numerically by 
computer.)  Note that  y = f(x)  and  y = f -1(x)  have different graphs and therefore are different functions.

IV. How to graph  y = f-1 (x)   Since we interchanged  x  and  y  to obtain the graph of  y = f -1 (x)  from that of y =
f(x):

Reflect the graph of  y = f(x)  across the line  y = x.

y= f(x)
x= f -1(y)

y= f -1(x)
x= f(y)

↘
(x, y)

(y, x)

y = x

X

Y
y = x

1 2 3 4 X

1

2

3

4

Y

How it works

The point  (a, b)  reflected across
ithe line  y = x  is the point  (b, a).

(4, 3)

(3, 4)

4
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V. Inverse Function Identities

f-1( f (x)) = x

f  f-1(y) = y

y= f(x)

x
f -1(f(x))

f(x) ⟵
⟶

↑ ↓

X

Y

y= f(x)

f -1(y)

y
f( f -1(y)) ⟵

⟶

↑↓

X

Y

VI. Application:  Universal Equation Solver

Solve:

 f(x) = c

 f-1( f (x)) = f -1(c) Taking  f-1 of both sides

 The solution:

x = f-1(c) . Inverse function identity

VII. Calculus of a inverse function

y = f-1(x) ⟺ x = f (y)

  1 = f '(y)
dy
dx

 Differentiating implicitly; Chain Rule

dy
dx

=
1

f '(y)

or

dy
dx

=
1

dx
dy

. Live math.

Easy Example  y = f(x) = 2x + 1

I.

1 2
X

1

2

3

4

5

Y

Passes the Horizontal Line Test.  So  f -1(x) exists.

II. Find the formula for f-1 ?

y  = f(x) = 2x + 1
Solve for x : x = f-1 (y)

x = f-1 (y) = 
1
2y  - 

1
2.

III. The inverse function. Interchange  x  and  y.

y = f-1 (x) =  
1
2 x  - 

1
2.

These identities are verified by following the 
arrows in the graphs below. Start at  x  in the 
left graph and at  y  in the right graph.
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IV. Its graph.

-2 -1 1 2 3 4 5
X

1

2

3

4

5

Y

y = f(x)

y = x

y = f-1(x)

V. Inverse function Identities. Let us check.

f-1(f(x)) =  
1

2
f(x)  - 

1

2
=

1
2 (2 x + 1) -

1
2 = x.

f( f-1(x)) =  2 f-1(x) + 1 = 2( 
1
2x  - 

1
2) + 1 = x.

Properties  VI and VII are left as exercises. They are important for more difficult examples.

Harder Example  y = g(x) = x - 2

If you solve for  x  and then interchange  x  and  y, you get  y = g -1(x) =
?

 x2 + 2.  Lets see.

y = g(x)

y =
?

g-1(x)

-2 -1 1 2 3 4 5
X

-1

1

2

3

4
Y

Recall that squaring an equation can give spurious solutions. Clearly, reflecting  y = g(x) about the line  y = x, 

the correct inverse is

y = g-1(x) = x2 + 2, x ≥ 0.

Another Example with a problem  y = h(x) = x2 + 1

If you solve for  x  and then interchange  x  and  y, you get  y = h -1(x) =
??

 ± x - 1 .  Let's see.

y = h(x)

-2 -1 1 2 3 4
X

-1

1

2

3

4
Y

The problem here is that the function  y = h(x)  is not one-to-one. So it does not have an inverse. Nevertheless, 

it will be useful at times to do the best we can in finding a related inverse. What we do is restrict the domain to  x ≥ 0; 

what remains is one-to-one. (We could, of course, made the domain choice  x ≤ 0. In many advanced applications, 

there are good reasons for one choice over another.) Conclusion:

y = h1(x) = x2 + 1, x ≥ 0

y = h1
-1(x) = x - 1

y = h1(x)

y =h1
-1(x)

-1 1 2 3 4 5
X

-1

1

2

3

4
Y
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A Very Difficult Problem  y = k(x) = 2x

y = k(x)

-2 -1 1 2 3 4
X

-1

1

2

3

4
Y

y = k(x)  is a one-to-one function. So its inverse exists. However, there is no elementary way to solve for  x  

in terms of  y. 

What one does in such cases is to give the inverse function a name and let a computer program figure out the 

value of  y  for each  x. Inverse functions are most important when you can’t solve for  x  explicitly!

In this case, as you may remember from high school math:
y = k(x) = 2x

y = k-1(x) = log2(x),   “ log, base 2, of  x.”

2. y = g(x) 1 - x
2 , -1 ≤ x ≤ 0.

2
 3. y = h(x)=

2-x

x

..                 Hint:

-6 -4 -2 2 4 6
X

-6

-4

-2

2

4

6

y = h(x)

4.
-4 -2 2 4

X

-4

-2

2

4
y = k(x)

Every one-to-one function has an inverse which automatically satisfies properties I   
to VI and VII also if the function is suitably differentiable. This knowledge gives  
you much information about the inverse function which it inherits from the original 
function. This is very helpful in that beginners often find inverse functions 
particularly difficult. In addition, any properties peculiar to to the original function 
also translate into properties of the inverse function. Keep this in mind as we 
continue through this chapter. 

Exercises 6.1  In each problem, do steps I to V. aCheck by graphing or calculating. Semi-memorize the
seven steps.
a  
1. y = f(x) =   1 - x2 , 0   ≤ x ≤ 1.

=

y = k(x) = x3 - 3x. Find one partial inverse.  Hint:
You can use a CAS or Wolfram Alpha to solve for  x.

5. y = 3x

+

7



Solutions

1.

11
X

11

Y

y = 1-x2

y = 1-x

2.

-1
1

X

-1

1

Y

y =     1 - x2

    y = -   1 - x2

#4.  y = f(x) = x3 - 3 x. Solve for  x  and interchange  x  and  y. We
will get the leftmost of the three possible inverses using a CAS:

y = f-1(x) = -
21/3

-x+ -4+x2
1/3 -

-x+ -4+x2
1/3

21/3
.

-4 -2 2 4
X

-4

-2

2

4
Y

y = x3- 3x

Graphing

-4 4
X

-4

4
Y

y = f(x)

y = f -1(x)

■■■■
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6.2  Exponential Functions Review. The Natural Exponential Function

base ↗
b
x ← exponent

Definition of Exponents   For  n  a natural number:
b

1 = b
b

2 = b ·b

b
3 = b ·b · b

 ⋮

Properties of Exponents   (m, n  natural numbers)

b
m
b
n = bm+n1.    Example:   b2 ·b3 = (b·b)(b·b·b) =  b2 + 3

2.    b
m

bn
 =  bm-n

3. (bm)n =  bm·n Example:  (b2)3 =  (b·b)(b·b)(b·b) =  b3·2 =  b2·3,  two groups of three

We would like to define  bx  for other real numbers  x.  We do this in such a way that the Properties    
of Exponents hold.

Definition  b0 = 1   because, for example,  b0 = b3-3 =  = 1  (Property 2)b

b

3

3

0

Definition  b-n = 
b

1  
n  because  b-n =  b0 - n =  

b

b

n
=

b
1/2 =     b 

b
1/n =  b

n

b
m/n = ( b

n )m  = b
mn

Recall that if  n  is an even integer,  b  must be non-negative for  m  odd.

Definition  Exponential Function with base  b

y = b 
x 

-2 -1 0 1 2 3 4
X

1

2

3

4

5
Y

y = 2 

x

y = (1
2 )
x

y = 3x

3Review of Exponents              

Example:   b
5 

= b·bb
·
·b
b

·
·
b

b·b =  b5 -3,  cancelling 3 common factorsb3

b
1/2What about fractional powers?  Consider     :   ·  =  (b1/2 ) 2 = b1 = b    ⟹  

Definitions:  

- ----b1
b

n

1/2 b
1/2

---| _

-

9

b
n = b ·b · b        b · b,  n  factors of  b.. . .

Domain:  all  x
Range:  0 < y < +∞

0 < b < 1  ⇒  decreasing function 
ib > 1         ⇒   increasing function

_

9

Bill
Typewritten text
  



Note:  Exponential functions are not defined for bases  b < 0.

Choosing a base for calculus
Which base  b  has the ‘nicest’ derivative?

d

dx (b
x) =  b

x+dx- bx

dx
 =  b

dx- 1
dx

 bx

Answer:  if  b
dx- 1
dx  ≈> 1.  Exploring this using limit approximations:

if   b
h- 1
h

 ⟶  1  as  h ⟶ 0

or  bh - 1 ⟶  h  as  h ⟶ 0
or   bh  ⟶  1 +  h  as  h ⟶ 0
or   b   ⟶   (1 + h)1/h  as  h ⟶ 0

Let us calculate (note that these calculations are elementary but tedious):

h (1 + h)
1h

1 (1 + 1)1 = 2

0.1 (1.1)10 = 2.5937424601

0.01 (1.01)100 ≐ 2.748138294

0.001 (1.001)1000 ≐ 2.716923

0.0001 (1.0001)10000  ≐   2.7181458

↓ ↓
0 2.718⋯

So the base which has the nicest derivative is
e = 2 .718 ⋯

called Euler's Constant. Leonard Euler, 1707 to 1783, 
was the world's most prolific calculus mathematician.

Definition  The natural exponential function is

y = ex,  e = 2.718281828459045 ⋯

d

dx
(ex)  =  ex   ∫ exdx  =  ex + C

 

Why didn't we do an exact derivation or proof? 
Unfortunately for advanced functions there is 
often no elementary algebra that can do the 
job. So we resort to a numerical procedure.

Euler is pronounced 'Oiler'

Memorize this. Easier than  π.
         Amaze your friends.  

Do not allow because, for example,
      because  y = (-2)x

is not a real number if  x =    .12

10



-2 -1 1 2 X

1

2

3

4

5

Y

y = ex

sTables of values  for graphing by hand

x ex

-2 0.14
-1      0.37

            0      1 
            1      2.7
            2      7.4

Financial Application of The Natural Exponential Function
You learned in high school about compound interest. Compounding means that after a period of time, 
the interest earned is added to the initial amount and the new  larger amount  continues earning 
interest. The future value  F  of a present value  P  at a yearly interest rate  r  compounded  n  times 
yearly (a high school formula) is 


n t

F  =  P1 + r .
What if compounding is done continuously (n → +∞)?  

F  =  limn→+∞ P1 + r

n

nt

     =  limn→+∞ P1 + r

n

n

r
. r t

=  limh→0 P (1 + h)
1
h 
r t

Letting  h = r
n

     =  P ert Note  By the definition of  e:  e  =  limh→0 (1 + h)
1
h

F = Pe r t

Example  You take the amount of money, $200,000, your mom gave you at age 20 to go to university 
but instead invested it at a rate of  10%  compounded continuously. Will you be able to retire from your 
McRonald’s job at age 65 and live well?

F  =  200000 e0.1(65-20)

    =  200000 e4.5

    =  $ 18,000,000

Yes!  (but watch out for inflation)

.

.

.

n 

11
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Exercises 6.2

6. d

dx (e
3 x) = d

dx e
x2
 =

d

dx e
sin x = d

dx e
x2 cos x =

d

dx x
2 + 7 e

sin x = d

dx 
ex2

x+ 1  =

d

dx (tan(e3 x) ) = d

dx (e
tan x) =

7. ∫ e
t dt = ∫ e

t cos(e
t)dt =

∫ x e
x2 dx ∫ e

x
e

exdx

8. Find the area under the curve  y = ex  for  0 ≤ x ≤ 1. Illustrate with a graph.
9. You decided to go to university anyway. But you decided to save the amount you budgeted for
lunches for the four years, $15,000, and invest it at 10% for 45 years? Should you get a job with
retirement benefits?

10. Derive the formula   F  = P1 + rn
 
nt
.   Start with the simple interest formula  F = P(1 + rt).  Derive

this last formula first. 

1. On the same graph, plot by hand  y = ex,  y = e2 x and  y = ex/2.

2. On the graph, plot by hand  y = e-x  and  y = e-2 x.

3. On the same graph, plot by hand  y = ex2  and  y = e-x2 .

4. On the same graph, plot by hand  y = ex  and  y = e(x-2)

5. Prove that  x1/3 = 3  

x .  Hint: cube the left hand side.

_

11. A certain bacterium divides every hour. How many will there be after 24 hours.
a.

b. Compare with the continuous compounding formula. F = Pe  . 
Use the exact formula.

rt

Solutions 6.2

e

e
x2 
· 2x

   x2 cos x(2x cos x - x2 sin x)
ex

22 x(x+1) - ex2

(x+1)2

e
tan x sec2

x

sin et + C
e
ex+ C

6. e
3 x· 3

e
sin x· cos x

2x esin x + (x2 + 7) esin x· cos x

sec2(e3 x)e3 x· 3

7. e
t  +  C

1 /2 ex2+ C

8. e - 1

y = ex

1 2
X

1

2

3

4

5
Y

_
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 This is vastly greater than the correct answer 16,777,216. 
Here the bacteria start growing immediately, whatever this means; they do not wait an hour.

a. N = 1 1 + 
1·24

= 16777216

b. N =
? 1 e1·24 = 2.64891×1010

1
1

12



6.3  The Natural Logarithmic Function.  Other Bases
The inverse of the natural exponential function is the natural logarithmic function. We will follow the 
steps of section 6.1 to discover its inverse function properties.

I. Does  y = f(x) = ex  have an inverse so that   y  =  f(x)  =  ex ⟺  x  =  f -1(y)?

1 2 X
-1

1

2

3

4

5
Y

y = ex

Yes, it satisfies the horizontal line test.

II. Find its inverse function by solving
y = f(x) = ex  for  x.

This cannot be done by elementary algebra. So we pretend we can and write
x = f -1(y) =  ln(y) Note  “logarithms are exponents”

where  ln y  is called the natural logarithm of  y.  ln  is the abbreviation of its Latin name Logarithimus 
Naturalis. It is pronounced ‘ell-n x’ or ‘lon (rhymes with Ron) x’ or in advanced work is written ‘log x’.

III. The natural logarithm function.  x ↔ y.
y = ln x

IV. The graph of  y = ln x

-2 -1 1 2 3 4 5 X

-2

-1

1

2

3

4

5
Y

y = ex

y = ln x

V. The Inverse Function Identities

ln(ex)  =  x       ‘easy logs’ eln x  =  x      ‘exponentiation’

 Examples
   ln 

1
e

 =  ln e-1 = -1

Example  2  in base  e  form is            
aaa2 = eln 2 ≐ e0.693

      ln 1  =  ln e0 =  0
      ln e  =  ln e1 =  1 
      ln e2   = 2

These values are useful for graphing  y = ln x  by hand.

Note  The values of named functions 
such as the natural logarithmic function 
typically are calculated numerically by 
computer and which you can then freely 
use in any application.

1 2 3 4 5 X

1

2

y = ln x

-1-

13



Compare with the case of easy roots, 
useful for the same reason.

0  =  02  =  0
1  =  12  =  1
4  =  22  =  2

  ⋮

VI. Solving Exponential Equations
Example  Solve

e
2 x  =  7 

      ln e2 x=  ln 7        Take the log of both sides
      2x  =  ln 7 Easy logs
      x  =  1

2 ln 7

           ≐ 0.973  Calculator.

VII. Calculus
y = ln x  ⟺  x = ey
dy
dx  = 1

dx/dy
 = 1

e
y  = 1

x .

d

dx
(ln x) = 1

x ∫
du
u

= ln u + C

Verify that the absolute value sign in the integral is appropriate.

d

dx (ln|x|)  = ddx 
ln(-x) x < 0
ln(x) x > 0    =

d

dx ln(-x) x < 0
d

dx ln(x) x > 0
   =

-1
-x

x < 0
1
x

x > 0
   =  1

x
,  x ≠ 0.

Example
d

dx (ln(sin x)) = 1
sinx ·cos x  =  cot x Chain Rule

Example   The absolute values sign allows us to find the ‘area’ below from  x = -2  to  x = -1.

-2 -1 1 2 X

-2

-1

1

2

1
x

∫-2
-1 dx

x
 =  ln|x|

-2
-1

 =  ln|-1| - ln|-2| 

=  0 - ln 2

 =  - ln 2
 ≐  - 0.693

1 2 3 4 5
X

1

2

y = x

14



Further Properties of Logarithms 

The Properties of Exponents

1. e
x

e
y  =  e x+y

2.  ex

e y
=  e x-y

3. (e x)y =  e x y

translate directly into

Properties of Logarithms
1. ln(x y)  =  ln x + ln y
2. ln 

x

y   =  ln x - ln y

3. ln xy =  y ln x

Proof of 1   ln(xy) = ln x + ln y
ln(xy)

= lneln x
e

ln y    

= lneln x+ ln y

= lnx + lny

exponentiation 

property 1 of exponents 

easy logs

Other Bases
d

dx
(bx)  =  bx ln b ∫ b

u du = b
u

ln b
+ C

Proof
y = bx  ⟺  ln y = x ln b

1
y

 
dy
dx  =  ln b

dy
dx  =  y ln b

        =  bx ln b

Proof
y = logbx   ⟺   x = by

1  =  by dy
dx  ln b

dy
dx =

by ln b

1=  x ln b

d

dx
(log  x)  =  1

 x ln b
_

or do by general property VII of inverse functions.
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Logarithmic Differentiation
 There is one more general derivative formula we need. We do not yet know how to differentiate

y  =  f(x)g(x).

Method: take  ln of both sides.
ln y  =   ln(f(x)g(x)) 
         =   g(x) ln(f(x))

1
y

 
dy
dx  =   g’(x) ln(f(x)) + g(x) f ' (x)

f (x)

or       
dy
dx  =  y (g’(x) ln(f(x)) + g(x) f ' (x) ) ( )

=  f(x)g(x)(g’(x) ln(f(x)) + g(x) f ' (x)
f (x)

)

Example  Graph  y = xx  The natural domain of this function is  x > 0.

x x
x 11

1 11 = 1
2 22 = 4

limx→0 xx =  1

Local extreme values 
    by logarithmic differentiation.

y  = x
x

ln y  =  ln xx = x ln x
1
y

dy
dx  = 1·x + x · 1

x

dy
dx  = y(ln x + 1)

      = xx(ln x + 1) = 0

⇒ ln x = -1
x = e-1 ≐ 0.37
y = 0.37 0.37 ≐ 0.69

1 2 X

1

2

3

4

y = xx

You will learn how to do this exactly in Section 6 or now 
numerically, say, by evaluating  0.00010.0001  0= 0.999079.

Property 3 of logarithms

Implicit differentiation

NOTE  Do not memorize this formula.
Go through this process for each example.

f (x) ■
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Another application of logarithmic differentiation is to the differentiation of some complicated terms.

Example   

ln y  =  ln((x2 + 1)  + 3 ln(x+2) - 5 ln(x + 4) Properties of logs
1
y

dy
dx  = 2 x

x2+1 + 3
x+2 - 5

x+4
dy
dx  =  y  2 x

x2+1 + 3
x+2 - 5

x+4 

=  x
2+1 (x+2)3

(x+4)5  2 x

x2+1 + 3
x+2 - 5

x+4 

 This method is quick and produces a good looking answer.

1. d

dx (e
2 x+3) = d

dx (e
x2) = d

dx (e
(2 x+3)5

) =  d

dx (e
sin x) =

      d

dx (e
x tan x) = d

dx 
e2 x

x2-3  =
d

dx (cos(e2 x+3)) = d

dx (x
3

e
2 x+3) =

2. ∫ x

x2+ 1 dx = ∫ 0
1 x

x2+ 1 dx = ∫
cos x

sin2
x+ 1

dx = ∫
cos x

sin dx =

3. ∫e
t dt = ∫ 0

πcos x esin x dx =   ∫ 7x dx =           ∫x 10x2 dx =

4. Prove Property 2 of Logarithms  ln xy   =  ln x - ln y.

5. Prove Property 3 of Logarithms  ln xy =  y ln x.

6. d

dx (ln 1
x

) = d

dx (ln x
2) =  d

dx (ln x
3) =  d

dx (ln x
n) =

7. d

dx (2
3 x) = d

dx (10x2) = d

dx (7
(2 x+3)5

) =  d

dx (2
sin x) =

8. Work by logarithmic differentiation.
d

dx (x
3 x) = d

dx (sin x
cos x) =

9. Work by logarithmic differentiation. Compare with ordinary differentiation.

a. y = x(x+3)(x+5) b. y = xx2+ 3 x3- 5
x4+ 2 x2+ 1

10. xWrite  y = 10   in base  e  form.

Find the derivative of  y = x
2+

x

1 (x+
5

2)3

( + 4)
.

Logarithmic Differentiation

Exercises 6.3

Solutions

8 b.   y = sin x cos x

          ln y = cos x ln(sin x)
1
y

dy
 dx = -sin x ln(sin x) + cos x cos

x

x

sin

dy
dx sin = y  cos2

x

x - sin x ln(sin x))

sin= sin x cos x cos2

x

x - sin x ln(sin x))

10. 10x  =  eln 10 
x =   ex ln 10

x

17



6.4   Inverse Trig Functions: Algebra

The Inverse Sine Function
     If you want to solve  sin θ = 0.347, you need the inverse sine function:  θ = sin-1 0.347 ≐ 20.304°. 
The inverse sine function has many other applications in advanced calculus based applications. 

     Note: from the graph below, the function  y = sin x  is not one-to-one. The best we can do is observe 
that it is one-to-one, for example, on the interval   -     ≤ x ≤        We call the inverse function for this 
interval  sin-1 x  (if you are a mathematician) or for everyone else  arcsin x  (who might forget that     

sin-1
 x  does not mean  1/sin x.)  If you chose the magenta colored function your answers would be 

between  90°  and  270°  (OK, but nobody does that!)

y = sin x

-
π

2
-1 π

2
π

3π

2
2π

X

-
π

2

-1

π

2

π

3π

2

2π

Y

y = arcsinx ⟶

⟵ alternate arcsin x

Inverse Trig Identities 

sin(arcsin x) = x,  -1 ≤ x ≤ 1  arcsin(sin x) = x, - π
2
≤ x ≤ π

2

Examples   Be careful : see below

  sin(arcsin 2)  DNE       arcsin(sin π)  =  0

-1 1 X
-1

1

sin(arcsin x)

-
π

2

π

2

X

-
π

2

π

2

arcsin(sin x)

π
2-π

2- -.
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Origin of the arcsin notation   Look at the unit circle below.

θ

θ

x

y
1

(x, y)

y = sin θ

means
θ  is an angle whose sine is  y

which means
θ  is an arc whose sine is  y

which said quickly is

θ  = arcsin y

Other Inverse Trig Identities   arcsin x  means an ‘angle whose sine is  x’.  It is often useful to 
construct a triangle illustrating this.

arcsinx

x
1

1 - x2

Picture of arcsin x

Full basic list of inverse sine identities (domains not shown)

sin(arcsin x) = x cos(arcsin x) = 1 - x2

tan(arcsin x) =
x

1 - x2
cot(arcsin x) =

1 - x2

x

sec(arcsin x) =
1

1 - x2
csc(arcsin x) =

1

x

See picture above.
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Alternate Choices. Warning  Some textbooks and computer algebra systems may also choose 
arccot, arcsec and arccsc differently! (You will see in evaluating integrals, an important use of inverse
trig functions, any reasonable choice leads to the same answer.)

-1 1
X

π

alternate arccot x

-1 1
X

π

2

our arccot x

Note how both choices can be made.

-4 -2 2 4

-4

-2

2

4

cot x

-4 -2 2 4

-4

-2

2

4

arccot x selection graph

Basic Trig/ Inverse Trig Graphs

-
π

2

π

2

X

-
π

2

π

2

sin x, arcsin x

-1 1 π
X

-1

1

π

cos x, arccos x

-
π

2

π

2

X

-
π

2

π

2

tan x, arctan x

π

2

X

π

2

cot x, arccot x

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
sec x, arcsec x

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
csc x, arccsc x

, standard choices

20



arctan x

arccot x

x

1

-3-3 -1 1 2 3 X

-
π

2

π

2

arctan x + arccot x

Exercises 6.4
1. Solve using inverse trig functions. Evaluate by calculator.

a. sin θ = .35 b. cos x = π13 c. tan y = 55 d. sec x = 2

2. Find the first three positive solutions of  sin θ = 0.3  using inverse trig functions. Hint: Graph
sin θ.

3. As in the first example, evaluate and check with a graph.

a. cos(arccos 2) b. arccos(cos π)

4. Graph  y = tan(arctan x)  and  y = arctan(tan x). Indicate domain and range of each.

5. State the full basic list of inverse cosine identities. Illustrate. State domains.

6. State the full basic list of inverse tangent identities. Illustrate. State domains.

7. Solve each.

b. cos x = π13
d. sec x = 2

b. tan(arcsin 3x)

c. tan y = 55 g.

c. sin(2arcsin x)

πOne would expect:  ArcTan[x] + ArcCot[x] = 2 .  Why?  See  the diagram below.

Is there a geometry problem when  x < 0?

π 2π
X

-1

1
Y

↑ ↑ ↑

arcsin(0.3), π - arcsin(0.3), 2π + arcsin(0.3)

3. a. D b. π

9. (with domain restrictions)

a.   . sin(arcsin(2x)) b.

=  2x

tan (arcsin(3x) 
=  3 x

1- 9 x2

c. sin(2arcsin x)

a. sin θ = .358.

a. sin(arcsin 2x)

Solutions
2.

=  2 sin(arcsin x) cos(arcsin x)     double angle formula

=  2 x 1- x2

1

=  2 x    1 - x2

10. Graph and compare both sides  of  cos(arcsin x)=     1 - x2 .

8.

9.
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6.5  Calculus of the Inverse Trig Functions

Let us do  d

dx (arcsin x)  first.

d

dx (arcsin x) = 1

1-x2

y = sin x

-
π

2
-1 π

2
π

3π

2
2π

X

-
π

2

-1

π

2

π

3π

2

2π

Y

y = arcsinx⟶

⟵ alternate arcsin x

Proof
y = arcsin x  ⟺  x = sin y

   1 = cos y dy
dx differentiating implicitly

dy
dx  =  1

cos y

         =  1

± 1- sin2
y

Pythagorean Identity

         =  1

1 - sin2 y

Since our  arcsin x  has a positive slope

         =  1

1- x2

For the alternate  arcsin x  we would have chosen the negative square root.

d

dx (arctan x) = 1
1+ x2

Proof
y = arctan x  ⟺  x = tan y

   1 = sec2 y dy
dx differentiating implicitly

dy
dx  =  1

sec2 y

         =  1
1+ tan2 y

Pythagorean Identity

         =  1
1+ x2
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d

dx (arcsec x) = 1

x2- 1

Proof
y = arcsec x  ⟺  x = sec  y

   1 = sec y tan y dy
dx differentiating implicitly

dy
dx  =  1

sec y tan y

         =  1

±sec y tan2 y- 1
Pythagorean Identity

         =  1

±x x2 - 1

         =   1
x x2 - 1

See graph below

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
sec x, arcsec x

The slope of this arcsec x is a l w a y s positive.

d

dx (arcsin x)  = 1

1-x
2

d

dx (arccos x)  = -1

1-x
2

d

dx (arctan x)  = 1
1+ x2

d

dx (arccot x)  = -1
1+ x2

d

dx (arcsec x)  = 1
x x2- 1

d

dx (arccsc x)  = -1
x x2- 1


dx

1- x
2

∫
dx

1+ x2


dx

x x2- 1

= arcsin x + C 

= arctan x + C 

=  arcsec |x|  +   C

x

x

Why don't we turn the other three inverse trig derivatives into integral formulas?
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Exercises 6.5

1. Do a full derivation of the derivative of arccos x. Show a relevant graph.

2. d

dx (arcsin x
2)  = d

dx (sinx arcsinx)  = d

dx x arcsin ax + b  =

3. 
dt

1- t2
  =  ∫ dx

4+ x2 = ∫
cos x dx
4+ sin2

x
 =

4. The inverse trigonometric integrals are often written


du

a2 - u2
  =  arcsin 

u

a
 + C

∫
du

u2+ a2 =  1
a

 arctan 
u

a
 + C


du

u u2 -a2
=  1
a

arcsec 
u

a
+ C.

Derive these.

5. A statue 5  meters     

the distance  x.

Solutions

5. Hint:
Maximize θ:   

θ  =  arctan 9
x

 - arctan 4
x

Differentiate

Simplify
Solve 

x = 6 meters.

high sits on a pedestal  4 meters high. Find the viewing angle  θ  as a function of 

For what value of  x  is the viewing angle a maximum?

     5

4
θ

x
.
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.....

(cos θ,sin θ)

.

θ

2

.

x2 + y2 = 1

.

−1

.

1

. −1.

1

.

x

.

y

...
..

(cosh θ,sinh θ)

.

θ
2

.

x2 − y2 = 1

.

−2

.

2

.

−2

.

2

.

x

.

y

Figure 6.6.1: Using trigonometric func-
Ɵons to define points on a circle and hy-
perbolic funcƟons to define points on a
hyperbola. The area of the shaded re-
gions are included in them.

PronunciaƟon Note:
“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch.”

6.6 Hyperbolic FuncƟons
The hyperbolic funcƟons are a set of funcƟons that have many applicaƟons to
mathemaƟcs, physics, and engineering. Among many other applicaƟons, they
are used to describe the formaƟon of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have applicaƟon to the theory
of special relaƟvity. This secƟon defines the hyperbolic funcƟons and describes
many of their properƟes, especially their usefulness to calculus.

These funcƟons are someƟmes referred to as the “hyperbolic trigonometric
funcƟons” as there are many, many connecƟons between them and the stan-
dard trigonometric funcƟons. Figure 6.6.1 demonstrates one such connecƟon.
Just as cosine and sine are used to define points on the circle defined by x2+y2 =
1, the funcƟons hyperbolic cosine and hyperbolic sine are used to define points
on the hyperbola x2 − y2 = 1.

We begin with their definiƟons.

DefiniƟon 6.6.1 Hyperbolic FuncƟons

1. cosh x =
ex + e−x

2

2. sinh x =
ex − e−x

2

3. tanh x =
sinh x
cosh x

4. sech x =
1

cosh x

5. csch x =
1

sinh x

6. coth x =
cosh x
sinh x

These hyperbolic funcƟons are graphed in Figure 6.6.2. In the graphs of
cosh x and sinh x, graphs of ex/2 and e−x/2 are included with dashed lines. As
x gets “large,” cosh x and sinh x each act like ex/2; when x is a large negaƟve
number, cosh x acts like e−x/2 whereas sinh x acts like−e−x/2.

NoƟce the domains of tanh x and sech x are (−∞,∞), whereas both coth x
and csch x have verƟcal asymptotes at x = 0. Also note the ranges of these
funcƟons, especially tanh x: as x → ∞, both sinh x and cosh x approach ex/2,
hence tanh x approaches 1.

The following example explores some of the properƟes of these funcƟons
that bear remarkable resemblance to the properƟes of their trigonometric coun-
terparts.

     The connection between the trigonometric and hyperbolic functions shown in Figure 6.6.1 is correct 
but not particularly enlightening. We would like to see the relationships between the ‘angles’ rather 
than the areas.
     In more advanced calculus that includes the imaginary number  i = -1 , the relationships becomes 
clearer. That calculus is called Functions of a Complex Variable.

e
x

↓

cosh x =
ex+ e- x

2

cos x =
e i x+ e- i x

2
↑
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.....

f(x) = cosh x

.

−2

.

2

. −10.

−5

.

5

.

10

.

x

.

y

.....

f(x) = sinh x

.

−2

.

2

. −10.

−5

.

5

.

10

.

x

.

y

...

..

f(x) = tanh x

.

f(x) = coth x

.

−2

.

2

.

−2

.

2

.

x

.

y

...

..

f(x) = sech x

.

f(x) = csch x

.

−2

.

2

.

−3

.

−2

.

−1

.

1

.

2

.

3

.

x

.

y

Figure 6.6.2: Graphs of the hyperbolic funcƟons.

Example 6.6.1 Exploring properƟes of hyperbolic funcƟons
Use DefiniƟon 6.6.1 to rewrite the following expressions.

1. cosh2 x− sinh2 x

2. tanh2 x+ sech2 x

3. 2 cosh x sinh x

4. d
dx

(
cosh x

)
5. d

dx

(
sinh x

)
6. d

dx

(
tanh x

)
SÊ½çã®ÊÄ

1. cosh2 x− sinh2 x =
(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
e2x + 2exe−x + e−2x

4
− e2x − 2exe−x + e−2x

4

=
4
4
= 1.

So cosh2 x− sinh2 x = 1.
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2. tanh2 x+ sech2 x =
sinh2 x
cosh2 x

+
1

cosh2 x

=
sinh2 x+ 1
cosh2 x

Now use idenƟty from #1.

=
cosh2 x
cosh2 x

= 1.

So tanh2 x+ sech2 x = 1.

3. 2 cosh x sinh x = 2
(
ex + e−x

2

)(
ex − e−x

2

)
= 2 · e

2x − e−2x

4

=
e2x − e−2x

2
= sinh(2x).

Thus 2 cosh x sinh x = sinh(2x).

4.
d
dx
(
cosh x

)
=

d
dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinh x.

So d
dx

(
cosh x

)
= sinh x.

5.
d
dx
(
sinh x

)
=

d
dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh x.

So d
dx

(
sinh x

)
= cosh x.

6.
d
dx
(
tanh x

)
=

d
dx

(
sinh x
cosh x

)
=

cosh x cosh x− sinh x sinh x
cosh2 x

=
1

cosh2 x
= sech2 x.

So d
dx

(
tanh x

)
= sech2 x.
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The following Key Idea summarizes many of the important idenƟƟes relat-
ing to hyperbolic funcƟons. Each can be verified by referring back to DefiniƟon
6.6.1.

Key Idea 6.6.1 Useful Hyperbolic FuncƟon ProperƟes.  You actually should semi-memorize these!

Basic IdenƟƟes

1. cosh2 x− sinh2 x = 1

2. tanh2 x+ sech2 x = 1

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. sinh 2x = 2 sinh x cosh x

6. cosh2 x =
cosh 2x+ 1

2

7. sinh2 x =
cosh 2x− 1

2

DerivaƟves

1. d
dx

(
cosh x

)
= sinh x

2. d
dx

(
sinh x

)
= cosh x

3. d
dx

(
tanh x

)
= sech2 x

4. d
dx

(
sech x

)
= − sech x tanh x

5. d
dx

(
csch x

)
= − csch x coth x

6. d
dx

(
coth x

)
= − csch2 x

Integrals

1.
∫

cosh x dx = sinh x+ C

2.
∫

sinh x dx = cosh x+ C

3.
∫

tanh x dx = ln(cosh x) + C

4.
∫

coth x dx = ln | sinh x |+ C

We pracƟce using Key Idea 6.6.1.

Example 6.6.2 DerivaƟves and integrals of hyperbolic funcƟons
Evaluate the following derivaƟves and integrals.

1.
d
dx
(
cosh 2x

)
2.
∫

sech2(7t− 3) dt

3.
∫ ln 2

0
cosh x dx

SÊ½çã®ÊÄ

1. Using the Chain Rule directly, we have d
dx

(
cosh 2x

)
= 2 sinh 2x.

Just to demonstrate that it works, let’s also use the Basic IdenƟty found in
Key Idea 6.6.1: cosh 2x = cosh2 x+ sinh2 x.

d
dx
(
cosh 2x

)
=

d
dx
(
cosh2 x+ sinh2 x

)
= 2 cosh x sinh x+ 2 sinh x cosh x

= 4 cosh x sinh x.
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Using another Basic IdenƟty, we can see that 4 cosh x sinh x = 2 sinh 2x.
We get the same answer either way.

2. We employ subsƟtuƟon, with u = 7t − 3 and du = 7dt. Applying Key
Ideas 6.1.1 and 6.6.1 we have:∫

sech2(7t− 3) dt =
1
7
tanh(7t− 3) + C.

3. ∫ ln 2

0
cosh x dx = sinh x

∣∣∣ln 2
0

= sinh(ln 2)− sinh 0 = sinh(ln 2).

We can simplify this last expression as sinh x is based on exponenƟals:

sinh(ln 2) =
eln 2 − e− ln 2

2
=

2− 1/2
2

=
3
4
.
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Exercises 6.6
Terms and Concepts

1. In Key Idea 6.6.1, the equaƟon
∫

tanh x dx = ln(cosh x)+C

is given. Why is “ln | cosh x|” not used – i.e., why are abso-
lute values not necessary?

2. The hyperbolic funcƟons are used to define points on the
right hand porƟon of the hyperbola x2 − y2 = 1, as shown
in Figure 6.6.1. How can we use the hyperbolic funcƟons to
define points on the leŌ hand porƟon of the hyperbola?

Problems
In Exercises 3 – 10, verify the given idenƟty using DefiniƟon
6.6.1, as done in Example 6.6.1.

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. cosh2 x = cosh 2x+ 1
2

6. sinh2 x = cosh 2x− 1
2

7. d
dx

[sech x] = − sech x tanh x

8. d
dx

[coth x] = − csch2 x

9.
∫

tanh x dx = ln(cosh x) + C

10.
∫

coth x dx = ln | sinh x|+ C

In Exercises 11 – 22, find the derivaƟve of the given funcƟon.

11. f(x) = sinh 2x

12. f(x) = cosh2 x

13. f(x) = tanh(x2)

14. f(x) = ln(sinh x)

15. f(x) = sinh x cosh x

16. f(x) = x sinh x − cosh x

In Exercises 23 – 28, find the equaƟon of the line tangent to
the funcƟon at the given x-value.

23. f(x) = sinh x at x = 0

24. f(x) = cosh x at x = ln 2

25. f(x) = tanh x at x = − ln 3

26. f(x) = sech2 x at x = ln 3

In Exercises 29 – 44, evaluate the given indefinite integral.

29.
∫

tanh(2x) dx

30.
∫

cosh(3x− 7) dx

31.
∫

sinh x cosh x dx

In Exercises 45 – 48, evaluate the given definite integral.

45.
∫ 1

−1
sinh x dx

46.
∫ ln 2

− ln 2
cosh x dx

47. sech rhymes with?
csch rhymes with?
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Solutions 6.6

1. Because cosh x is always posiƟve.

2. The points on the leŌ hand side can be defined as
(− cosh x, sinh x).

3. coth2 x− csch2 x =
(
ex + e−x

ex − e−x

)2
−
(

2
ex − e−x

)2

=
(e2x + 2+ e−2x)− (4)

e2x − 2+ e−2x

=
e2x − 2+ e−2x

e2x − 2+ e−2x

= 1

4. cosh2 x+ sinh2 x =
(
ex + e−x

2

)2
+

(
ex − e−x

2

)2

=
e2x + 2+ e−2x

4
+

e2x − 2+ e−2x

4

=
2e2x + 2e−2x

4

=
e2x + e−2x

2
= cosh 2x.

5. cosh2 x =
(
ex + e−x

2

)2

=
e2x + 2+ e−2x

4

=
1
2
(e2x + e−2x) + 2

2

=
1
2

(
e2x + e−2x

2
+ 1
)

=
cosh 2x+ 1

2
.

6. sinh2 x =
(
ex − e−x

2

)2

=
e2x − 2+ e−2x

4

=
1
2
(e2x + e−2x)− 2

2

=
1
2

(
e2x + e−2x

2
− 1
)

=
cosh 2x− 1

2
.

7.
d
dx

[sech x] =
d
dx

[
2

ex + e−x

]
=

−2(ex − e−x)

(ex + e−x)2

= −
2(ex − e−x)

(ex + e−x)(ex + e−x)

= −
2

ex + e−x ·
ex − e−x

ex + e−x

= − sech x tanh x

8.
d
dx

[coth x] =
d
dx

[
ex + e−x

ex − e−x

]
=

(ex − e−x)(ex − e−x)− (ex + e−x)(ex + e−x)

(ex − e−x)2

=
e2x + e−2x − 2− (e2x + e−2x + 2)

(ex − e−x)2

= −
4

(ex − e−x)2

= − csch2 x

9.
∫

tanh x dx =
∫ sinh x

cosh x
dx

Let u = cosh x; du = (sinh x)dx

=

∫ 1
u
du

= ln |u|+ C
= ln(cosh x) + C.

10.
∫

coth x dx =
∫ cosh x

sinh x
dx

Let u = sinh x; du = (cosh x)dx

=

∫ 1
u
du

= ln |u|+ C
= ln | sinh x|+ C.

11. 2 cosh 2x

12. Taking the derivaƟve of (cosh x)2 directly, one gets 2 cosh x sinh x;
using the idenƟty cosh2 x = 1

2 (cosh 2x+ 1) first, one gets
sinh 2x; by Key Idea 6.6.1, these are equal.

13. 2x sec2(x2)

14. coth x

15. sinh2 x+ cosh2 x

16. x cosh x

29. 1/2 ln(cosh(2x)) + C

30. 1/3 sinh(3x − 7) + C

31. 1/2 sinh2 x + C or 1/2 cosh2 x + C

21. y = x

22. y = (x − ln 2) + 54

23. y = 925 (x + ln 3) − 45

24. y = − 72125 (x − ln 3) + 925

23.

24.

25. 

26. 
■■
■

■

43. 0

44. 3/2

45.

46.
■
■

47.   screetch
         go screetch

31



6.7 Inverse Hyperbolic FuncƟons
Just as the inverse trigonometric funcƟons are useful in certain 

integraƟons, the inverse hyperbolic funcƟons are useful with other related 
ones. Figure 6.6.3 shows the restricƟons on the domains to make each 
funcƟon one-to-one and the resulƟng domains and ranges of their inverse 
funcƟons. Their graphs are shown in Figure 6.6.4.

Because the hyperbolic funcƟons are defined in terms of exponenƟal func-

(o
x+

Ɵons, their inverses can be expressed in terms of log
1
arithms as sh wn in√Key Idea)

6.6.2. It is oŌen more convenient to refer to sinh− x than to ln x2 + 1 ,

especially when one is working on theory and does not need to compute actual 
values. On the other hand, when computaƟons are needed, technology is oŌen 
helpful but many hand-held calculators lack a convenient sinh−1 x buƩon. (Of-
ten it can be accessed under a menu system, but not conveniently.) In such a 
situaƟon, the logarithmic representaƟon is useful. The reader is not 
encouraged to memorize these, but rather know they exist and know how to 
use them when needed, i.e., semi-memorize them.

FuncƟon Domain Range
cosh x [0,∞) [1,∞)
sinh x (−∞,∞) (−∞,∞)
tanh x (−∞,∞) (−1, 1)
sech x [0,∞) (0, 1]
csch x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth x (−∞, 0) ∪ (0,∞) (−∞,−1) ∪ (1,∞)

FuncƟon Domain Range
cosh−1 x [1,∞) [0,∞)
sinh−1 x (−∞,∞) (−∞,∞)
tanh−1 x (−1, 1) (−∞,∞)
sech−1 x (0, 1] [0,∞)
csch−1 x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth−1 x (−∞,−1) ∪ (1,∞) (−∞, 0) ∪ (0,∞)

Figure 6.7.3: Domains and ranges of the hyperbolic and inverse hyperbolic funcƟons.
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y = cosh x
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Figure 6.6.4: Graphs of the hyperbolic funcƟons and their inverses.
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Key Idea 6.6.2 Logarithmic definiƟons of Inverse Hyperbolic FuncƟons

1. cosh−1 x = ln
(
x+

√
x2 − 1

)
; x ≥ 1

2. tanh−1 x =
1
2
ln
(
1+ x
1− x

)
; |x| < 1

3. sech−1 x = ln

(
1+

√
1− x2

x

)
; 0 < x ≤ 1

4. sinh−1 x = ln
(
x+

√
x2 + 1

)
5. coth−1 x =

1
2
ln
(
x+ 1
x− 1

)
; |x| > 1

6. csch−1 x = ln

(
1
x
+

√
1+ x2

|x|

)
; x ̸= 0

Note on Notation
The ‘-1  power’ notation is widely used by mathematicians. This seems to make sense:

y = f(x)  ⇔  x = f-1(y).

 It looks like to go from the left equation to the right one is take  f-1 =?  1
f

. But reciprocals are for 

variables not functions. Many beginners make the mistake of writing  sinh-1(x)  = 1
sinh x

. Bad. Bad. 

Otherwise the notation  sinh-1  is just fine.
 Some authors write  arcsinh, but arcsinh has nothing much to do with arcs or angles.
 Others write  argsinh  because  in y = sinh x, x is the argument of the sinh function. It is a good 

notation but not widely used. 

 By Calculus II you should be able to handle  sinh-1 !
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6.6 Hyperbolic FuncƟons

The following Key Ideas give the derivaƟves and integrals relaƟng to the in-
verse hyperbolic funcƟons. In Key Idea 6.6.4, both the inverse hyperbolic and 
logarithmic funcƟon representaƟons of the anƟderivaƟve are given, based on 
Key Idea 6.6.2. Again, these laƩer funcƟons are oŌen more useful than the for-
mer. Note how inverse hyperbolic funcƟons can be used to solve integrals we 
will use Trigonometric SubsƟtuƟon to solve in SecƟon 7.4.

Key Idea 6.6.3 DerivaƟves Involving Inverse Hyperbolic FuncƟons

1.
d
dx
(
cosh−1 x

)
=

1√
x2 − 1

; x > 1

2.
d
dx
(
sinh−1 x

)
=

1√
x2 + 1

3.
d
dx
(
tanh−1 x

)
=

1
1− x2

; |x| < 1

4.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

; 0 < x < 1

5.
d
dx
(
csch−1 x

)
=

−1
|x|
√
1+ x2

; x ̸= 0

6.
d
dx
(
coth−1 x

)
=

1
1− x2

; |x| > 1

Key Idea 6.6.4 Integrals Involving Inverse Hyperbolic FuncƟons

1.
∫

1√
x2 − a2

dx = cosh−1
( x
a

)
+ C; 0 < a < x = ln

∣∣∣x+√x2 − a2
∣∣∣+ C

2.
∫

1√
x2 + a2

dx = sinh−1
( x
a

)
+ C; a > 0 = ln

∣∣∣x+√x2 + a2
∣∣∣+ C

3.
∫

1
a2 − x2

dx =


1
a tanh

−1 ( x
a

)
+ C x2 < a2

1
a coth

−1 ( x
a

)
+ C a2 < x2

=
1
2a

ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

4.
∫

1
x
√
a2 − x2

dx = −1
a
sech−1

( x
a

)
+ C; 0 < x < a =

1
a
ln
(

x
a+

√
a2 − x2

)
+ C

5.
∫

1
x
√
x2 + a2

dx = −1
a
csch−1

∣∣∣ xa ∣∣∣+ C; x ̸= 0, a > 0 =
1
a
ln
∣∣∣∣ x
a+

√
a2 + x2

∣∣∣∣+ C

We pracƟce using a derivaƟve formula in the following example.

34

These 
we
will 
use
later.

Example 6.6.3 DerivaƟve involving inverse hyperbolic funcƟons

Evaluate.

d
[

  1.dx  cosh−1
(
3x− 2

5

)]

SÊ½çã®ÊÄ

Applying Key Idea 6.6.3 with the Chain Rule gives:

d
dx

[
cosh−1

(
3x− 2

5

)]
=

1

5
−

√( 3x 2)2 − 1
· 3
5
.
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This secƟon covers a lot of ground. New funcƟons were introduced, along 
with some of their fundamental idenƟƟes, their derivaƟves and anƟderivaƟves, 
their inverses, and the derivaƟves and anƟderivaƟves of these inverses. Four 
Key Ideas were presented, each including quite a bit of informaƟon.

Do not view this secƟon as containing a source of informaƟon to be memo-
rized, but rather as a reference for future problem solving. Key Idea 6.6.4 con-
tains perhaps the most useful informaƟon we will use later

We pracƟce using an integral formula in the following example.

∫
1

x2 − 1
dx

∫
1

x2 − 1
dx =MulƟplying the numerator anddenominator by (−1) gives:∫

−1
dx. The second integral can be solved with a direct applicaƟon

1− x2
of item #3 from Key Idea 6.6.4, with a = 1. Thus

1
x2 − 1

dx = −
∫ ∫

1
dx

=


1− x2

− tanh−1 (x) + C x2 < 1

− coth−1 (x) + C 1 < x2

= −1
2
ln
∣∣∣∣x+ 1

∣∣∣∣x− 1
+ C

=
1
2
ln
∣∣∣∣xx+ 1

1

∣∣∣∣−
+ C.

SOLUTION

35



Exercises 6.7

In Exercises 11 – 22, find the derivaƟve of the given funcƟon.

f(x) = sech−1(x2)

f(x) = cosh−1(2x2)

20. f(x) = tanh−1(x+ 5)

21. f(x) = tanh−1(cos x)

22. f(x) = cosh−1(sec x)

In Exercises 23 – 28, find the equaƟon of the line tangent to
the funcƟon at the given x-value.

27. f(x) = sinh−1 x at x = 0

28. f(x) = cosh−1 x at x =
√
2

In Exercises 29 – 44, evaluate the given indefinite integral.

34.
∫

1√
x2 + 1

dx

35.
∫

1√
x2 − 9

dx

36.
∫

1
9− x2

dx

Solutions 6.7

17.

18.

19.

f(x) = s inh−1(3x)

16. x cosh x

17. 
2 
−√2x

(x ) 1−x4

18. 3√
9x2+1

19. 4x√
4x4−1

20. 1
1−(x+5)2

21. − csc x

22. sec x

y = x27.

28. y = (x−
√
2) + cosh−1(

√
2) ≈ (x− 1.414) + 0.881

34. sinh−1 x+ C = ln
(
x+

√
x2 + 1

)
35. cosh−1 x/3+ C = ln

(
x+

√
x2 − 9

+ C)
+ C

36.

 1
3 tanh

−1 x
3
( )

+ C x2 < 9

1
3 coth

−1 x
3
( )

+
 C 9 < x2

=

1
2

1
2ln |x+ 1| − ln |x− 1|+ C
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6.8  L’Hôpital’s Rule
While this chapter is devoted to learning techniques of integraƟon, this 
secƟon is not about integraƟon. Rather, it is concerned with a technique of 
evaluaƟng certain limits that will be useful in the following secƟon, where 
integraƟon is once more discussed.

Our treatment of limits exposed us to the noƟon of “0/0”, an indeterminate
form. If lim

x→c
f(x) = 0 and lim

x→c
g(x) = 0, we do not conclude that lim

x→c
f(x)/g(x) is

0/0; rather, we use 0/0 as notaƟon to describe the fact that both the numerator
and denominator approach 0. The expression 0/0 has no numeric value; other
work must be done to evaluate the limit.

Other indeterminate forms exist; they are: ∞/∞, 0 ·∞,∞−∞, 00, 1∞ and
∞0. Just as “0/0” does not mean “divide 0 by 0,” the expression “∞/∞” does
not mean “divide infinity by infinity.” Instead, it means “a quanƟty is growing
without bound and is being divided by another quanƟty that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 ·∞” does not mean “mulƟply zero by infinity.” Instead,
it means “one quanƟty is shrinking to zero, and is being mulƟplied by a quanƟty
that is growing without bound.” We cannot determine from such a descripƟon
what the result of such a limit will be.

This secƟon introduces l’Hôpital’s Rule, amethod of resolving limits that pro-
duce the indeterminate forms 0/0 and ∞/∞. We’ll also show how algebraic
manipulaƟon can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

Theorem 6.8.1 L’Hôpital’s Rule, Part 1

Let lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0, where f and g are differenƟable func-
Ɵons on an open interval I containing c, and g ′(x) ̸= 0 on I except possi-
bly at c. Then

lim
x→c

f(x)
g(x)

= lim
x→c

f ′(x)
g ′(x)

.

X

Y

y = f(x)   y = g(x)

y = f '(c)(x-c)

y = g'(c)(x-c)

Proof  Near  x = c, x = c  by tan line approximations
      f(x) ≈ f(c) + f '(c)(x - c)  =  f '(c)(x - c)
      g(x) ≈ g(c) + g'(c)(x - c) = g '(c)(x - c)
So

c

f(x)
g(x)

   ≈  

/

f '(c)(x - c) 
g'(c)(x - c)    Ґ f '(c)

g'(c)
or

lim
x→c

f(x)
g(x)

= lim
x→c

f ′(x)
g ′(x)

.
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Example 6.8.2 Using l’Hôpital’s Rule
Evaluate the following limits, using l’Hôpital’s Rule as needed.

1. lim
x→0

sin x
x

2. lim
x→1

√
x+ 3− 2
1− x

3. lim
x→0

x2

1− cos x

4. lim
x→2

x2 + x− 6
x2 − 3x+ 2

SÊ½çã®ÊÄ

1. We proved this limit is 1 in Example 1.3.4 using the Squeeze Theorem.
Here we use l’Hôpital’s Rule to show its power.

lim
x→0

sin x
x

by LHR
= lim

x→0

cos x
1

= 1.

2. lim
x→1

√
x+ 3− 2
1− x

by LHR
= lim

x→1

1
2 (x+ 3)−1/2

−1
= −1

4
.

3. lim
x→0

x2

1− cos x
by LHR
= lim

x→0

2x
sin x

.

This laƩer limit also evaluates to the 0/0 indeterminate form. To evaluate
it, we apply l’Hôpital’s Rule again.

lim
x→0

2x
sin x

by LHR
=

2
cos x

= 2.

Thus lim
x→0

x2

1− cos x
= 2.

4. We already know how to evaluate this limit; first factor the numerator and
denominator. We then have:

lim
x→2

x2 + x− 6
x2 − 3x+ 2

= lim
x→2

(x− 2)(x+ 3)
(x− 2)(x− 1)

= lim
x→2

x+ 3
x− 1

= 5.

We now show how to solve this using l’Hôpital’s Rule.

lim
x→2

x2 + x− 6
x2 − 3x+ 2

by LHR
= lim

x→2

2x+ 1
2x− 3

= 5.

Note that at each stepwhere l’Hôpital’s Rule was applied, it was needed: the
iniƟal limit returned the indeterminate form of “0/0.” If the iniƟal limit returns,
for example, 1/2, then l’Hôpital’s Rule does not apply.

We demonstrate the use of l’Hôpital’s Rule in the following examples; we
will oŌen use “LHR” as an abbreviaƟon of “l’Hôpital’s Rule.”
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The following theorem extends our iniƟal version of l’Hôpital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form ∞/∞
and to limits where x approaches±∞.

Theorem 6.8.2 L’Hôpital’s Rule, Part 2

1. Let lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, where f and g are differ-
enƟable on an open interval I containing a. Then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g ′(x)

.

2. Let f and g be differenƟable funcƟons on the open interval (a,∞)
for some value a, where g ′(x) ̸= 0 on (a,∞) and lim

x→∞
f(x)/g(x)

returns either “0/0” or “∞/∞”. Then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g ′(x)

.

A similar statement can be made for limits where x approaches
−∞.

Example 6.8.2 Using l’Hôpital’s Rule with limits involving ∞
Evaluate the following limits.

1. lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

2. lim
x→∞

ex

x3
.

SÊ½çã®ÊÄ

1. We can evaluate this limit already using Theorem 1.6.1; the answer is 3/4.
We apply l’Hôpital’s Rule to demonstrate its applicability.

lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

by LHR
= lim

x→∞

6x− 100
8x+ 5

by LHR
= lim

x→∞

6
8
=

3
4
.

2. lim
x→∞

ex

x3
by LHR
= lim

x→∞

ex

3x2
by LHR
= lim

x→∞

ex

6x
by LHR
= lim

x→∞

ex

6
= ∞.

Recall that this means that the limit does not exist; as x approaches ∞,
the expression ex/x3 grows without bound. We can infer from this that
ex grows “faster” than x3; as x gets large, ex is far larger than x3. (This
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has important implicaƟons in compuƟng when considering efficiency of
algorithms.)

Indeterminate Forms 0 · ∞ and∞−∞

L’Hôpital’s Rule can only be applied to raƟos of funcƟons. When faced with
an indeterminate form such as 0 ·∞ or∞−∞, we can someƟmes apply algebra
to rewrite the limit so that l’Hôpital’s Rule can be applied. We demonstrate the
general idea in the next example.

Example 6.8.3 Applying l’Hôpital’s Rule to other indeterminate forms
Evaluate the following limits.

1. lim
x→0+

x · e1/x

2. lim
x→0−

x · e1/x

3. lim
x→∞

ln(x+ 1)− ln x

4. lim
x→∞

x2 − ex

SÊ½çã®ÊÄ

1. As x → 0+, x → 0 and e1/x → ∞. Thus we have the indeterminate form

0 · ∞. We rewrite the expression x · e1/x as e
1/x

1/x
; now, as x → 0+, we get

the indeterminate form∞/∞ to which l’Hôpital’s Rule can be applied.

lim
x→0+

x · e1/x = lim
x→0+

e1/x

1/x
by LHR
= lim

x→0+

(−1/x2)e1/x

−1/x2
= lim

x→0+
e1/x = ∞.

InterpretaƟon: e1/x grows “faster” than x shrinks to zero, meaning their
product grows without bound.

2. As x → 0−, x → 0 and e1/x → e−∞ → 0. The the limit evaluates to 0 · 0
which is not an indeterminate form. We conclude then that

lim
x→0−

x · e1/x = 0.

3. This limit iniƟally evaluates to the indeterminate form∞−∞. By applying
a logarithmic rule, we can rewrite the limit as

lim
x→∞

ln(x+ 1)− ln x = lim
x→∞

ln
(
x+ 1
x

)
.

As x → ∞, the argument of the ln term approaches ∞/∞, to which we
can apply l’Hôpital’s Rule.

lim
x→∞

x+ 1
x

by LHR
=

1
1
= 1.
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Since x → ∞ implies
x+ 1
x

→ 1, it follows that

x → ∞ implies ln
(
x+ 1
x

)
→ ln 1 = 0.

Thus
lim
x→∞

ln(x+ 1)− ln x = lim
x→∞

ln
(
x+ 1
x

)
= 0.

InterpretaƟon: since this limit evaluates to 0, it means that for large x,
there is essenƟally no difference between ln(x + 1) and ln x; their differ-
ence is essenƟally 0.

4. The limit lim
x→∞

x2−ex iniƟally returns the indeterminate form∞−∞. We

can rewrite the expression by factoring out x2; x2 − ex = x2
(
1− ex

x2

)
.

We need to evaluate how ex/x2 behaves as x → ∞:

lim
x→∞

ex

x2
by LHR
= lim

x→∞

ex

2x
by LHR
= lim

x→∞

ex

2
= ∞.

Thus limx→∞ x2(1− ex/x2) evaluates to∞ · (−∞), which is not an inde-
terminate form; rather, ∞ · (−∞) evaluates to −∞. We conclude that
lim
x→∞

x2 − ex = −∞.

InterpretaƟon: as x gets large, the difference between x2 and ex grows
very large.

Indeterminate Forms 00, 1∞ and∞0

When faced with an indeterminate form that involves a power, it oŌen helps
to employ the natural logarithmic funcƟon. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

Key Idea 6.8.1 EvaluaƟng Limits Involving Indeterminate Forms
00, 1∞ and∞0

If lim
x→c

ln
(
f(x)
)
= L, then lim

x→c
f(x) = lim

x→c
eln(f(x)) = e L.
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Example 6.8.4 Using l’Hôpital’s Rule with indeterminate forms involving
exponents

Evaluate the following limits.

1. lim
x→∞

(
1+

1
x

)x

2. lim
x→0+

xx.

SÊ½çã®ÊÄ

1. This is equivalent to a special limit given in Theorem 1.3.5; these limits
have important applicaƟons within mathemaƟcs and finance. Note that
the exponent approaches∞ while the base approaches 1, leading to the
indeterminate form 1∞. Let f(x) = (1+ 1/x)x; the problem asks to eval-
uate lim

x→∞
f(x). Let’s first evaluate lim

x→∞
ln
(
f(x)
)
.

lim
x→∞

ln
(
f(x)
)
= lim

x→∞
ln
(
1+

1
x

)x

= lim
x→∞

x ln
(
1+

1
x

)
= lim

x→∞

ln
(
1+ 1

x

)
1/x

This produces the indeterminate form 0/0, so we apply l’Hôpital’s Rule.

= lim
x→∞

1
1+1/x · (−1/x2)

(−1/x2)

= lim
x→∞

1
1+ 1/x

= 1.

Thus lim
x→∞

ln
(
f(x)
)
= 1.We return to the original limit and apply Key Idea

6.8.1.

lim
x→∞

(
1+

1
x

)x

= lim
x→∞

f(x) = lim
x→∞

eln(f(x)) = e1 = e.

2. This limit leads to the indeterminate form 00. Let f(x) = xx and consider
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.....

f(x) = xx

. 1. 2.

1

.

2

.

3

.

4

.
x

.

y first lim
x→0+

ln
(
f(x)
)
.

lim
x→0+

ln
(
f(x)
)
= lim

x→0+
ln (xx)

= lim
x→0+

x ln x

= lim
x→0+

ln x
1/x

.

This produces the indeterminate form−∞/∞ soweapply l’Hôpital’s Rule.

= lim
x→0+

1/x
−1/x2

= lim
x→0+

−x

= 0.

Thus lim
x→0+

ln
(
f(x)
)
= 0. We return to the original limit and apply Key Idea

6.8.1.
lim

x→0+
xx = lim

x→0+
f(x) = lim

x→0+
eln(f(x)) = e0 = 1.

This result is supported by the graph of f(x) = xx given in Figure 6.8.1.

Our brief revisit of limits will be rewarded in the next secƟon where we con-
sider improper integraƟon. So far, we have only considered definite integrals

where the bounds are finite numbers, such as
∫ 1

0
f(x) dx. Improper integraƟon

considers integrals where one, or both, of the bounds are “infinity.” Such inte-
grals have many uses and applicaƟons, in addiƟon to generaƟng ideas that are
enlightening.

Alternate one step approach if you are fluent with logs for exponential forms. 

=   limx→ 0+  eln xx

=   limx→ 0+  ex ln x
x         {0·∞}

=    limx→ 0+  e
ln x

1/x ∞
∞


=
LHR limx→ 0+  e

1/x
-1x

2

=   limx→ 0+  e-x

=   e0

=   1

{00}

Figure 6.8.1: A graph of f(x) = xx

suppporƟng the fact that as x → 0+, f(x) →  1.

limx → 0+ xx
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Exercises 6.8
Terms and Concepts
1. List the different indeterminate forms described in this sec-

Ɵon.

2. T/F: l’Hôpital’s Rule provides a faster method of compuƟng
derivaƟves.

3. T/F: l’Hôpital’s Rule states that d
dx

[
f(x)
g(x)

]
=

f ′(x)
g′(x)

.

4. Explain what the indeterminate form “1∞” means.

5. Fill in the blanks:

The QuoƟent Rule is applied to f(x)
g(x)

when taking
;

l’Hôpital’s Rule is applied to f(x)
g(x)

when taking certain
.

6. Create (but do not evaluate!) a limit that returns “∞0”.

7. Create a funcƟon f(x) such that lim
x→1

f(x) returns “00”.

8. Create a funcƟon f(x) such that lim
x→∞

f(x) returns “0 · ∞”.

Problems 6.8
In Exercises 9 – 54, evaluate the given limit.

9. lim
x→1

x2 + x− 2
x− 1

10. lim
x→2

x2 + x− 6
x2 − 7x+ 10

11. lim
x→π

sin x
x− π

12. lim
x→π/4

sin x− cos x
cos(2x)

13. lim
x→0

sin(5x)
x

14. lim
x→0

sin(2x)
x+ 2

15. lim
x→0

sin(2x)
sin(3x)

16. lim
x→0

sin(ax)
sin(bx)

17. lim
x→0+

ex − 1
x2

18. lim
x→0+

ex − x− 1
x2

19. lim
x→0+

x− sin x
x3 − x2

20. lim
x→∞

x4

ex

21. lim
x→∞

√
x

ex

22. lim
x→∞

1
x2
ex

23. lim
x→∞

ex√
x

24. lim
x→∞

ex

2x

25. lim
x→∞

ex

3x

26. lim
x→3

x3 − 5x2 + 3x+ 9
x3 − 7x2 + 15x− 9

27. lim
x→−2

x3 + 4x2 + 4x
x3 + 7x2 + 16x+ 12

28. lim
x→∞

ln x
x

29. lim
x→∞

ln(x2)
x

30. lim
x→∞

(
ln x
)2

x

31. lim
x→0+

x · ln x

32. lim
x→0+

√
x · ln x

33. lim
x→0+

xe1/x

34. lim
x→∞

x3 − x2

35. lim
x→∞

√
x− ln x

36. lim
x→−∞

xex

37. lim
x→0+

1
x2
e−1/x

38. lim
x→0+

(1+ x)1/x
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39. lim
x→0+

(2x)x

40. lim
x→0+

(2/x)x

41. lim
x→0+

(sin x)x

42. lim
x→1+

(1− x)1−x

43. lim
x→∞

(x)1/x

44. lim
x→∞

(1/x)x

45. lim
x→1+

(ln x)1−x

46. lim
x→∞

(1+ x)1/x

47. lim
x→∞

(1+ x2)1/x

48. lim
x→π/2

tan x cos x

49. lim
x→π/2

tan x sin(2x)

50. lim
x→1+

1
ln x

− 1
x− 1

51. lim
x→3+

5
x2 − 9

− x
x− 3

52. lim
x→∞

x tan(1/x)

53. lim
x→∞

(ln x)3

x

54. lim
x→1

x2 + x− 2
ln x

Solutions 6.8

1. 0/0,∞/∞, 0 · ∞,∞−∞, 00, 1∞,∞0

2. F

3. F

4. The base of an expression is approaching 1 while its power is
growing without bound.

5. derivaƟves; limits

6. Answers will vary.

7. Answers will vary.

8. Answers will vary.

9. 3

10. −5/3

11. −1

−12.
√
2/2

13. 5

14. 0

15. 2/3

16. a/b

17. ∞

18. 1/2

19. 0

20. 0

21. 0

22. ∞

23. ∞

24. ∞

25. 0

26. 2

27. −2

28. 0

29. 0

30. 0

31. 0

32. 0

33. ∞

34. ∞

35. ∞

36. 0

37. 0

38. e

39. 1

40. 1

41. 1

42. 1

43. 1

44. 0

45. 1

46. 1

47. 1

48. 1

49. 2

50. 1/2

51. −∞

52. 1

53. 0

54. 3

55. lim      
c x→0

1 - x 
  x

x-
+

55. +∞
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Integral Table (Change of variable Form)

∫ du = u + C
∫ u

n du = un+1

n+1
+ C

∫ e
u du = eu + C

       ∫ au du = au

ln a
+ C


du =  ln|u| + C

       ∫ sinudu = -cosu + C

       ∫ csc2udu = -cotu + C

       ∫ cscucotudu = -cscu+ C

u 

Method of Substitution

 f(g(x)) g ' (x) dx =
du = g ' (x) dx

u= g(x)
∫ f(u)du

Proof: the integral is live mathematics.

7.1A  Method of Substitution Review
In applications, simple integrals like  ∫cosx dx  are rare.  It is more likely you will encounter integrals 

like  ∫cos(2 π  x) dx  or  ∫cos(2.34 x + 7 .49) dx. Fortunately these can often be worked with a slightly 

modified table of integrals. The idea of  u  is it can be any differentiable change of variable. Live math! 

Chapter 7  Techniques of Integration

u

∫ cosu du = sinu + C 

∫ sec2u du = tanu + C

∫ secu tanu du = sec  u + C                                                               


du

1 - u2  = arcsin u + C 
du

1 + u2  = arctan u + C 
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The previous chapter we completed the basic calculus of most of the 
functions a well educated calculus user should know.

Most combinations of these functions are easy to differentiate. However,  
many are difficult to integrate. This chapter is devoted to exploring techniques 
of anƟdifferenƟaƟon. While not every funcƟon has an anƟderivaƟve in terms 
of elementary funcƟons we can sƟll find anƟderivaƟves of a wide variety of 
funcƟons. Nevertheless, many remain impossible to integrate. For these we 
will learn approximate integration; however, realistically this job is best done 
by computer.

7.1 A   SubsƟtuƟon 

We moƟvate this secƟon with an example. Let f(x) =   (x2 + 3x − 5)10. 
We can compute f ′(x) using the Chain Rule. It is:  
f ′(x) =   10(x2 + 3x − 5)9 · (2x + 3) =   (20x + 30)(x2 + 3x − 5)9.

Now consider this: What is
∫
(20x+ 30)(x2 + 3x− 5)9 dx? We have the answer

in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starƟng with f(x)
as we did?

This secƟon explores integraƟon by subsƟtuƟon. It allows us to “undo the
Chain Rule.” SubsƟtuƟon allows us to evaluate the above integral without know-
ing the original funcƟon first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not–so–complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the

integrand is (x2 + 3x − 5)9. We wish to make this simpler; we do so through a
subsƟtuƟon. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.

     It is rare for an integral we are trying to evaluate to be exactly one on our Memory Integral List, 
really our only way so far of evaluating integrals other than making the list longer. The Method of 
Substitution is by far the most common and important way to transform an integral into one on the list.

      This method of evaluating integrals is so important we will spend two lectures on getting fluent at it.
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We have established u as a funcƟon of x, so now consider the differenƟal of u:

du = (2x+ 3)dx.

Keep inmind that (2x+3) and dx aremulƟplied; the dx is not “just siƫng there.”
Return to the original integral and do some subsƟtuƟons through algebra:∫

(20x+ 30)(x2 + 3x− 5)9 dx =
∫

10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x − 5)

= (x2 + 3x− 5)10 + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This secƟon contains numerous examples through which the reader will gain
understanding and mathemaƟcal maturity enabling them to regard subsƟtuƟon
as a natural tool when evaluaƟng integrals.

We stated before that integraƟon by subsƟtuƟon “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differenƟable funcƟons and consider the deriva-
Ɵve of their composiƟon:

d
dx

(
F
(
g(x)

))
= F ′(g(x))g ′(x).

Thus ∫
F ′(g(x))g ′(x) dx = F(g(x)) + C.

IntegraƟon by subsƟtuƟon works by recognizing the “inside” funcƟon g(x) and
replacing it with a variable. By seƫng u = g(x), we can rewrite the derivaƟve
as

d
dx

(
F
(
u
))

= F ′(u)u ′.

Since du = g ′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g ′(x) dx =

∫
F ′(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.
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Theorem 7.1.1 IntegraƟon by SubsƟtuƟon

Let F and g be differenƟable funcƟons, where the range of g is an interval
I contained in the domain of F. Then∫

F ′(g(x))g ′(x) dx = F(g(x)) + C.

If u = g(x), then du = g ′(x)dx and∫
F ′(g(x))g ′(x) dx =

∫
F ′(u) du = F(u) + C = F(g(x)) + C.

The point of subsƟtuƟon is to make the integraƟon step easy. Indeed, the
step

∫
F ′(u) du = F(u)+C looks easy, as the anƟderivaƟve of the derivaƟve of F

is just F, plus a constant. The “work” involved is making the proper subsƟtuƟon.
There is not a step–by–step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

IntegraƟng by subsƟtuƟon
Evaluate
Example ∫7.1.1

x sin(x2 + 5) dx.

SÊ½çã®ÊÄ Knowing that subsƟtuƟon is related to the Chain Rule, we 
choose to let u be the “inside” funcƟon of sin(x2 + 5)*. (This is not always a 
good choice, but it is oŌen the best place to start.)

Let u = x2 + 5, hence du = 2x dx. The integrand has an x dx term, but 
not a 2x dx term. (Recall that mulƟplicaƟon is commutaƟve, so the x does not 
physically have to be next to dx for there to be an x dx term.) We can divide both 
sides of the du expression by 2:

du = 2x dx ⇒ 1
2
du = x dx.

We can now subsƟtute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

) x dx︸︷︷︸
1
2 du

=

∫
1
2
sin u du

The Method 
Choose a  u  for which there is
         (up to a constant) a  du  in the correct position

ǿƛǘƘ ƴƻǘƘƛƴƎ ƭŜŦǘ ǊŜƳŀƛƴƛƴg.

*alternate way of thinking that is productive and insightful:

We see a  u 
and except for a  2, a  du.

Eventually you can do these in your head with 
perhaps a little 'massaging' of the integrand.

 x sin(x2 + 5) dx.
∫∫

= 1
2

∫ Thinking  u = x   - 5

sin(x 2 + 5) (2xdx)

1
2=   -- cos(x 2 + 5) + C

-

After a while, you will be able to do  
easy ones completely in your head and 
immediately write down the answer.

The Method

  Choose a  u  for which there is
  (up to a constant) a  du  in the correct position.

2
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= −1
2
cos u+ C (now replace u with x2 + 5)

= −1
2
cos(x2 + 5) + C.

Thus
∫
x sin(x2 + 5) dx = − 1

2 cos(x
2 + 5) + C. We can check our work by eval-

uaƟng the derivaƟve of the right hand side.

IntegraƟng by subsƟtuƟon
Evaluate
Example ∫7.1.2

cos(5x) dx.

SÊ½çã®ÊÄ Again let u replace the “inside” funcƟon. Leƫng u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equaƟon by 5 to obtain 1

5du = dx. We can now subsƟtute.∫
cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5 du

=

∫
1
5
cos u du

=
1
5
sin u+ C

=
1
5
sin(5x) + C.

We can again check our work through differenƟaƟon.

The previous example exhibited a common, and simple, type of subsƟtuƟon.
The “inside” funcƟon was a linear funcƟon (in this case, y = 5x). When the
inside funcƟon is linear, the resulƟng integraƟon is very predictable, outlined
here.

Key Idea 7.1.1 SubsƟtuƟon With A Linear FuncƟon

Consider
∫
F ′(ax + b) dx, where a ≠ 0 and b are constants. Leƫng

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1
a
F(ax+ b) + C.

Thus
∫
sin(7x− 4) dx = − 1

7 cos(7x− 4) + C. Our next example can use Key
Idea 6.1.1, but we will only employ it aŌer going through all of the steps.

We see a  u 
and except for a  5, a  du.
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IntegraƟng by subsƟtuƟng a linear funcƟon
Evaluate
Example ∫7.1.3

7
−3x+ 1

dx.

SÊ½çã®ÊÄ View the integrand as the composiƟon of funcƟons f(g(x)),
where f(x) = 7/x and g(x) = −3x+ 1. Employing our understanding of subsƟ-
tuƟon, we let u = −3x+1, the inside funcƟon. Thus du = −3dx. The integrand
lacks a −3; hence divide the previous equaƟon by −3 to obtain −du/3 = dx.
We can now evaluate the integral through subsƟtuƟon.∫

7
−3x+ 1

dx =
∫

7
u
du
−3

=
−7
3

∫
du
u

=
−7
3

ln |u|+ C

= −7
3
ln | − 3x+ 1|+ C.

Using Key Idea 6.1.1 is faster, recognizing that u is linear and a = −3. One may
want to conƟnue wriƟng out all the steps unƟl they are comfortable with this
parƟcular shortcut.

Not all integrals that benefit from subsƟtuƟon have a clear “inside” funcƟon.
Several of the following examples will demonstrate ways in which this occurs.

IntegraƟng by subsƟtuƟon
Evaluate
Example ∫7.1.4

sin x cos x dx.

SÊ½çã®ÊÄ There is not a composiƟonof funcƟonhere to exploit; rather,
just a product of funcƟons. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is oŌen beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand! The subsƟtuƟon becomes very straighƞorward:∫

sin x cos x dx =
∫

u du

=
1
2
u2 + C

=
1
2
sin2 x+ C.

We see a  u 
and exactly, a  du.
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One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral leƫng u = cos x and discover why the answer is the same,
yet looks different.

Our examples so far have required “basic subsƟtuƟon.” The next example
demonstrates how subsƟtuƟons can be made that oŌen strike the new learner
as being “nonstandard.”

IntegraƟng by subsƟtuƟon variation

Evaluate
Example ∫7.1.5

x
√
x+ 3 dx.

SÊ½çã®ÊÄ Recognizing the composiƟon of funcƟons, set u = x + 3.
Then du = dx, giving what seems iniƟally to be a simple subsƟtuƟon. But at this
stage, we have: ∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+3, we can also state that u−3 = x. Thus we can replace
x in the integrand with u− 3. It will also be helpful to rewrite

√
u as u 1

2 .∫
x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2
)
du

=
2
5
u

5
2 − 2u

3
2 + C

=
2
5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this parƟcular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem.

IntegraƟng by subsƟtuƟon
Evaluate
Example ∫7.1.6

1
x ln x

dx.

SÊ½çã®ÊÄ This is another example where there does not seem to be
an obvious composiƟon of funcƟons. The line of thinking used in Example 6.1.5
is useful here: choose something for u and consider what this implies du must
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be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/xmakes du = −1/x2 dx; that does not seem helpful. How-
ever, seƫng u = ln xmakes du = 1/x dx, which is part of the integrand. Thus:

∫
1

x ln x
dx =

∫
1
ln x︸︷︷︸
u

1
x
dx︸︷︷︸

du

=

∫
1
u
du

= ln |u|+ C
= ln | ln x|+ C.

The final answer is interesƟng; the natural log of the natural log. Take the 
derivaƟve to confirm this answer is indeed correct.

Integrals Involving Trigonometric FuncƟons  SecƟon 7.3 delves deeper 
into integrals of a variety of trigonometric func-Ɵons; here we use subsƟtuƟon to 
establish a foundaƟon that we will build upon.

The next three examples will help fill in some missing pieces of our 
anƟderiva-Ɵve knowledge. We know the anƟderivaƟves of the sine and cosine 
funcƟons; what about the other standard funcƟons tangent, cotangent, secant 
and cosecant? We discover these next.

IntegraƟon by subsƟtuƟon: anƟderivaƟves of tan x
Evaluate
Example ∫7.1.7

tan x dx.

SÊ½çã®ÊÄ The previous paragraph established that we did not know
the anƟderivaƟves of tangent, hence we must assume that we have learned
something in this secƟon that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composiƟon of func-
Ɵons may not be immediately obvious, recognize that cos x is “inside” the 1/x
funcƟon. Therefore, we see if seƫng u = cos x returns usable results. We have
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that du = − sin x dx, hence−du = sin x dx. We can integrate:

∫
tan x dx =

∫
sin x
cos x

dx

=

∫
1

cos x︸︷︷︸
u

sin x dx︸ ︷︷ ︸
−du

=

∫
−1
u

du

= − ln |u|+ C
= − ln | cos x|+ C.

Some texts prefer to bring the−1 inside the logarithm as a power of cos x, as in:

− ln | cos x|+ C = ln |(cos x)−1|+ C

= ln
∣∣∣∣ 1
cos x

∣∣∣∣+ C

= ln | sec x|+ C.

Thus the result they give is
∫
tan x dx = ln | sec x| + C. These two answers are

equivalent.

IntegraƟng by subsƟtuƟon: anƟderivaƟves of sec x
Evaluate
Example ∫7.1.8

sec x dx.

SÊ½çã®ÊÄ This example employs a wonderful trick: mulƟply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
“1” as

1 =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of leŌ* field, but it works beauƟfully. Consider:

∫
sec x dx =

∫
sec x · sec x+ tan x

sec x+ tan x
dx

=

∫
sec2 x+ sec x tan x

sec x+ tan x
dx.

*No disparaging of left handed persons intended.
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Now let u = sec x + tan x; this means du = (sec x tan x + sec2 x) dx, which is
our numerator. Thus:

=

∫
du
u

= ln |u|+ C
= ln | sec x+ tan x|+ C.

We can use similar techniques to those used in Examples 7.1.7 and 7.1.8 to 
find anƟderivaƟves of cot x and csc x (which the reader can explore in the 
exercises.) We summarize our results here.

Theorem 7.1.2 AnƟderivaƟves of Trigonometric FuncƟons

1.
∫

sin x dx = − cos x+ C

2.
∫

cos x dx = sin x+ C

3.
∫

tan x dx = − ln | cos x|+C

4.
∫

csc x dx = − ln | csc x+ cot x|+ C

5.
∫

sec x dx = ln | sec x+ tan x|+ C

6.
∫

cot x dx = ln | sin x|+ C

We explore one more common trigonometric integral.

IntegraƟon by subsƟtuƟon: powers of cos x and sin x
Evaluate
Example ∫7.1.9

cos2 x dx.

SÊ½çã®ÊÄ We have a composiƟon of funcƟons as cos2 x =
(
cos x

)2.
However, seƫng u = cos x means du = − sin x dx, which we do not have in the 
integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos2 x  
(perhaps consult the back of this text for this formula), which states

cos2 x =
1+ cos(2x)

2
.

The right hand side of this equaƟon is not difficult to integrate. We have:∫
cos2 x dx =

∫
1+ cos(2x)

2
dx

=

∫ (
1
2
+

1
2
cos(2x)

)
dx.
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Now use Key Idea 7.1.1:

=
1
2
x+

1
2
sin(2x)

2
+ C

=
1
2
x+

sin(2x)
4

+ C.

Evaluate

We’ll make significant use of this power–reducing technique in future secƟons.

Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at 
first, our grasp of integraƟon is tenuous and one may think that working with 
the integrand will improperly change the results. IntegraƟon by subsƟtuƟon 
works using a different logic: as long as equality is maintained, the integrand can 
be manipulated so that its form is easier to deal with. The next two examples 
demonstrate common ways in which using algebra first makes the integraƟon 
easier to perform.

Example ∫7.1.10
3 

   
    2

IntegraƟon by subsƟtuƟon: simplifying first

x + 4x + 8x + 5
x2 + 2x+ 1

dx.

SÊ½çã®ÊÄ One may try to start by seƫng u equal to either the numer-
ator or denominator; in each instance, the result is not workable.

When dealing with raƟonal funcƟons (i.e., quoƟents made up of polynomial
funcƟons), it is an almost universal rule that everything works beƩer when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x2 + 2x+ 1 is divided
into x3 + 4x2 + 8x+ 5, it goes in x+ 2 Ɵmes with a remainder of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

= x+ 2+
3x+ 3

x2 + 2x+ 1
.

IntegraƟng x + 2 is simple. The fracƟon can be integrated by seƫng u = x2 +
2x+ 1, giving du = (2x+ 2) dx. This is very similar to the numerator. Note that
du/2 = (x+ 1) dx and then consider the following:

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

dx =
∫ ∫ (

x+ 2+
3x+ 3

x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1
2
x2 + 2x+ C1 +

∫
3
u
du
2

=
1
2
x2 + 2x+ C1 +

3
2
ln |u|+ C2

=
1
2
x2 + 2x+

3
2
ln |x2 + 2x+ 1|+ C.

In some ways, we “lucked out” in that aŌer dividing, subsƟtuƟon was able to be
done. In later secƟons we’ll develop techniques for handling raƟonal funcƟons
where subsƟtuƟon is not directly feasible.

Yes, you should have learned long 
division of polynomials in high school.
 If you were tought synthetic division, 
feel free to forget it.
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Example  7.1.11 IntegraƟon by alternate methods

Evaluate
∫6

x2 + 2x+ 3√
x

dx with, and without, subsƟtuƟon.

SÊ½çã®ÊÄ
We already know how to integrate this parƟcular example.

Rewrite
√
x as x 1

2 and simplify the fracƟon:

x2 + 2x+ 3
x1/2

= x
3
2 + 2x

1
2 + 3x−

1
2 .

We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x−

1
2

)
dx

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using subsƟtuƟon as its implementaƟon is rather clever.

Let u =
√
x = x 1

2 ; therefore

du =
1
2
x−

1
2 dx =

1
2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =
∫
(x2 + 2x+ 3) · 2 du. What are we to do

with the other x terms? Since u = x 1
2 , u2 = x, etc. We can then replace x2 and

x with appropriate powers of u. We thus have

x2 + 2x+ 3√
x

dx =
∫ ∫

=

∫ (x2 + 2x+ 3) · 2 du

2(u4 + 2u2 + 3) du

=
2
5
u5 +

4
3
u3 + 6u+ C

=
2
5

5
2x +

4
3

3
2

1
2x + 6x + C,

which is obviously the same answer we obtained before. In this situaƟon, 
subsƟtuƟon is arguably more work than our other method. The fantasƟc 
thing is that it works. It demonstrates how flexible integraƟon is.
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Exercises 7.1 A
Terms and Concepts

1. SubsƟtuƟon “undoes” what derivaƟve rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems
In Exercises 3 – 14, evaluate the indefinite integral to develop
an understanding of SubsƟtuƟon.

3.
∫

3x2
(
x3 − 5

)7 dx
4.
∫

(2x− 5)
(
x2 − 5x+ 7

)3 dx
5.
∫

x
(
x2 + 1

)8 dx
6.
∫

(12x+ 14)
(
3x2 + 7x− 1

)5 dx
7.
∫

1
2x+ 7

dx

8.
∫

1√
2x+ 3

dx

9.
∫

x√
x+ 3

dx

10.
∫

x3 − x√
x

dx

11.
∫

e
√

x
√
x
dx

12.
∫

x4√
x5 + 1

dx

13.
∫ 1

x + 1
x2

dx

14.
∫

ln(x)
x

dx

In Exercises 15 – 24, use SubsƟtuƟon to evaluate the indefi-
nite integral involving trigonometric funcƟons.

15.
∫

sin2(x) cos(x)dx

16.
∫

cos3(x) sin(x)dx

35.
∫ ln

(
x3
)

x
dx

1. Chain Rule.

2.

3.

T
1
8 (x

3 − 5)8 + C

4. 1
4 (x

2 − 5x+ 7)4 + C

5. 1
18
(
x2 + 1

)9
+ C

6. 1

7.
3 (3x

2 + 7x− 1)6 + C

1
2 ln |2x+ 7|+ C

8.
√
2x+ 3+ C

9. 2
3

2
3(x+ 3)3/2 − 6(x+ 3)1/2 + C = (x− 6)

√
x+ 3+ C

10. 2
21 x

3/2 (3x2 − 7
)
+ C

x + C11. 2e
√

12. 2
√

x5+1
5 + C

13. − 1
2x2

1
x− + C

14. ln2(x)
2 + C

15. sin3(x)
3 + C

−16. cos4(x)
4 + C

Solutions 7.1 A

35. (ln x)2 + C3
2
1
2■
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7.1B  Advanced Methods of Substitution. Definite Integrals  

SubsƟtuƟon and Inverse Trigonometric FuncƟons
When studying derivaƟves of inverse funcƟons, we learned that

d
dx
(
tan−1 x

)
=

1
1+ x2

.

Applying the Chain Rule to this is not difficult; for instance,

SÊ½çã®ÊÄ
gent funcƟon. Note:

1
25+ x2

=
1

25(1+ x2
25 )

=
1

25(1+
( x
5
)2
)

1+ 5

∫a
b
f(g(x)) g ' (x)dx u= g(x)

=
du= g ' (x)dx

∫g(
g

a

(

)

b)
f(u)du

Integral Table 
∫ du = u + C

∫ e
u du = eu + C

∫ u
n du =

n

un+1

+1

       ∫ au du = au

ln a

+ C

+ C


du =  ln|u| + C
uu 

1 - u

∫ cosu du = sinu + C 

∫ sec2u du = tanu + C

∫ secu tanu du = sec  u + C


du

2
 = arcsin u + C 1 + 

       ∫ sinudu = -cosu + C

       ∫ csc2udu = -cotu + C

       ∫      cscu                                  cotudu             = -        cscu + C


du

u
2  = arctan u + C

*

* This is the basic integral list everyone should memorize and remember forever!

Method of Substitution 
Definite Integral form

d
dx
(
tan−1 5x

)
=

5
1+ 25x2

.

Wenow explore how SubsƟtuƟon can be used to “undo” certain derivaƟves that
are the result of the Chain Rule applied to Inverse Trigonometric funcƟons. We
begin with an example.

                                 ■         Example∫6 7.1.12 IntegraƟng by subsƟtuƟon: inverse trigonometric funcƟons
Evaluate

1
25+ x2

dx.

=
1
25

1
1+ x

5
( )2 .

First, for review, a few more indefinite integrals.
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Thus ∫
1

25+ x2
dx =

1
25

∫
1

1+
( x
5
)2 dx.

This can be integrated using SubsƟtuƟon. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus ∫

1
25+ x2

dx =
1
25

∫
1

1+
( x
5
)2 dx

=
1
5

∫
1

1+ u2
du

=
1
5
tan−1 u+ C

=
1
5
tan−1

( x
5

)
+ C

Example 7.1.12 demonstrates a general technique that can be applied to 
other integrands that result in inverse trigonometric funcƟons. The results are 
summarized here.

Theorem 7.1.3 Integrals Involving Inverse Trigonometric FuncƟons

Let a > 0.

1.
∫

1
a2 + x2

dx =
1
a
tan−1

( x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
( x
a

)
+ C

3.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

Let’s pracƟce using Theorem 7.1.3.

Example 7.1.13 IntegraƟng by subsƟtuƟon: inverse trigonometric funcƟons 
Evaluate the given indefinite integrals.

1.
∫

1
9+ x2

dx, 2.
∫

1

x
√

x2 − 1
100

dx 3.
∫

1√
5− x2

dx.

If you are going to be a big  
time user of calculus, it is 
worth memorizing these.
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Each can be answered using a straighƞorward applicaƟon ofSÊ½çã®ÊÄ 
Theorem 7.1.3.

1.
∫

1
9+ x2

dx =
1
3
tan−1 x

3
+ C, as a = 3.

2.
∫

1

x
√

x2 − 1
100

dx = 10 sec−1 10x+ C, as a = 1
10 .

3.
∫

1√
5− x2

= sin−1 x√
5
+ C, as a =

√
5.

Evaluate

Most applicaƟons of Theorem 7.1.3 are not as straighƞorward. The next 
examples show some common integrals that can sƟll be approached with this 
theorem.

Example ∫7.1.14 IntegraƟng by subsƟtuƟon: compleƟng the square
1

x2 − 4x+ 13
dx.

SÊ½çã®ÊÄ IniƟally, this integral seems to have nothing in common with 
the integrals in Theorem 7.1.3. As it lacks a square root, it almost certainly is not 
related to arcsine or arcsecant. It is, however, related to the arctangent funcƟon.

We see this by compleƟng the square in the denominator. We give a brief 
reminder of the process here.

Start with a quadraƟc with a leading coefficient of 1. It will have the form of 
x2 +bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression. 
I.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b
2

)2

+ c− b2

4

In our example, we take half of −4 and square it, geƫng 4. We add/subtract it
into the denominator as follows:

1
x2 − 4x+ 13

=
1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4+ 13

=
1

(x− 2)2 + 9

Yes, any serious calculus consumer is 
likely to do completing the square often.
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We can now integrate this using the arctangent rule. Technically, we need to 
subsƟtute first with u = x − 2, but we can employ Key Idea 7.1.1 instead. Thus
we have∫

1
x2 − 4x+ 13

dx =
∫

1
(x− 2)2 + 9

dx =
1
3
tan−1 x− 2

3
+ C.

Integrals requiring mulƟple methods
Evaluate
Example ∫7.1.15

4− x√
16− x2

dx.

SÊ½çã®ÊÄ This integral requires two different methods to evaluate it.
We get to those methods by spliƫng up the integral:∫

4− x√
16− x2

dx =
∫

4√
16− x2

dx−
∫

x√
16− x2

dx.

The first integral is handled using a straighƞorward applicaƟon of Theorem 7.1.3; 
the second integral is handled by subsƟtuƟon, with u = 16−x2. We handle each
separately.∫

4
√
16− x2

dx = 4 sin−1 x
4
+ C.

∫
x√

16− x2
dx: Set u = 16 − x2, so du = −2xdx and xdx = −du/2. We

have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1
2

∫
1√
u
du

= −
√
u+ C

= −
√

16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1 x
4
+
√

16− x2 + C.
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Theorem ϳ.1.4 SubsƟtuƟon with Definite Integrals

Let F and g be differenƟable funcƟons, where the range of g is an interval
I that is contained in the domain of F. Then∫ b

a
F ′
(
g(x)

)
g ′(x) dx =

∫ g(b)

g(a)
F ′(u) du.

0

In effect, Theorem 7.1.4 states that once you convert to integraƟng with 
re-spect to u, you do not need to switch back to evaluaƟng with respect to x. A 
few examples will help one understand.

Example ∫7.1.16 Definite integrals and subsƟtuƟon: changing the bounds
2

Evaluate     cos(3x − 1) dx using Theorem 7.1.4.

SÊ½çã®ÊÄ Observing the composiƟon of funcƟons, let u = 3x − 1, 
hence du = 3dx. As 3dx does not appear in the integrand, divide the laƩer 
equaƟon by 3 to get du/3 = dx.

By seƫng u = 3x − 1, we are implicitly staƟng that g(x) = 3x − 1. Theorem 
7.1.4 states that the new lower bound is g(0) = −1; the new upper bound is

SubsƟtuƟon and Definite IntegraƟon
This secƟon has focused on evaluaƟng indefinite integrals as 

we are learning a new technique for finding anƟderivaƟves. 
However, much of the Ɵme integraƟon is used in the context of 
a definite integral. Definite integrals that require subsƟtuƟon 
can readily be calculated.

 The integral is live mathematics.∫a
b
f(g(x)) g ' (x)dx

u= g(x)

∫g(
g

a

(

)

b)
f(u)du

x=b ⇒ u=g(b)

y = cos(3x − 1)

−1 1 2 3 4 5

−1

−0.5

0.5

1

x

y

(a)

1
3y = cos(u)

−1 1 2 3 4 5

−1

−0.5

0.5

1

u

y

7.1.1: Graphing the areas defined by the 
definite integrals of Example 7.1.16.

=
x=a ⇒ u=g(a)
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.....

y = cos(3x − 1)

.

−1

.

1

.

2

.

3

.

4

.

5

.

−1

.

−0.5

.

0.5

.

1

.

x

.

y

(a)

.....

y = 1
3 cos(u)

.

−1

.

1

.

2

.

3

.

4

.

5

.

−1

.

−0.5

.

0.5

.

1

.

u

.

y

(b)

Figure 7.1.1: Graphing the areas defined
by the definite integrals of Example 6.1.16.

.....

y = sin x cos x

.

1

.

−0.5

.

0.5

.

1

.

π
2

.

x

.

y

(a)

.....

y = u

.

1

.

−0.5

.

0.5

.

1

.

π
2

.

u

.

y

(b)

Figure 7.1.2: Graphing the areas de-fined 
by the definite integrals of Example 
6.1.17.

g(2) = 5. We now evaluate the definite integral:∫ 2

0
cos(3x− 1) dx =

∫ 5

−1
cos u

du
3

=
1
3
sin u

∣∣∣5
−1

=
1
3
(
sin 5− sin(−1)

)
≐ −0.039.

NoƟce how once we converted the integral to be in terms of u, we never went 
back to using x.

The graphs in Figure 7.1.1 tell more of the story. In (a) the area defined by 
the original integrand is shaded, whereas in (b) the area defined by the new in-
tegrand is shaded. In this parƟcular situaƟon, the areas look very similar; the 
new region is “shorter” but “wider,” giving the same area.
Example 7.1.17 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
0

sin x cos x dx using Theorem 7.1.4.

SÊ½çã®ÊÄ We saw the corresponding indefinite integral in Example 7.1.4.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the laƩer here.

Let u = g(x) = cos x, giving du = − sin x dx and hence sin x dx = −du. The
new upper bound is g(π/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have∫ π/2

0
sin x cos x dx =

∫ 0

1
−u du (switch bounds & change sign)

=

∫ 1

0
u du

=
1
2
u2
∣∣∣1
0
= 1/2.

∫ (1 + 2 x)2 
e
x 

2 dx Let  u = x ex 2

du = (1·ex2+ x·ex2 
·2x)dx

            = (1 + 2 x2) ex2dx
=  ∫du

=  u + C

=   x  ex
2 + C

In Figure 7.1.2 we have again graphed the two regions defined by our definite 
integrals. Unlike the previous example, they bear no resemblance to each other. 
However, Theorem 7.1.4 guarantees that they have the same area.

IntegraƟon by subsƟtuƟon is a powerful and useful integraƟon technique. 
The next secƟon introduces another technique, called IntegraƟon by Parts. As 
subsƟtuƟon “undoes” the Chain Rule, integraƟon by parts “undoes” the Product 
Rule. Together, these two techniques provide a strong foundaƟon on which most 
other integraƟon techniques are based.

Expert Method

Example        God’s Method of Substitution:

∫6.1.1π/2

_
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17.
∫

cos(3− 6x)dx

18.
∫

sec2(4− x)dx

19.
∫

sec(2x)dx

20.
∫

tan2(x) sec2(x)dx

21.
∫

x cos
(
x2
)
dx

22.
∫

tan2(x)dx

23.
∫

cot x dx. Do not just refer to Theorem 6.1.2 for the an-
swer; jusƟfy it through SubsƟtuƟon.

24.
∫

csc x dx. Do not just refer to Theorem 6.1.2 for the an-
swer; jusƟfy it through SubsƟtuƟon.

Exercises 7.1 B

In Exercises 79 – 86, evaluate the definite integral.

79.
∫ 3

1

1
x− 5

dx

80.
∫ 6

2
x
√
x− 2dx

81.
∫ π/2

−π/2
sin2 x cos x dx

82.
∫ 1

0
2x(1− x2)4 dx

83.
∫ −1

−2
(x+ 1)ex

2+2x+1 dx

84.
∫ 1

−1

1
1+ x2

dx

85.
∫ 4

2

1
x2 − 6x+ 10

dx

86.
∫ √

3

1

1√
4− x2

dx

45.

∫
14√
5− x2

dx

46.
∫

2
x
√
x2 − 9

dx

47.
∫

5√
x4 − 16x2

dx

Solutions 7.1 B
1
617. − sin(3− 6x) + C

18.

19.

− tan(4− x) + C
1
2 ln | sec(2x) + tan(2x)|+ C

20. tan3(x)
3 + C

21. sin 2(
2
x )

+ C

22. tan(x)− x+ C

23. The key is to rewrite cot x as cos x/ sin x, and let u = sin x.

24. The key is to mulƟply csc x by 1 in the form
(csc x+ cot x)/(csc x+ cot x).

79. − ln 2

80. 352/15

81. 2/3

82. 1/5

83. (1− e)/2

84. π/2

85. π/2

86. π/6
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IntegraƟon by Parts
Here’s a simple integral that we can’t yet evaluate:

∫

x cos x dx.

It’s a simple maƩer to take the derivaƟve of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this secƟon introduces
IntegraƟon by Parts, a method of integraƟon that is based on the Product Rule
for derivaƟves. It will enable us to evaluate this integral.

The Product Rule says that ifu and v are funcƟons of x, then (uv)′ = u ′v+uv ′.
For simplicity, we’ve wriƩen u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives

∫

(uv)′ dx =
∫

(u ′v+ uv ′) dx.

By the Fundamental Theoremof Calculus, the leŌ side integrates to uv. The right
side can be broken up into two integrals, and we have

uv =
∫

u ′v dx+
∫

uv ′ dx.

Solving for the second integral we have
∫

uv ′ dx = uv−
∫

u ′v dx.

Using differenƟal notaƟon, we can write du = u ′(x)dx and dv = v ′(x)dx and
the expression above can be wriƩen as follows:

∫

u dv = uv−
∫

v du.

This is the IntegraƟon by Parts formula. For reference purposes, we state this in
a theorem.

Theorem 7.Ϯ.ϭ IntegraƟon by Parts

Let u and v be differenƟable funcƟons of x on an interval I containing a
and b. Then ∫

u dv = uv−
∫

v du,

and
∫ x=b

x=a
u dv = uv

∣
∣
∣

b

a
−
∫ x=b

x=a
v du.

Useful for:
1. 'unlikely products'
2. inverse functions
3. all else fails.

d

dx (u v)  =  dx
du

 v + u 
dv
dx

d(u v)  =  v du + u dv

∫d(uv)  = ∫v du + ∫udv

u v  =  ∫v du + ∫udv

∫udv  =  u v - ∫v du

Alternate Notation Derivaton 

Product Rule

Differential Form

Integrating

Rearranging

Proof by picture

u

dv

v
du

V

U


v1

v2

u dv


u1

u2

v du

v1 v2

u1

u2
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Let’s try an example to understand our new technique.

IntegraƟng using IntegraƟon by Parts
Evaluate
Example ∫7.Ϯ.ϭ

x cos x dx.

dv = cos x dx ⇒
u = x

v = sin x
du = dx

Figure 7.Ϯ.ϭ: Seƫng up IntegraƟon by Parts.

Now subsƟtute all of this into the IntegraƟon by Parts formula, giving
∫

x cos x dx = x sin x−
∫

sin x dx.

We can then integrate sin x to get− cos x+ C and overall our answer is
∫

x cos x dx = x sin x+ cos x+ C.

Note how the anƟderivaƟve contains a product, x sin x. This product is what
makes IntegraƟon by Parts necessary.

The example above demonstrates how IntegraƟon by Parts works in general.
We try to idenƟfy u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the

right side of the IntegraƟon by Parts formula,

∫

v du will be simpler to integrate
than the original integral

∫
u dv.

In the example above, we chose u = x and dv = cos x dx. Then du = dxwas
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integraƟng x cos x dx, we could integrate sin x dx, which we knew how to do.

The following rule almost always works:
1. Let  dv = hardest part you can integrate
2. Let    u = remaining part of the integral

cc

■
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We now consider another example.

IntegraƟng using IntegraƟon by Parts
Evaluate
Example ∫7.Ϯ.Ϯ

xex dx.

SÊ½çã®ÊÄ The integrand contains anAlgebraic term (x) and an ExponenƟal
term (ex). Our mnemonic suggests leƫng u be the algebraic term, so we choose
u = x and dv = ex dx. Then du = dx and v = ex as indicated by the tables below.

u = x
dv = ex dx ⇒ v = ex

du = dx

Figure 7.Ϯ.Ϯ: Seƫng up IntegraƟon by Parts.

We see du is simpler than u, while there is no change in going from dv to v. 
This is good. The IntegraƟon by Parts formula gives

∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is
∫

xex dx = xex − ex + C.

Note again how the anƟderivaƟves contain a product term.

IntegraƟng using IntegraƟon by Parts
Evaluate
Example ∫7.Ϯ.ϯ

xϮ cos x dx.

SÊ½çã®ÊÄ Themnemonic suggests leƫngu = xϮ insteadof the trigono-
metric funcƟon, hence dv = cos x dx. Then du = Ϯx dx and v = sin x as shown
below.

u = xϮ du = 2x dx

dv = cos x dx ⇒ v = sin x 

Figure 7.Ϯ.ϯ: Seƫng up IntegraƟon by Parts.
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The IntegraƟon by Parts formula gives
∫

xϮ cos x dx = xϮ sin x−
∫

Ϯx sin x dx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do IntegraƟon by Parts again. Here we
choose u = Ϯx and dv = sin x and fill in the rest below.

u = Ϯx
dv = sin x dx ⇒ du = Ϯ dx

v = − cos
 
 x

Figure 7.Ϯ.ϰ: Seƫng up IntegraƟon by Parts (again).

∫

xϮ cos x dx = xϮ sin x−
(

−Ϯx cos x−
∫

−Ϯ cos x dx
)

.

The integral all the way on the right is now something we can evaluate. It eval-
uates to −Ϯ sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is

∫

xϮ cos x dx = xϮ sin x+ Ϯx cos x− Ϯ sin x+ C.

IntegraƟng using IntegraƟon by Parts
Evaluate
Example ∫7.Ϯ.ϰ

ex cos x dx.

SÊ½çã®ÊÄ  This is a classic problem. In this parƟcular example, one can let 
dv  be either cos x dx or ex dx.

u = ex
dv = cos x dx ⇒ v = sin x 

du = ex dx 

Figure 7.Ϯ.ϱ: Seƫng up IntegraƟon by Parts.

NoƟce that du is no simpler than u, going against our general rule (but bear 
with us). The IntegraƟon by Parts formula yields

∫

ex cos x dx = ex sin x−
∫

ex sin x dx.
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The integral on the right is not much different than the one we started with, so
it seems like we have goƩen nowhere. Let’s keep working and apply IntegraƟon
by Parts to the new integral, using u = ex and dv = sin x dx. This leads us to the
following:

u = ex
dv = sin x dx ⇒ v = − cos x

du = ex dx 

Figure 7.Ϯ.ϲ: Seƫng up IntegraƟon by Parts (again).

The IntegraƟon by Parts formula then gives:
∫

ex cos x dx = ex sin x−
(

−ex cos x−
∫

−ex cos x dx
)

= ex sin x+ ex cos x−
∫

ex cos x dx.

It seems we are back right where we started, as the right hand side contains
∫
ex cos x dx. But this is actually a good thing.

Add
∫

ex cos x dx to both sides. This gives

Ϯ
∫

ex cos x dx = ex sin x+ ex cos x

Now divide both sides by Ϯ:
∫

ex cos x dx =
ϭ
Ϯ
(
ex sin x+ ex cos x

)
.

Simplifying a liƩle and adding the constant of integraƟon, our answer is thus
∫

ex cos x dx =
ϭ
Ϯ
ex (sin x+ cos x) + C.

IntegraƟng using IntegraƟon by Parts: anƟderivaƟve of ln x
Evaluate
Example 7.Ϯ.ϱ

ln x dx.

SÊ½çã®ÊÄ Onemay have noƟced that we have rules for integraƟng the
familiar trigonometric funcƟons and ex, but we have not yet given a rule for
integraƟng ln x. That is because ln x can’t easily be integrated with any of the
rules we have learned up to this point. But we can find its anƟderivaƟve by a

'Oh, shoot'

'Boot strapping!' In cowboy lore, boot 
strapping was the idea that you could 
lift yourself up into the air by pulling 
up on the straps at the top back of 
your cowboy boots.
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clever applicaƟon of IntegraƟon by Parts. Set u = ln x and dv = dx. This is a
good, sneaky trick to learn as it can help in other situaƟons. This determines
du = (ϭ/x) dx and v = x as shown below.

u = ln x
dv = dx ⇒ v = x

du = ϭ/x dx

Figure 7.Ϯ.ϳ: Seƫng up IntegraƟon by Parts.

Puƫng this all together in the IntegraƟon by Parts formula, things work out
very nicely: ∫

ln x dx = x ln x−
∫

x
ϭ
x
dx.

The new integral simplifies to
∫

ϭ dx, which is about as simple as things get. Its
integral is x+ C and our answer is

∫

ln x dx = x ln x− x+ C.

IntegraƟng using Int. by Parts: anƟderivaƟve of arctan x

Evaluate

Example ∫7.Ϯ.ϲ

arctan x dx.

SÊ½çã®ÊÄ The same sneaky trick we used above works here. Let 
dv = dx and u = arctan x. Then v = x and du = ϭ/(ϭ + xϮ) dx. 
The IntegraƟon by Parts formula gives

∫

arctan x dx = x arctan x−
∫

x
ϭ+ xϮ

dx.

The integral on the right can be solved by subsƟtuƟon. Taking u = ϭ + xϮ, we
get du = Ϯx dx. The integral then becomes

∫

arctan x dx = x arctan x− ϭ
Ϯ

∫
ϭ
u
du.

The integral on the right evaluates to ln |u| + C, which becomes ln(ϭ + xϮ) + C
(we can drop the absolute values as ϭ + xϮ is always posƟve). Therefore, the
answer is ∫

arctan x dx = x arctan x− ϭ
Ϯ
ln(ϭ+ xϮ) + C.
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SubsƟtuƟon Before IntegraƟon

When taking derivaƟves, it was common to employ mulƟple rules (such as
using both theQuoƟent and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integraƟon techniques. In
parƟcular, here we illustrate making an “unusual” subsƟtuƟon first before using
IntegraƟon by Parts.

IntegraƟon by Parts aŌer subsƟtuƟon
Evaluate
Example ∫7.Ϯ.ϳ

cos(ln x) dx.

SÊ½çã®ÊÄ The integrand contains a composiƟon of funcƟons, leading
us to think SubsƟtuƟon would be beneficial. Leƫng u = ln x, we have du =
ϭ/x dx. This seems problemaƟc, as we do not have a ϭ/x in the integrand. But
consider:

du =
ϭ
x
dx ⇒ x · du = dx.

Since u = ln x, we can use inverse funcƟons and conclude that x = eu. Therefore
we have that

dx = x · du
= eu du.

We can thus replace ln x with u and dx with eu du. Thus we rewrite our integral
as ∫

cos(ln x) dx =
∫

eu cos u du.

We evaluated this integral in Example ϲ.Ϯ.ϰ. Using the result there, we have:
∫

cos(ln x) dx =
∫

eu cos u du

=
ϭ
Ϯ
eu
(
sin u+ cos u

)
+ C

=
ϭ
Ϯ
eln x
(
sin(ln x) + cos(ln x)

)
+ C

=
ϭ
Ϯ
x
(
sin(ln x) + cos(ln x)

)
+ C.

Definite Integrals and IntegraƟon By Parts

So far we have focused only on evaluaƟng indefinite integrals. Of course, we
can use IntegraƟon by Parts to evaluate definite integrals as well, as Theorem
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7.Ϯ.ϭ states. We do so in the next example.

ϲ.Ϯ
Example 7.2.ϴ Definite integraƟon using IntegraƟon by Parts

Evaluate
∫ Ϯ

ϭ
xϮ ln x dx.

SÊ½çã®ÊÄ Our mnemonic suggests leƫng u = ln x, hence dv = xϮ dx.
We then get du = (ϭ/x) dx and v = xϯ/ϯ as shown below.

u = ln x
dv = xϮ dx ⇒  v = xϯ/ϯ 

du = ϭ/x dx

Figure ϲ.Ϯ.ϴ: Seƫng up IntegraƟon by Parts.

The IntegraƟon by Parts formula then gives
∫ Ϯ

ϭ
xϮ ln x dx =

xϯ

ϯ
ln x
∣
∣
∣
∣

Ϯ

ϭ
−
∫ Ϯ

ϭ

xϯ

ϯ
ϭ
x
dx

=
xϯ

ϯ
ln x
∣
∣
∣
∣

Ϯ

ϭ
−
∫ Ϯ

ϭ

xϮ

ϯ
dx

=
xϯ

ϯ
ln x
∣
∣
∣
∣

Ϯ

ϭ
− xϯ

ϵ

∣
∣
∣
∣

Ϯ

ϭ

=

(
xϯ

ϯ
ln x− xϯ

ϵ

) ∣
∣
∣
∣

Ϯ

ϭ

=

(
ϴ
ϯ
ln Ϯ− ϴ

ϵ

)

−
(
ϭ
ϯ
ln ϭ− ϭ

ϵ

)

=
ϴ
ϯ
ln Ϯ− ϳ

ϵ
≈ ϭ.Ϭϳ.

In general, IntegraƟon by Parts is useful for integraƟng certain products of
funcƟons, like

∫
xex dx or

∫
xϯ sin x dx. It is also useful for integrals involving

logarithms and inverse trigonometric funcƟons.
As stated before, integraƟon is generally more difficult than derivaƟon. We

are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar–looking integrals

∫

xex dx,
∫

xex
Ϯ
dx and

∫

xex
ϯ
dx.

_
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While the first is calculated easilywith IntegraƟonby Parts, the second is best
approached with SubsƟtuƟon. Taking things one step further, the third integral
has no answer in terms of elementary funcƟons, so none of the methods we
learn in calculus will get us the exact answer.

IntegraƟon by Parts is a very useful method, second only to SubsƟtuƟon. In
the following secƟons of this chapter, we conƟnue to learn other integraƟon
techniques. The next secƟon focuses on handling integrals containing trigono-
metric funcƟons.

 Let 
dv  be the hardest part you can integrate
u = rest of the integrand

This rule seems always to work if integration by parts works.

u

dv

v
du

V

U


v1

v2
u dv


u1

u2
v du

v1 v2

u1

u2

u

dv

U

v
du

∫ udv

∫ vdu

Exercise  Attempts at graphic illustrations of Integration by Parts.  Note how they try to work.
Can you suggest improvements?

u

dv

v
du

V

U


v1

v2

u dv 


u 1

u2

v du

v1 v2

u1

u2

V
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Exercises
Terms and Concepts

ϭ. T/F: IntegraƟon by Parts is useful in evaluaƟng integrands
that contain products of funcƟons.

Ϯ. T/F: IntegraƟon by Parts can be thought of as the “opposite
of the Chain Rule.”

ϰ. T/F: If the integral that results from IntegraƟon by Parts ap-
pears to also need IntegraƟon by Parts, then a mistake was
made in the orginal choice of “u”.

Problems
In Exercises ϱ – ϯϰ, evaluate the given indefinite integral.

ϱ.
∫

x sin x dx

ϲ.
∫

xe−x dx

ϳ.
∫

xϮ sin x dx

ϴ.
∫

xϯ sin x dx

ϵ.
∫

xex
Ϯ
dx

ϭϬ.
∫

xϯex dx

ϭϭ.
∫

xe−Ϯx dx

ϭϮ.
∫

ex sin x dx

ϭϯ.
∫

eϮx cos x dx

ϭϰ.
∫

eϮx sin(ϯx) dx

ϭϱ.
∫

eϱx cos(ϱx) dx

ϭϲ.
∫

sin x cos x dx

ϭϳ.
∫

sin−ϭ x dx

ϭϴ.
∫

tan−ϭ(Ϯx) dx

ϭϵ.
∫

x tan−ϭ x dx

ϮϬ.
∫

sin−ϭ x dx

Ϯϭ.
∫

x ln x dx

ϮϮ.
∫

(x− Ϯ) ln x dx

Ϯϯ.
∫

x ln(x− ϭ) dx

Ϯϰ.
∫

x ln(xϮ) dx

Ϯϱ.
∫

xϮ ln x dx

Ϯϲ.
∫

(ln x)Ϯ dx

Ϯϳ.
∫

(ln(x+ ϭ))Ϯ dx

Ϯϴ.
∫

x secϮ x dx

Ϯϵ.
∫

x cscϮ x dx

ϯϬ.
∫

x
√
x− Ϯ dx

ϯϭ.
∫

x
√
xϮ − Ϯ dx

ϯϮ.
∫

sec x tan x dx

ϯϯ.
∫

x sec x tan x dx

ϯϰ.
∫

x csc x cot x dx

In Exercises ϯϱ – ϰϬ, evaluate the indefinite integral aŌer first
making a subsƟtuƟon.

ϯϱ.
∫

sin(ln x) dx

ϯϲ.
∫

eϮx cos
(

ex
)

dx
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ϯϳ.
∫

sin(
√
x) dx

ϯϴ.
∫

ln(
√
x) dx

ϯϵ.
∫

e
√

x dx

ϰϬ.
∫

eln x dx

In Exercises ϰϭ – ϰϵ, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises ϱ – ϭϯ.

ϰϭ.
∫ π

Ϭ
x sin x dx

ϰϮ.
∫ ϭ

−ϭ
xe−x dx

ϰϯ.
∫ π/ϰ

−π/ϰ
xϮ sin x dx

ϰϰ.
∫ π/Ϯ

−π/Ϯ
xϯ sin x dx

ϰϱ.
∫

√
ln Ϯ

Ϭ
xex

Ϯ
dx

ϰϲ.
∫ ϭ

Ϭ
xϯex dx

ϰϳ.
∫ Ϯ

ϭ
xe−Ϯx dx

ϰϴ.
∫ π

Ϭ
ex sin x dx

ϰϵ.
∫ π/Ϯ

−π/Ϯ
eϮx cos x dx

Solutions 7.2
10.

11.

x3ex − 3x2ex + 6xex − 6ex + C

− 1
2 xe

−2x − e−
4
2x

+ C

12. 1/2ex(sin x− cos x) + C

13. 1/5e2x(sin x+ 2 cos x) + C

14. 1/13e2x(2 sin(3x)− 3 cos(3x)) + C

15. 1/10e5x(sin(5x) + cos(5x)) + C

16. −1/2 cos2 x+ C

17.
√
1− x2 + x sin−1(x) + C

18.
∣∣ ∣∣

19.

x tan−1(2x)− 1
4 ln 4x2 + 1 + C

1 x2 tan−1(x)− + tan−1(x) + C2
x
2

1
2

20.
√
1− x2 + x sin−1 x+ C

1
2

−

21. x2 ln |x| − x
4
2
+ C

22. x2 1
24 + x2 ln |x|+ 2x− 2x ln |x|+ C

23. − 1
2

x
2

1
2

x
4
2
+ x2 ln |x− 1| − − ln |x− 1|+ C

24. 1
2 x

2 ln
(
x2
)
− x

2
2
+ C

25. 1
3 x

3 ln |x| − x
9
3
+ C

26. 2x+ x (ln x)2 − 2x ln x+ C

27. 2(x+ 1) + (x+ 1) (ln(x+ 1))2 − 2(x+ 1) ln(x+ 1) + C

28. x tan(x) + ln | cos(x)|+ C

29. ln | sin(x)| − x cot(x) + C

30. 2
5

4
3

31.

(x− 2)5/2 + (x− 2)3/2 + C

1
3 (x

2 − 2)3/2 + C

32. sec x+ C

33. x sec x− ln | sec x+ tan x|+ C

34. −x csc x− ln | csc x+ cot x|+ C

35. 1/2x
(
sin(ln x)− cos(ln x)

)
(
ex
)
+ ex sin

(
ex
)
+ C36. cos

37. 2 sin
(√

x
)

2
√
x cos

(√
x
)
+ C

+ C
1
2

−
x
238. x ln |x| − + C

39. 2
√
xe

√
x − 2e

√
x + C

40. 1/2x2 + C

41. π

42. −2/e

43. 0

− 1244. 3π2
2

45. 1/2

46. 6− 2e

47. 3
4e2 − 5

4e4

48. 1
2 + eπ

2

49. 1/5
(
eπ + e−π

)
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Trigonometric Integrals
FuncƟons involving trigonometric funcƟons are useful as they are good at de-
scribing periodic behavior. This secƟon describes several techniques for finding
anƟderivaƟves of certain combinaƟons of trigonometric funcƟons.

Integrals of the form
∫

sinm x cosn x dx

Key Idea 7.ϯ.ϭ Integrals Involving Powers of Sine and Cosine

Consider
∫

sinm x cosn x dx, wherem, n are nonnegaƟve integers.

ϭ. Ifm is odd, thenm = Ϯk+ ϭ for some integer k. Rewrite

sinm x = sinϮk+ϭ x = sinϮk x sin x = (sinϮ x)k sin x = (ϭ− cosϮ x)k sin x.

Then
∫

sinm x cosn x dx =
∫

(ϭ− cosϮ x)k sin x cosn x dx = −
∫

(ϭ− uϮ)kun du,

where u = cos x and du = − sin x dx.

Ϯ. If n is odd, then using subsƟtuƟons similar to that outlined above we have
∫

sinm x cosn x dx =
∫

um(ϭ− uϮ)k du,

where u = sin x and du = cos x dx.

ϯ. If bothm and n are even, use the power–reducing idenƟƟes

cosϮ x = ϭ+ cos(Ϯx)
Ϯ

and sinϮ x = ϭ− cos(Ϯx)
Ϯ

to reduce the degree of the integrand. Expand the result and apply the principles
of this Key Idea again.

Semi-memorize these*

** means you should be aware these methods exist in case you need them later. 

∫

Wegeneralize this integral and consider integrals of the form

In learning the technique of SubsƟtuƟon, we saw the integral sin x cos x dx
in Example 6.1.4. The integraƟonwas not difficult, and one could easily evaluate
the indefinite integral by leƫng u = sin x or by leƫng u = cos x. This integral is
easy since the power of both sine and cosine is 1. ∫

sinm x cosn x dx,
where m, n are nonnegaƟve integers. Our strategy for evaluaƟng these inte-
grals is to use the idenƟty cos2 x + sin2 x = 1 to convert high powers of one
trigonometric funcƟon into the other, leaving a single sine or cosine term in the
integrand. We summarize the general technique in the following Key Idea.
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We pracƟce applying Key Idea 7.ϯ.ϭ in the next examples.

IntegraƟng powers of sine and cosine
Evaluate
Example ∫7.ϯ.ϭ

sinϱ x cosϴ x dx.

SÊ½çã®ÊÄ The power of the sine term is odd, so we rewrite sinϱ x as

sinϱ x = sinϰ x sin x = (sinϮ x)Ϯ sin x = (ϭ− cosϮ x)Ϯ sin x.

Our integral is now
∫

(ϭ− cosϮ x)Ϯ cosϴ x sin x dx. Let u = cos x, hence du =

− sin x dx. Making the subsƟtuƟon and expanding the integrand gives
∫

(ϭ−cosϮ)Ϯ cosϴ x sin x dx = −
∫

(ϭ−uϮ)Ϯuϴ du = −
∫
(
ϭ−ϮuϮ+uϰ

)
uϴ du = −

∫
(
uϴ−ϮuϭϬ+uϭϮ

)
du.

This final integral is not difficult to evaluate, giving

−
∫
(
uϴ − ϮuϭϬ + uϭϮ

)
du = −ϭ

ϵ
uϵ +

Ϯ
ϭϭ

uϭϭ − ϭ
ϭϯ

uϭϯ + C

= −ϭ
ϵ
cosϵ x+

Ϯ
ϭϭ

cosϭϭ x− ϭ
ϭϯ

cosϭϯ x+ C.

IntegraƟng powers of sine and cosine
Evaluate
Example ∫7.ϯ.Ϯ

sinϱ x cosϵ x dx.

SÊ½çã®ÊÄ The powers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea 7.ϯ.ϭ to either power. We choose 
to work with the power of the cosine term since the previous example used the 
sine term’s power.

We rewrite cosϵ x as

cosϵ x = cosϴ x cos x
= (cosϮ x)ϰ cos x
= (ϭ− sinϮ x)ϰ cos x
= (ϭ− ϰ sinϮ x+ ϲ sinϰ x− ϰ sinϲ x+ sinϴ x) cos x.

We rewrite the integral as
∫

sinϱ x cosϵ x dx =
∫

sinϱ x
(
ϭ− ϰ sinϮ x+ ϲ sinϰ x− ϰ sinϲ x+ sinϴ x

)
cos x dx.
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Figure 7.ϯ.ϭ: A plot of f(x) and g(x) from 
Example 7.ϯ.Ϯ and the Technology Note.

Now subsƟtute and integrate, using u = sin x and du = cos x dx.
∫

sinϱ x
(

ϭ− ϰ sinϮ x+ ϲ sinϰ x− ϰ sinϲ x+ sinϴ x
)

cos x dx =
∫

uϱ(ϭ− ϰuϮ + ϲuϰ − ϰuϲ + uϴ) du =

∫

(

uϱ − ϰuϳ + ϲuϵ − ϰuϭϭ + uϭϯ
)

du

=
ϭ
ϲ
uϲ − ϭ

Ϯ
uϴ + ϯ

ϱ
uϭϬ − ϭ

ϯ
uϭϮ + ϭ

ϭϰ
uϭϰ + C

=
ϭ
ϲ
sinϲ x− ϭ

Ϯ
sinϴ x+ ϯ

ϱ
sinϭϬ x+ . . .

− ϭ
ϯ
sinϭϮ x+ ϭ

ϭϰ
sinϭϰ x+ C.

Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipulaƟon, etc.) are important.
Nowadays problems of this sort are oŌen solved using a computer algebra sys-
tem. The powerful programMathemaƟca® integrates

∫
sinϱ x cosϵ x dx as

f(x) = −ϰϱ cos(Ϯx)
ϭϲϯϴϰ

−ϱ cos(ϰx)
ϴϭϵϮ

+
ϭϵ cos(ϲx)
ϰϵϭϱϮ

+
cos(ϴx)
ϰϬϵϲ

− cos(ϭϬx)
ϴϭϵϮϬ

− cos(ϭϮx)
Ϯϰϱϳϲ

− cos(ϭϰx)
ϭϭϰϲϴϴ

,

which clearly has a different form than our answer in Example ϲ.ϯ.Ϯ, which is

g(x) =
ϭ
sinϲ x− ϭ

Ϯ
sinϴ x+

ϯ
ϱ
sinϭϬ x− ϭ

ϯ
sinϭϮ x+

ϭ
ϭϰ

sinϭϰ x.
ϲ

Figure 7.ϯ.ϭ shows a graph of f and g; they are clearly not equal, but they differ 
only by a constant. That is g(x) = f(x) + C for some constant C. So we have 
two different anƟderivaƟves of the same funcƟon, meaning both answers are 
correct.

IntegraƟng powers of sine and cosine
Evaluate
Example ∫7.ϯ.ϯ

cosϰ x sinϮ x dx.

SÊ½çã®ÊÄ The powers of sine and cosine are both even, so we employ
the power–reducing formulas and algebra as follows.

∫

cosϰ x sinϮ x dx =
∫ (

ϭ+ cos(Ϯx)
Ϯ

)Ϯ(ϭ− cos(Ϯx)
Ϯ

)

dx

=

∫
ϭ+ Ϯ cos(Ϯx) + cosϮ(Ϯx)

ϰ
· ϭ− cos(Ϯx)

Ϯ
dx

=

∫
ϭ
ϴ
(
ϭ+ cos(Ϯx)− cosϮ(Ϯx)− cosϯ(Ϯx)

)
dx

The cos(Ϯx) term is easy to integrate, especially with Key Idea 7.ϭ.ϭ. The cosϮ(Ϯx) 
term is another trigonometric integral with an even power, requiring the power–
reducing formula again. The cosϯ(Ϯx) term is a cosine funcƟon with an odd 
power, requiring a subsƟtuƟon as done before. We integrate each in turn below.
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∫

cos(Ϯx) dx =
ϭ
Ϯ
sin(Ϯx) + C.

∫

cosϮ(Ϯx) dx =
∫

ϭ+ cos(ϰx)
Ϯ

dx =
ϭ
Ϯ
(
x+

ϭ
ϰ
sin(ϰx)

)
+ C.

Finally, we rewrite cosϯ(Ϯx) as

cosϯ(Ϯx) = cosϮ(Ϯx) cos(Ϯx) =
(
ϭ− sinϮ(Ϯx)

)
cos(Ϯx).

Leƫng u = sin(Ϯx), we have du = Ϯ cos(Ϯx) dx, hence
∫

cosϯ(Ϯx) dx =
∫
(
ϭ− sinϮ(Ϯx)

)
cos(Ϯx) dx

=

∫
ϭ
Ϯ
(ϭ− uϮ) du

=
ϭ
Ϯ

(

u− ϭ
ϯ
uϯ
)

+ C

=
ϭ
Ϯ

(

sin(Ϯx)− ϭ
ϯ
sinϯ(Ϯx)

)

+ C

Puƫng all the pieces together, we have
∫

cosϰ x sinϮ x dx =
∫

ϭ
ϴ
(
ϭ+ cos(Ϯx)− cosϮ(Ϯx)− cosϯ(Ϯx)

)
dx

=
ϭ
ϴ

[

x+
ϭ
Ϯ
sin(Ϯx)− ϭ

Ϯ
(
x+

ϭ
ϰ
sin(ϰx)

)
− ϭ

Ϯ

(

sin(Ϯx)− ϭ
ϯ
sinϯ(Ϯx)

)]

+ C

=
ϭ
ϴ

[ϭ
Ϯ
x− ϭ

ϴ
sin(ϰx) +

ϭ
ϲ
sinϯ(Ϯx)

]

+ C

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

Integrals of the form
∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx,

and
∫

sin(mx) cos(nx) dx.

FuncƟons that contain products of sines and cosines of differing periods are
important in many applicaƟons including the analysis of sound waves. Integrals
of the form
∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx and
∫

sin(mx) cos(nx) dx
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are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) =
ϭ
Ϯ

[

cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]

cos(mx) cos(nx) =
ϭ
Ϯ

[

cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]

sin(mx) cos(nx) =
ϭ
Ϯ

[

sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]

ϲ
Example 7.ϯ.ϰ

IntegraƟng products of sin(mx) and cos(nx)

Evaluate
∫

sin(ϱx) cos(Ϯx) dx.

SÊ½çã®ÊÄ The applicaƟon of the formula and subsequent integraƟon
are straighƞorward:

∫

sin(ϱx) cos(Ϯx) dx =
∫

ϭ
Ϯ

[

sin(ϯx) + sin(ϳx)
]

dx

= −ϭ
ϲ
cos(ϯx)− ϭ

ϭϰ
cos(ϳx) + C

Integrals of the form
∫

tanm x secn x dx.

When evaluaƟng integrals of the form
∫
sinm x cosn x dx, the Pythagorean

Theorem allowed us to convert even powers of sine into even powers of cosine,
and vise–versa. If, for instance, the power of sine was odd, we pulled out one
sin x and converted the remaining even power of sin x into a funcƟon using pow-
ers of cos x, leading to an easy subsƟtuƟon.

The same basic strategy applies to integrals of the form
∫
tanm x secn x dx,

albeit a bit more nuanced. The following three facts will prove useful:

• d
dx (tan x) = secϮ x,

• d
dx (sec x) = sec x tan x , and

• ϭ + tanϮ x = secϮ x (the Pythagorean Identity).

If the integrand can be manipulated to separate a secϮ x term with the re-
maining secant power even, or if a sec x tan x term can be separated with the
remaining tan x power even, the Pythagorean Theorem can be employed, lead-
ing to a simple subsƟtuƟon. This strategy is outlined in the following Key Idea.

Be aware of these

■
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Key Idea 7.ϯ.Ϯ Integrals Involving Powers of Tangent and Secant

Consider
∫

tanm x secn x dx, wherem, n are nonnegaƟve integers.

ϭ. If n is even, then n = Ϯk for some integer k. Rewrite secn x as

secn x = secϮk x = secϮk−Ϯ x secϮ x = (ϭ+ tanϮ x)k−ϭ secϮ x.

Then
∫

tanm x secn x dx =
∫

tanm x(ϭ+ tanϮ x)k−ϭ secϮ x dx =
∫

um(ϭ+ uϮ)k−ϭ du,

where u = tan x and du = secϮ x dx.

Ϯ. Ifm is odd, thenm = Ϯk+ ϭ for some integer k. Rewrite tanm x secn x as

tanm x secn x = tanϮk+ϭ x secn x = tanϮk x secn−ϭ x sec x tan x = (secϮ x− ϭ)k secn−ϭ x sec x tan x.

Then
∫

tanm x secn x dx =
∫

(secϮ x− ϭ)k secn−ϭ x sec x tan x dx =
∫

(uϮ − ϭ)kun−ϭ du,

where u = sec x and du = sec x tan x dx.

ϯ. If n is odd andm is even, thenm = Ϯk for some integer k. Convert tanm x to (secϮ x− ϭ)k. Expand
the new integrand and use IntegraƟon By Parts, with dv = secϮ x dx.

ϰ. Ifm is even and n = Ϭ, rewrite tanm x as

tanm x = tanm−Ϯ x tanϮ x = tanm−Ϯ x(secϮ x− ϭ) = tanm−Ϯ secϮ x− tanm−Ϯ x.

So ∫

tanm x dx =
∫

tanm−Ϯ secϮ x dx
︸ ︷︷ ︸

apply rule #ϭ

−
∫

tanm−Ϯ x dx
︸ ︷︷ ︸

apply rule #ϰ again

.

The techniques described in items ϭ and Ϯ of Key Idea 7.ϯ.Ϯ are relaƟvely 
straighƞorward, but the techniques in items ϯ and ϰ can be rather tedious. A 
few examples will help with these methods.

Semi-memorize these methods

82



IntegraƟng powers of tangent and secant
Evaluate
Example ∫7.ϯ.ϱ

tanϮ x secϲ x dx.

SÊ½çã®ÊÄ Since the power of secant is even, we use rule #ϭ from Key 
Idea 7.ϯ.Ϯ and pull out a secϮ x in the integrand. We convert the remaining pow-
ers of secant into powers of tangent.

∫

tanϮ x secϲ x dx =
∫

tanϮ x secϰ x secϮ x dx

=

∫

tanϮ x
(
ϭ+ tanϮ x

)Ϯ secϮ x dx

Now subsƟtute, with u = tan x, with du = secϮ x dx.

=

∫

uϮ
(
ϭ+ uϮ

)Ϯ du

We leave the integraƟon and subsequent subsƟtuƟon to the reader. The final
answer is

=
ϭ
ϯ
tanϯ x+

Ϯ
ϱ
tanϱ x+

ϭ
ϳ
tanϳ x+ C.

IntegraƟng powers of tangent and secant
Evaluate
Example ∫7.ϯ.ϲ

secϯ x dx.

SÊ½çã®ÊÄ We apply rule #ϯ from Key Idea 7.ϯ.Ϯ as the power of secant 
is odd and the power of tangent is even (Ϭ is an even number). We use Integra-
Ɵon by Parts; the rule suggests leƫng dv = secϮ x dx, meaning that u = sec x.

u = sec x
dv = secϮ x dx ⇒ v = tan x 

du = sec x tan x dx 

Figure 7.ϯ.Ϯ: Seƫng up IntegraƟon by Parts.

Employing IntegraƟon by Parts, we have
∫

secϯ x dx =
∫

sec x
︸︷︷︸

u

· secϮ x dx
︸ ︷︷ ︸

dv

= sec x tan x−
∫

sec x tanϮ x dx.
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This new integral also requires applying rule #ϯ of Key Idea 7.ϯ.Ϯ:

= sec x tan x−
∫

sec x
(
secϮ x− ϭ

)
dx

= sec x tan x−
∫

secϯ x dx+
∫

sec x dx

= sec x tan x−
∫

secϯ x dx+ ln | sec x+ tan x|

In previous applicaƟons of IntegraƟon by Parts, we have seen where the original
integral has reappeared in our work. We resolve this by adding

∫
secϯ x dx to

both sides, giving:

Ϯ
∫

secϯ x dx = sec x tan x+ ln | sec x+ tan x|
∫

secϯ x dx =
ϭ
Ϯ

(

sec x tan x+ ln | sec x+ tan x|
)

+ C

We give one more example.

IntegraƟng powers of tangent and secant
Evaluate
Example ∫7.ϯ.ϳ

tanϲ x dx.

SÊ½çã®ÊÄ We employ rule #ϰ of Key Idea 7.ϯ.Ϯ.
∫

tanϲ x dx =
∫

tanϰ x tanϮ x dx

=

∫

tanϰ x
(
secϮ x− ϭ

)
dx

=

∫

tanϰ x secϮ x dx−
∫

tanϰ x dx

Integrate the first integral with subsƟtuƟon, u = tan x; integrate the second by
employing rule #ϰ again.

=
ϭ
ϱ
tanϱ x−

∫

tanϮ x tanϮ x dx

=
ϭ
ϱ
tanϱ x−

∫

tanϮ x
(
secϮ x− ϭ

)
dx

=
ϭ
ϱ
tanϱ x−

∫

tanϮ x secϮ x dx+
∫

tanϮ x dx
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Again, use subsƟtuƟon for the first integral and rule #ϰ for the second.

=
ϭ
ϱ
tanϱ x− ϭ

ϯ
tanϯ x+

∫
(
secϮ x− ϭ

)
dx

=
ϭ
ϱ
tanϱ x− ϭ

ϯ
tanϯ x+ tan x− x+ C.

These laƩer examples were admiƩedly long, with repeated applicaƟons of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this soluƟon method is. A trigonometric funcƟon of
a high power can be systemaƟcally reduced to trigonometric funcƟons of lower
powers unƟl all anƟderivaƟves can be computed.

The next secƟon introduces an integraƟon technique known as Trigonomet-
ric SubsƟtuƟon, a clever combinaƟon of SubsƟtuƟon and the Pythagorean The-
orem.

Integral Table (Change of variable Form)

∫ du = u + C

∫ e
u du = eu + C

ln

∫ u
n du =

n

un+1

+1

∫ a
u du = au

a

+ C

+ C


du =  ln|u| + C

∫ sinu du = -cosu + C        

∫ csc2u du = -cot u + C        

∫ cscucotudu = -csc u + C

∫cot u du = ln(cos u) + C
∫ csc u du = ln|csc u - cot u| + C

uu 

∫ cosu du = sinu + C 

∫ sec2u du = tanu + C

∫ secu tanu du = secu + C
∫tan u du = ln(sec u) + C

∫ sec u du = ln|sec u + tan u| + C

Method of Substitution
u= g(x)
=

du= g ' (x)dx Proof: the integrals are live mathematics. f(g(x)) g ' (x) dx

∫a
b
f(g(x)) g ' (x)dx

u= g(x)
=

du= g ' (x)dx

∫ f(u)du

∫g(
g

a

(

)

b)
f(u)du



du

1- u2
= arc sin u + C



du
1 + u2

= arctan u + C
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Exercises
Terms and Concepts

ϭ. T/F:
∫

sinϮ x cosϮ x dx cannot be evaluated using the tech-
niques described in this secƟon since both powers of sin x
and cos x are even.

Ϯ. T/F:
∫

sinϯ x cosϯ x dx cannot be evaluated using the tech-
niques described in this secƟon since both powers of sin x
and cos x are odd.

ϯ. T/F: This secƟon addresses how to evaluate indefinite inte-
grals such as

∫

sinϱ x tanϯ x dx.

ϰ. T/F: SomeƟmes computer programs evaluate integrals in-
volving trigonometric funcƟons differently than one would
using the techniques of this secƟon. When this is the case,
the techniques of this secƟon have failed and one should
only trust the answer given by the computer.

Problems
In Exercises ϱ – Ϯϴ, evaluate the indefinite integral.

ϱ.
∫

sin x cosϰ x dx

ϲ.
∫

sinϯ x cos x dx

ϳ.
∫

sinϯ x cosϮ x dx

ϴ.
∫

sinϯ x cosϯ x dx

ϵ.
∫

sinϲ x cosϱ x dx

ϭϬ.
∫

sinϮ x cosϳ x dx

ϭϭ.
∫

sinϮ x cosϮ x dx

ϭϮ.
∫

sin x cos x dx

ϭϯ.
∫

sin(ϱx) cos(ϯx) dx

ϭϰ.
∫

sin(x) cos(Ϯx) dx

ϭϱ.
∫

sin(ϯx) sin(ϳx) dx

ϭϲ.
∫

sin(πx) sin(Ϯπx) dx

ϭϳ.
∫

cos(x) cos(Ϯx) dx

ϭϴ.
∫

cos
(π

Ϯ
x
)

cos(πx) dx

ϭϵ.
∫

tanϰ x secϮ x dx

ϮϬ.
∫

tanϮ x secϰ x dx

Ϯϭ.
∫

tanϯ x secϰ x dx

ϮϮ.
∫

tanϯ x secϮ x dx

Ϯϯ.
∫

tanϯ x secϯ x dx

Ϯϰ.
∫

tanϱ x secϱ x dx

Ϯϱ.
∫

tanϰ x dx

Ϯϲ.
∫

secϱ x dx

Ϯϳ.
∫

tanϮ x sec x dx

Ϯϴ.
∫

tanϮ x secϯ x dx

In Exercises Ϯϵ – ϯϱ, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in the previous set.

Ϯϵ.
∫ π

Ϭ
sin x cosϰ x dx

ϯϬ.
∫ π

−π

sinϯ x cos x dx

ϯϭ.
∫ π/Ϯ

−π/Ϯ
sinϮ x cosϳ x dx

ϯϮ.
∫ π/Ϯ

Ϭ
sin(ϱx) cos(ϯx) dx

ϯϯ.
∫ π/Ϯ

−π/Ϯ
cos(x) cos(Ϯx) dx

ϯϰ.
∫ π/ϰ

Ϭ
tanϰ x secϮ x dx

ϯϱ.
∫ π/ϰ

−π/ϰ
tanϮ x secϰ x dx

86

Bill
Typewritten text
7.3



1. F

2. F

3. F

4. F

5. 1− 5 cos
5(x) + C

1
4
1
5

6. sin4(x) + C

7. cos5 x− 1
3

cos6 x− 1
4

cos3 x+ C

cos4 x+ C8. 1
6

9. 1
11

2
9

1
7sin11 x− sin9 x+ sin7 x+ C

10. 1
9− sin9(x) + 3 sin7(x)

7 − 3 sin5(x)
5 +

sin3(x)
3 + C

−11. 1
32 sin(4x) + Cx

8
1
2

1
212. sin2 x+ C or− cos2 x+ C, depending on the choice of

subsƟtuƟon

13. 1
2
(
− 1

2
1
8 cos(8x)− cos(2x)

)
14. 1

2
( 1

3 cos(3x) + cos(−x)
)

15. 1
2
(−1
4 sin(4x)−

1
10 sin(10x)

+ C)
16. 1

2
( 1
π
sin(πx)− 3

1
π
sin(3πx)

+ C

+ C)
+ C

17. 1
2
( 1

3sin(x) + sin(3x)
)
+ C

18. 1
π

π
2sin( x) + 3

1
π
sin(πx) + C

19. tan5(x)
5 + C

1
520. tan5 x+ 1

3 tan
3 x+ C

+
tan4(x)

4 + C

+ C

− sec3
3
(x)

+ C

21. tan6(x)
6

22. tan4(x)
4

23. sec5(x)
5

24. sec9(x)
9 − 2 sec7(x)

7 +
sec5(x)

5 + C

Solutions 7.3

1
325. tan3 x− tan x+ x+ C

26. 1
4

3
8

27.

tan x sec3 x+ (sec x tan x+ ln | sec x+ tan x|) + C

1
2 (sec x tan x− ln | sec x+ tan x|) + C

1
4

1
828. tan x sec3 x− (sec x tan x+ ln | sec x+ tan x|) + C

29. 2
5

30. 0

31. 32/315

32. 1/2

33. 2/3

34. 1/5

35. 16/15
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Trigonometric SubsƟtuƟon
In SecƟon ϱ.Ϯ we defined the definite integral as the “signed area under the
curve.” In that secƟon we had not yet learned the Fundamental Theorem of
Calculus, so we only evaluated special definite integrals which described nice,
geometric shapes. For instance, we were able to evaluate

∫ ϯ

−ϯ

√

− π
Ϯ

ϵ xϮ dx = ϵ  (7.ϭ)

as we recognized that f(x) = 
√
ϵ − xϮ described the upper half of a circle with

radius ϯ.
We have since learned a number of integraƟon techniques, including Sub-

sƟtuƟon and IntegraƟon by Parts, yet we are sƟll unable to evaluate the above 
integral without resorƟng to a geometric interpretaƟon. This secƟon introduces 
Trigonometric SubsƟtuƟon, a method of integraƟon that fills this gap in our inte-
graƟon skill. This technique works on the same principle as SubsƟtuƟon as found 
in SecƟon ϲ.ϭ, though it can feel “backward.” In SecƟon ϲ.ϭ, we set u = f(x), for 
some funcƟon f, and replaced f(x) with u. In this secƟon, we will set x = f(θ), 
where f is a trigonometric funcƟon, then replace x with f(θ).

We start by demonstraƟng this method in evaluaƟng the integral in EquaƟon
(7.ϭ). AŌer the example, we will generalize the method and give more examples.

Using Trigonometric SubsƟtuƟon

Evaluate

Example 
∫
7.ϰ.ϭ

ϯ

−ϯ

√

ϵ− xϮ dx.

SÊ½çã®ÊÄ We begin by noƟng that ϵ sinϮ θ + ϵ cosϮ θ = ϵ, and hence
ϵ cosϮ θ = ϵ−ϵ sinϮ θ. If we let x = ϯ sin θ, then ϵ−xϮ = ϵ−ϵ sinϮ θ = ϵ cosϮ θ.

Seƫng x = ϯ sin θ gives dx = ϯ cos θ dθ. We are almost ready to subsƟtute.
We also wish to change our bounds of integraƟon. The bound x = −ϯ corre-
sponds to θ = −π/Ϯ (for when θ = −π/Ϯ, x = ϯ sin θ = −ϯ). Likewise, the
bound of x = ϯ is replaced by the bound θ = π/Ϯ. Thus

∫ ϯ

−ϯ

√

ϵ− xϮ dx =
∫ π/Ϯ

−π/Ϯ

√

ϵ− ϵ sinϮ θ(ϯ cos θ) dθ

=

∫ π/Ϯ

−π/Ϯ
ϯ
√
ϵ cosϮ θ cos θ dθ

=

∫ π/Ϯ

−π/Ϯ
ϯ|ϯ cos θ| cos θ dθ.

On [−π/Ϯ, π/Ϯ], cos θ is always posiƟve, so we can drop the absolute value bars,
then employ a power–reducing formula:
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=

∫ π/Ϯ

−π/Ϯ
ϵ cosϮ θ dθ

=

∫ π/Ϯ

−π/Ϯ

ϵ
Ϯ
(
ϭ+ cos(Ϯθ)

)
dθ

=
ϵ
Ϯ
(
θ +

ϭ
Ϯ
sin(Ϯθ)

)

∣
∣
∣
∣
∣

π/Ϯ

−π/Ϯ

=
ϵ
Ϯ
π.

This matches our answer from before.

We now describe in detail Trigonometric SubsƟtuƟon. This method excels
when dealing with integrands that contain

√
aϮ − xϮ,

√
xϮ − aϮ and

√
xϮ + aϮ.

The following Key Idea outlines the procedure for each case, followed by more
examples. Each right triangle acts as a reference to help us understand the re-
laƟonships between x and θ.

Key Idea 7.ϰ.ϭ Trigonometric SubsƟtuƟon

(a) For integrands containing
√
aϮ − xϮ:

Let x = a sin θ, dx = a cos θ dθ

Thus θ = sin−ϭ(x/a), for−π/Ϯ ≤ θ ≤ π/Ϯ.

On this interval, cos θ ≥ Ϭ, so
√
aϮ − xϮ = a cos θ

.. √
a2 − x2

.

x

.

a

. θ

(b) For integrands containing
√
xϮ + aϮ:

Let x = a tan θ, dx = a secϮ θ dθ

Thus θ = tan−ϭ(x/a), for−π/Ϯ < θ < π/Ϯ.

On this interval, sec θ > Ϭ, so
√
xϮ + aϮ = a sec θ

..
a

.

x

.

√ x2 +
a2

. θ

(c) For integrands containing
√
xϮ − aϮ:

Let x = a sec θ, dx = a sec θ tan θ dθ

Thus θ = sec−ϭ(x/a). If x/a ≥ ϭ, then Ϭ ≤ θ < π/Ϯ;
if x/a ≤ −ϭ, then π/Ϯ < θ ≤ π.

We restrict our work to where x ≥ a, so x/a ≥ ϭ, and
Ϭ ≤ θ < π/Ϯ. On this interval, tan θ ≥ Ϭ, so
√
xϮ − aϮ = a tan θ

..
a

.

√
x2 − a2

.

x

. θ

Be fluent with these diagrams.
    Be able to construct them

as needed.
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Using Trigonometric SubsƟtuƟon
Evaluate
Example ∫7.ϰ.Ϯ

ϭ√
ϱ+ xϮ

dx.

SÊ½çã®ÊÄ Using Key Idea ϲ.ϰ.ϭ(b), we recognize a =
√
ϱ and set x =√

ϱ tan θ. This makes dx =
√
ϱ secϮ θ dθ. We will use the fact that

√
ϱ+ xϮ =√

ϱ+ ϱ tanϮ θ =
√
ϱ secϮ θ =

√
ϱ sec θ. SubsƟtuƟng, we have:

∫
ϭ√

ϱ+ xϮ
dx =

∫
ϭ√

ϱ+ ϱ tanϮ θ

√
ϱ secϮ θ dθ

=

∫ √
ϱ secϮ θ√
ϱ sec θ

dθ

=

∫

sec θ dθ

= ln
∣
∣ sec θ + tan θ

∣
∣+ C.

While the integraƟon steps are over, we are not yet done. The original problem
was stated in terms of x, whereas our answer is given in terms of θ. We must
convert back to x.

The reference triangle given in Key Idea ϲ.ϰ.ϭ(b) helps. With x =
√
ϱ tan θ,

we have

tan θ =
x√
ϱ

and sec θ =

√
xϮ + ϱ√

ϱ
.

This gives
∫

ϭ√
ϱ+ xϮ

dx = ln
∣
∣ sec θ + tan θ

∣
∣+ C

= ln

∣
∣
∣
∣
∣

√
xϮ + ϱ√

ϱ
+

x√
ϱ

∣
∣
∣
∣
∣
+ C.

We can leave this answer as is, or we can use a logarithmic idenƟty to simplify
it. Note:

ln

∣
∣
∣
∣
∣

√
xϮ + ϱ√

ϱ
+

x√
ϱ

∣
∣
∣
∣
∣
+ C = ln

∣
∣
∣
∣

ϭ√
ϱ
(√

xϮ + ϱ+ x
)
∣
∣
∣
∣
+ C

= ln
∣
∣
∣
∣

ϭ√
ϱ

∣
∣
∣
∣
+ ln

∣
∣
√

xϮ + ϱ+ x
∣
∣+ C

= ln
∣
∣
√

xϮ + ϱ+ x
∣
∣+ C,

where the ln
(
ϭ/

√
ϱ
)
term is absorbed into the constant C. (In SecƟon ϲ.ϲ we

will learn another way of approaching this problem.)
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Using Trigonometric SubsƟtuƟon
Evaluate
Example ∫7.ϰ.ϯ

√

ϰxϮ − ϭ dx.

SÊ½çã®ÊÄ Westart by rewriƟng the integrand so that it looks like
√
xϮ − aϮ

for some value of a:

√

ϰxϮ − ϭ =

√

ϰ
(

xϮ − ϭ
ϰ

)

= Ϯ

√

xϮ −
(
ϭ
Ϯ

)Ϯ

.

ϭ
Ϯϭ

Ϯ

So we have a = ϭ/Ϯ, and following Key Idea 7.ϰ.ϭ(c), we set x = sec θ,  and 
hence dx = sec θ tan θ dθ. We now rewrite the integral with these subsƟtu-
Ɵons:

∫
√

ϰxϮ − ϭ dx =
∫

Ϯ

√

xϮ −
(
ϭ
Ϯ

)Ϯ

dx

=

∫

Ϯ
√

ϭ
ϰ
secϮ θ − ϭ

ϰ

(
ϭ
Ϯ
sec θ tan θ

)

dθ

=

∫ √

ϭ
ϰ
(secϮ θ − ϭ)

(

sec θ tan θ
)

dθ

=

∫ √

ϭ
ϰ
tanϮ θ

(

sec θ tan θ
)

dθ

=

∫
ϭ
Ϯ
tanϮ θ sec θ dθ

=
ϭ
Ϯ

∫ (

secϮ θ − ϭ
)

sec θ dθ

=
ϭ
Ϯ

∫
(
secϯ θ − sec θ

)
dθ.

We integrated secϯ θ in Example 7.ϯ.ϲ, finding its anƟderivaƟves to be
∫

secϯ θ dθ =
ϭ
Ϯ

(

sec θ tan θ + ln | sec θ + tan θ|
)

+ C.

Thus
∫
√

ϰxϮ − ϭ dx =
ϭ
Ϯ

∫
(
secϯ θ − sec θ

)
dθ

=
ϭ
Ϯ

(
ϭ
Ϯ

(

sec θ tan θ + ln | sec θ + tan θ|
)

− ln | sec θ + tan θ|
)

+ C

=
ϭ
ϰ
(sec θ tan θ − ln | sec θ + tan θ|) + C.
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We are not yet done. Our original integral is given in terms of x, whereas our
final answer, as given, is in terms of θ. We need to rewrite our answer in terms
of x. With a = ϭ/Ϯ, and x = ϭ

Ϯ sec θ, the reference triangle in Key Idea ϲ.ϰ.ϭ(c)
shows that

tan θ =
√

xϮ − ϭ/ϰ
/

(ϭ/Ϯ) = Ϯ
√

xϮ − ϭ/ϰ and sec θ = Ϯx.

Thus
ϭ
ϰ

(

sec θ tan θ − ln
∣

∣ sec θ + tan θ
∣

∣

)

+ C =
ϭ
ϰ

(

Ϯx · Ϯ
√

xϮ − ϭ/ϰ− ln
∣

∣Ϯx+ Ϯ
√

xϮ − ϭ/ϰ
∣

∣

)

+ C

=
ϭ
ϰ

(

ϰx
√

xϮ − ϭ/ϰ− ln
∣

∣Ϯx+ Ϯ
√

xϮ − ϭ/ϰ
∣

∣

)

+ C.

The final answer is given in the last line above, repeated here:
∫
√

ϰxϮ − ϭ dx =
ϭ
ϰ

(

ϰx
√

xϮ − ϭ/ϰ− ln
∣
∣Ϯx+ Ϯ

√

xϮ − ϭ/ϰ
∣
∣

)

+ C.

Example ϲ.ϰ.ϰ Using Trigonometric SubsƟtuƟon

Evaluate
∫ √

ϰ− xϮ

xϮ
dx.

SÊ½çã®ÊÄ We use Key Idea 7.ϰ.ϭ(a) with a = Ϯ, x = Ϯ sin θ,  dx =
Ϯ cos θ and hence

√
ϰ− xϮ = Ϯ cos θ. This gives
∫ √

ϰ− xϮ

xϮ
dx =

∫
Ϯ cos θ
ϰ sinϮ θ

(Ϯ cos θ) dθ

=

∫

cotϮ θ dθ

=

∫

(cscϮ θ − ϭ) dθ

= − cot θ − θ + C.

We need to rewrite our answer in terms of x. Using the reference triangle found
in Key Idea ϲ.ϰ.ϭ(a), we have cot θ =

√
ϰ− xϮ/x and θ = sin−ϭ(x/Ϯ). Thus

∫ √
ϰ− xϮ

xϮ
dx = −

√
ϰ− xϮ

x
− sin−ϭ

( x
Ϯ

)

+ C.

Trigonometric SubsƟtuƟon can be applied inmany situaƟons, even those not
of the form

√
aϮ − xϮ,

√
xϮ − aϮ or

√
xϮ + aϮ. In the following example, we ap-

ply it to an integral we already know how to handle.

■7.
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Using Trigonometric SubsƟtuƟon
Evaluate
Example 7.ϰ.ϱ

ϭ
xϮ + ϭ

dx.

SÊ½çã®ÊÄ Weknow the answer already as tan−ϭ x+C. Weapply Trigono-
metric SubsƟtuƟon here to show that we get the same answer without inher-
ently relying on knowledge of the derivaƟve of the arctangent funcƟon.

Using Key Idea 7.ϰ.ϭ(b), let x = tan θ,  dx = secϮ θ dθ and note that xϮ + ϭ = 
tanϮ θ + ϭ = secϮ θ. Thus

∫
ϭ

xϮ + ϭ
dx =

∫
ϭ

secϮ θ
secϮ θ dθ

=

∫

ϭ dθ

= θ + C.

Since x = tan θ, θ = tan−ϭ x, and we conclude that
∫

ϭ
xϮ + ϭ

dx = tan−ϭ x+C.

The next example is similar to the previous one in that it does not involve a
square–root. It shows how several techniques and idenƟƟes can be combined
to obtain a soluƟon.

Using Trigonometric SubsƟtuƟon
Evaluate
Example 7.ϰ.ϲ

ϭ
(xϮ + ϲx+ ϭϬ)Ϯ

dx.

SÊ½çã®ÊÄ We start by compleƟng the square, then make the subsƟtu-
Ɵon u = x+ ϯ, followed by the trigonometric subsƟtuƟon of u = tan θ:
∫

ϭ
(xϮ + ϲx+ ϭϬ)Ϯ

dx =
∫

ϭ
(
(x+ ϯ)Ϯ + ϭ

)Ϯ dx =
∫

ϭ
(uϮ + ϭ)Ϯ

du.

Now make the subsƟtuƟon u = tan θ, du = secϮ θ dθ:

=

∫
ϭ

(tanϮ θ + ϭ)Ϯ
secϮ θ dθ

=

∫
ϭ

(secϮ θ)Ϯ
secϮ θ dθ

=

∫

cosϮ θ dθ.

∫
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Applying a power reducing formula, we have

=

∫ (
ϭ
Ϯ
+

ϭ
Ϯ
cos(Ϯθ)

)

dθ

=
ϭ
Ϯ
θ +

ϭ
ϰ
sin(Ϯθ) + C. (ϲ.Ϯ)

We need to return to the variable x. As u = tan θ, θ = tan−ϭ u. Using the
idenƟty sin(Ϯθ) = Ϯ sin θ cos θ and using the reference triangle found in Key
Idea ϲ.ϰ.ϭ(b), we have

ϭ
ϰ
sin(Ϯθ) =

ϭ
Ϯ

u√
uϮ + ϭ

· ϭ√
uϮ + ϭ

=
ϭ
Ϯ

u
uϮ + ϭ

.

Finally, we return to xwith the subsƟtuƟon u = x+ϯ. We start with the expres-
sion in EquaƟon (ϲ.Ϯ):

ϭ
Ϯ
θ +

ϭ
ϰ
sin(Ϯθ) + C =

ϭ
Ϯ
tan−ϭ u+

ϭ
Ϯ

u
uϮ + ϭ

+ C

=
ϭ
Ϯ
tan−ϭ(x+ ϯ) +

x+ ϯ
Ϯ(xϮ + ϲx+ ϭϬ)

+ C.

StaƟng our final result in one line,
∫

ϭ
(xϮ + ϲx+ ϭϬ)Ϯ

dx =
ϭ
Ϯ
tan−ϭ(x+ ϯ) +

x+ ϯ
Ϯ(xϮ + ϲx+ ϭϬ)

+ C.

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric SubsƟtuƟon,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of θ, then converƟng back to x) and then
evaluate using the original bounds. It is much more straighƞorward, though, to
change the bounds as we subsƟtute.

Example ϲ.ϰ.ϳ Definite integraƟon and Trigonometric SubsƟtuƟon

Evaluate
∫ ϱ

Ϭ

xϮ√
xϮ + Ϯϱ

dx.

SÊ½çã®ÊÄ Using Key Idea 7.ϰ.ϭ(b), we set x = ϱ tan θ,  dx = ϱ secϮ θ dθ,  and 

notebounds that of        
√
i  aƟon.xϮ + Ϯϱ = ϱ sec θ.  As we subsƟtute, we can also change the bounds.

The lower bound of the original integral is x = Ϭ. As x = ϱ tan θ,  we solve for θ 
and find θ = tan−ϭ(x/ϱ). Thus the new lower bound is θ = tan−ϭ(Ϭ) = Ϭ. The

■7.
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original upper bound is x = ϱ, thus the new upper bound is θ = tan−ϭ(ϱ/ϱ) =
π/ϰ.

Thus we have
∫ ϱ

Ϭ

xϮ√
xϮ + Ϯϱ

dx =
∫ π/ϰ

Ϭ

Ϯϱ tanϮ θ
ϱ sec θ

ϱ secϮ θ dθ

= Ϯϱ
∫ π/ϰ

Ϭ
tanϮ θ sec θ dθ.

We encountered this indefinite integral in Example ϲ.ϰ.ϯ where we found
∫

tanϮ θ sec θ dθ =
ϭ
Ϯ
(
sec θ tan θ − ln | sec θ + tan θ|

)
.

So

Ϯϱ
∫ π/ϰ

Ϭ
tanϮ θ sec θ dθ =

Ϯϱ
Ϯ
(
sec θ tan θ − ln | sec θ + tan θ|

)

∣
∣
∣
∣
∣

π/ϰ

Ϭ

=
Ϯϱ
Ϯ
(√

Ϯ− ln(
√
Ϯ+ ϭ)

)

≈ ϲ.ϲϲϭ.

The following equaliƟes are very usefulwhenevaluaƟng integrals using Trigono-
metric SubsƟtuƟon.

Key Idea 7.ϰ.Ϯ Useful EqualiƟes with Trigonometric SubsƟtuƟon

ϭ. sin(Ϯθ) = Ϯ sin θ cos θ

Ϯ. cos(Ϯθ) = cosϮ θ − sinϮ θ = Ϯ cosϮ θ − ϭ = ϭ− Ϯ sinϮ θ

ϯ.
∫

secϯ θ dθ =
ϭ
Ϯ

(

sec θ tan θ + ln
∣
∣ sec θ + tan θ

∣
∣

)

+ C

ϰ.
∫

cosϮ θ dθ =

∫
ϭ
Ϯ
(
ϭ+ cos(Ϯθ)

)
dθ =

ϭ
Ϯ
(
θ + sin θ cos θ

)
+ C.

The next secƟon introduces ParƟal FracƟonDecomposiƟon, which is an alge-
braic technique that turns “complicated” fracƟons into sums of “simpler” frac-
Ɵons, making integraƟon easier.

If you are fluent with the trig substitution method, consider yourself a calculus master.
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Exercises
Terms and Concepts
ϭ. Trigonometric SubsƟtuƟon works on the same principles as

IntegraƟon by SubsƟtuƟon, though it can feel “ ”.

Ϯ. If one uses Trigonometric SubsƟtuƟon on an integrand con-
taining

√
Ϯϱ− xϮ, then one should set x = .

ϯ. Consider the Pythagorean IdenƟty sinϮ θ + cosϮ θ = ϭ.

(a) What idenƟty is obtained when both sides are di-
vided by cosϮ θ?

(b) Use the new idenƟty to simplify ϵ tanϮ θ + ϵ.

ϰ. Wh
and

y
not
does

a
K
cos
ey Idea

?     
7.ϰ.ϭ(a) state that 

√
aϮ − xϮ = a cos θ,

Problems
In Exercises ϱ – ϭϲ, apply Trigonometric SubsƟtuƟon to eval-
uate the indefinite integrals.

ϱ.
∫ √

xϮ + ϭ dx

ϲ.
∫ √

xϮ + ϰ dx

ϳ.
∫ √

ϭ− xϮ dx

ϴ.
∫ √

ϵ− xϮ dx

ϵ.
∫ √

xϮ − ϭ dx

ϭϬ.
∫ √

xϮ − ϭϲ dx

ϭϭ.
∫ √

ϰxϮ + ϭ dx

ϭϮ.
∫ √

ϭ− ϵxϮ dx

ϭϯ.
∫ √

ϭϲxϮ − ϭ dx

ϭϰ.
∫

ϴ√
xϮ + Ϯ

dx

ϭϱ.
∫

ϯ√
ϳ− xϮ

dx

ϭϲ.
∫

ϱ√
xϮ − ϴ

dx

In Exercises ϭϳ – Ϯϲ, evaluate the indefinite integrals. Some
may be evaluated without Trigonometric SubsƟtuƟon.

ϭϳ.
∫

√
xϮ − ϭϭ
x

dx

ϭϴ.
∫

ϭ
(xϮ + ϭ)Ϯ

dx

ϭϵ.
∫

x√
xϮ − ϯ

dx

ϮϬ.
∫

xϮ
√
ϭ− xϮ dx

Ϯϭ.
∫

x
(xϮ + ϵ)ϯ/Ϯ

dx

ϮϮ.
∫

ϱxϮ√
xϮ − ϭϬ

dx

Ϯϯ.
∫

ϭ
(xϮ + ϰx+ ϭϯ)Ϯ

dx

Ϯϰ.
∫

xϮ(ϭ− xϮ)−ϯ/Ϯ dx

Ϯϱ.
∫

√
ϱ− xϮ
ϳxϮ

dx

Ϯϲ.
∫

xϮ√
xϮ + ϯ

dx

In Exercises Ϯϳ – ϯϮ, evaluate the definite integrals by mak-
ing the proper trigonometric subsƟtuƟon and changing the
bounds of integraƟon. (Note: each of the corresponding
indefinite integrals has appeared previously in this Exercise
set.)

Ϯϳ.
∫ ϭ

−ϭ

√
ϭ− xϮ dx

Ϯϴ.
∫ ϴ

ϰ

√
xϮ − ϭϲ dx

Ϯϵ.
∫ Ϯ

Ϭ

√
xϮ + ϰ dx

ϯϬ.
∫ ϭ

−ϭ

ϭ
(xϮ + ϭ)Ϯ

dx

ϯϭ.
∫ ϭ

−ϭ

√
ϵ− xϮ dx

ϯϮ.
∫ ϭ

−ϭ
xϮ
√
ϭ− xϮ dx

■
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Solutions 7.4
1. backwards

2. 5 sin θ

3. (a) tan2 θ + 1 = sec2 θ

(b) 9 sec2 θ.

4. Because we are considering a > 0 and x = a sin θ, which means
θ = sin−1(x/a). The arcsine funcƟon has a domain of
−π/2 ≤ θ ≤ π/2; on this domain, cos θ ≥ 0, so a cos θ is always
non-negaƟve, allowing us to drop the absolute value signs.(

x
√
x2 + 1+ ln |

√
x2 + 1+ x|

)
5. 1

2

6. 2
(

x
4
√
x2 + 4+ ln |

√
x2+4
2 + x

2 |
)+ C

+ C

7. 1
2

(
sin−1 x+ x

√
1− x2

)
+ C

8.
(
9 sin−1(x/3) + x

√
9− x2

)
+ C

9.

1
2

1
2 x
√
x2 − 1− 1

2 ln |x+
√
x2 − 1|+ C

10. 1
2

∣∣ x
4

√
x2−16
4

∣∣∣∣+ C

11. x x2 + 1/4+ 1
4 ln |2

x2 − 16− 8 ln ∣∣ +√
1
2

x
√

√
x
√
4x2 + 1+ 1

4 ln |
√ x2 + 1/4+ 2x|+ C =

4x2 + 1+ 2x|+ C

12. 1
6 sin

−1(3x)+ 3
2

√
1/9− x2+C = 1

6 sin
−1(3x)+ 1

2
√
1− 9x2+C

13. 4
(

1
2 x
√

x2 − 1/16− 1
32 ln |4x+ 4

√
x2 − 1/16|

)
+ C =

1
2 x
√
16x2 − 1− 1

8 ln |4x+
√
16x2 − 1|+ C

14. 8 ln
∣∣∣∣√x2+2 x

∣∣∣∣√
2

+ √
2

+ C; with SecƟon 6.6, we can state the

answer as 8 sinh−1(x/
√
2) + C.(

x√
7

)
+ C (Trig. Subst. is not needed)15. 3 sin−1

16. 5 ln
∣∣∣∣ x√

8
+

√
x2−8√
8

∣∣∣∣+ C

17.
√
x2 − 11−

√
11 sec−1(x/

√
11) + C

18. 1
2

(
tan−1 x+ x

x2+1

)
+ C

19.
√
x2 − 3+ C (Trig. Subst. is not needed)

20. 1
8

1
8 sin

−1 x− x
√
1− x2(1− 2x2) + C

−21. √ 1
x2+9

+ C (Trig. Subst. is not needed)

5
2
√ ∣∣∣∣x2 − 10+ 25 ln √x

10
+

√
x2−10√
10

∣∣∣∣+ C22. x

23. 1
18 x2+

x
4
+
x
2
+13 + 1

54 tan
−1 ( x+2

2
)
+ C

24. x√
1−x2

− sin−1 x+ C

25.
(
−
√

5−x2
x − sin−1(x/

√
5)
)

+ C

26.

1
7

1
2 x
√
x2 + 3− 3

2 ln
∣∣∣∣√x2 x

∣∣∣∣√
3
+3

+ √
3

+ C

27. π/2

28. 16
√
3− 8 ln(2+

√
3)

29. 2
√
2+ 2 ln(1+

√
2)

30.

31.

π/4+ 1/2)

9 sin−1(1/3) +
√
8 Note: the new lower bound is

θ = sin−1(−1/3) and the new upper bound is θ = sin−1(1/3).
The final answer comes with recognizing that

sin
−
−1(1/3)

)
sin−1(−1/3)

)sin−(1( 1/3) = − sin−1((1/3) and that √
cos = cos = 8/3.

32. π/8
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7.5  ParƟal FracƟon DecomposiƟon

In this secƟonwe invesƟgate the anƟderivaƟves of raƟonal funcƟons. Recall that
raƟonal funcƟons are funcƟons of the form f(x) = p(x)

q(x) , where p(x) and q(x) are
polynomials and q(x) ̸= Ϭ. Such funcƟons arise in many contexts, one of which
is the solving of certain fundamental differenƟal equaƟons.

We begin with an example that demonstrates the moƟvaƟon behind this
secƟon. Consider the integral

∫
ϭ

xϮ − ϭ
dx. We do not have a simple formula

for this (if the denominator were xϮ + ϭ, we would recognize the anƟderivaƟve
as being the arctangent funcƟon). It can be solved using Trigonometric SubsƟ-
tuƟon, but note how the integral is easy to evaluate once we realize:

ϭ
xϮ − ϭ

=
ϭ/Ϯ
x− ϭ

− ϭ/Ϯ
x+ ϭ

.

Thus

∫
ϭ

xϮ − ϭ
dx =

∫
ϭ/Ϯ
x− ϭ

dx−
∫

ϭ/Ϯ
x+ ϭ

dx

=
ϭ
Ϯ
ln |x− ϭ| − ϭ

Ϯ
ln |x+ ϭ|+ C.

This secƟon teaches how to decompose

ϭ
xϮ − ϭ

into
ϭ/Ϯ
x− ϭ

− ϭ/Ϯ
x+ ϭ

.

We start with a raƟonal funcƟon f(x) = p(x)
q(x) , where p and q do not have any

common factors and the degree of p is less than the degree of q. It can be shown
that any polynomial, and hence q, can be factored into a product of linear and
irreducible quadraƟc terms. The following Key Idea states how to decompose a
raƟonal funcƟon into a sum of raƟonal funcƟons whose denominators are all of
lower degree than q.

Note  If the degree of the numerator is greater than or equal to that of the
denominator, divide. 

Understand this material and be 
able to work simple examples.
It is important to understand 
that now, in theory, you can 
integrate about any rational 
function.
Big people use a CAS for these 
problems.

Example      

x4

x2+ 1

=  x3 - 1 +
x2

1
+ 1  polynomial division

So

∫
x2

x
+

4

1 dx

=  ∫x3 - 1 + 1
x2+ 1 dx

= x

4
4

- x + arctan x + C
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Key Idea 7.ϱ.ϭ ParƟal FracƟon DecomposiƟon

Let
p(x)
q(x)

be a raƟonal funcƟon, where the degree of p is less than the

degree of q.

ϭ. Linear Terms: Let (x−a) divide q(x), where (x−a)n is the highest
power of (x−a) that divides q(x). Then the decomposiƟon of p(x)

q(x)
will contain the sum

Aϭ

(x− a)
+

AϮ

(x− a)Ϯ
+ · · ·+ An

(x− a)n
.

Ϯ. QuadraƟc Terms: Let xϮ+bx+ c divide q(x), where (xϮ+bx+ c)n
is the highest power of xϮ + bx + c that divides q(x). Then the
decomposiƟon of p(x)

q(x) will contain the sum

Bϭx+ Cϭ
xϮ + bx+ c

+
BϮx+ CϮ

(xϮ + bx+ c)Ϯ
+ · · ·+ Bnx+ Cn

(xϮ + bx+ c)n
.

To find the coefficients Ai, Bi and Ci:

ϭ. MulƟply all fracƟons by q(x), clearing the denominators. Collect
like terms.

Ϯ. Equate the resulƟng coefficients of the powers of x and solve the
resulƟng system of linear equaƟons.

The following examples will demonstrate how to put this Key Idea into 
prac-Ɵce. Example 7.ϱ.ϭ stresses the decomposiƟon aspect of the Key Idea.

Decomposing into parƟal fracƟonsExample 7.ϱ.ϭ 

Decompose f(x) = ϭ
(x+ ϱ)(x− Ϯ)ϯ(xϮ + x+ Ϯ)(xϮ + x+ ϳ)Ϯ

without solving

for the resulƟng coefficients.

SÊ½çã®ÊÄ The denominator is already factored, as both xϮ + x + Ϯ and 
xϮ + x + ϳ cannot be factored further. We need to decompose f(x) properly. 
Since (x + ϱ) is a linear term that divides the denominator, there will be a

A
x+ ϱ

Example   ∫
x2
x

+

4

1
x4

x2+ 1 =  x2 - 1 + 
x2

1
+ 1

dx

         By polynomial division   

=  ∫ x2 - 1 +
x2

1 dx

3

+ 1

=  x
3

 -- x + arctan x + C
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term in the decomposiƟon.
As (x− Ϯ)ϯ divides the denominator, we will have the following terms in the

decomposiƟon:
B

x− Ϯ
,

C
(x− Ϯ)Ϯ

and
D

(x− Ϯ)ϯ
.

The xϮ + x+ Ϯ term in the denominator results in a
Ex+ F

xϮ + x+ Ϯ
term.

Finally, the (xϮ + x+ ϳ)Ϯ term results in the terms

Gx+ H
xϮ + x+ ϳ

and
Ix+ J

(xϮ + x+ ϳ)Ϯ
.

All together, we have

ϭ
(x+ ϱ)(x− Ϯ)ϯ(xϮ + x+ Ϯ)(xϮ + x+ ϳ)Ϯ

=
A

x+ ϱ
+

B
x− Ϯ

+
C

(x− Ϯ)Ϯ
+

D
(x− Ϯ)ϯ

+

Ex+ F
xϮ + x+ Ϯ

+
Gx+ H

xϮ + x+ ϳ
+

Ix+ J
(xϮ + x+ ϳ)Ϯ

Solving for the coefficients A, B . . . J would be a bit tedious but not “hard.”

Example 7.ϱ.Ϯ Decomposing into parƟal fracƟons
Perform the parƟal fracƟon decomposiƟon of

ϭ
xϮ − ϭ

.

SÊ½çã®ÊÄ The denominator factors into two linear terms: xϮ − ϭ =
(x− ϭ)(x+ ϭ). Thus

ϭ
xϮ − ϭ

=
A

x− ϭ
+

B
x+ ϭ

.

To solve for A and B, first mulƟply through by xϮ − ϭ = (x− ϭ)(x+ ϭ):

ϭ =
A(x− ϭ)(x+ ϭ)

x− ϭ
+

B(x− ϭ)(x+ ϭ)
x+ ϭ

= A(x+ ϭ) + B(x− ϭ)
= Ax+ A+ Bx− B

Now collect like terms.

= (A+ B)x+ (A− B).

The next step is key. Note the equality we have:

ϭ = (A+ B)x+ (A− B).
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Note: EquaƟon7.ϯ offers a direct route to 
finding the values of A, B and C. Since the 
equaƟon holds for all values of x, it holds 
in parƟcular when x = ϭ. However, when 
x = ϭ, the right hand side simplifies to 
A(ϭ + Ϯ)Ϯ = ϵA. Since the leŌ hand side 
is sƟll ϭ, we have ϭ = ϵA. Hence A = ϭ/ϵ. 
Likewise, the equality holds when x =
−Ϯ; this leads to the equaƟon ϭ = −ϯC.
Thus C = −ϭ/ϯ.
Knowing A and C, we can find the value of
B by choosing yet another value of x, such
as x = Ϭ, and solving for B.

Techniques of AnƟdifferenƟaƟon

For clarity’s sake, rewrite the leŌ hand side as

Ϭx+ ϭ = (A+ B)x+ (A− B).

On the leŌ, the coefficient of the x term is Ϭ; on the right, it is (A + B). Since
both sides are equal, we must have that Ϭ = A+ B.

Likewise, on the leŌ, we have a constant term of ϭ; on the right, the constant
term is (A− B). Therefore we have ϭ = A− B.

We have two linear equaƟons with two unknowns. This one is easy to solve
by hand, leading to

A+ B = Ϭ
A− B = ϭ ⇒ A = ϭ/Ϯ

B = −ϭ/Ϯ .

Thus
ϭ

xϮ − ϭ
=

ϭ/Ϯ
x− ϭ

− ϭ/Ϯ
x+ ϭ

.

Example ϲ.ϱ.ϯ IntegraƟng using parƟal fracƟons
Use parƟal fracƟon decomposiƟon to integrate

∫
ϭ

(x− ϭ)(x+ Ϯ)Ϯ
dx.

SÊ½çã®ÊÄ Wedecompose the integrand as follows, as described by Key
Idea 7.ϱ.ϭ:

ϭ
(x− ϭ)(x+ Ϯ)Ϯ

=
A

x− ϭ
+

B
x+ Ϯ

+
C

(x+ Ϯ)Ϯ
.

To solve for A, B and C, we mulƟply both sides by (x− ϭ)(x+ Ϯ)Ϯ and collect like
terms:

ϭ = A(x+ Ϯ)Ϯ + B(x− ϭ)(x+ Ϯ) + C(x− ϭ) (7.ϯ)
= AxϮ + ϰAx+ ϰA+ BxϮ + Bx− ϮB+ Cx− C
= (A+ B)xϮ + (ϰA+ B+ C)x+ (ϰA− ϮB− C)

We have

ϬxϮ + Ϭx+ ϭ = (A+ B)xϮ + (ϰA+ B+ C)x+ (ϰA− ϮB− C)

leading to the equaƟons

A+ B = Ϭ, ϰA+ B+ C = Ϭ and ϰA− ϮB− C = ϭ.

These three equaƟons of three unknowns lead to a unique soluƟon:

A = ϭ/ϵ, B = −ϭ/ϵ and C = −ϭ/ϯ.

■7.
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Note: The values of A and B can be quickly 
found using the technique described in 
the margin of Example 7.ϱ.ϯ.

Thus
∫

ϭ
(x− ϭ)(x+ Ϯ)Ϯ

dx =
∫

ϭ/ϵ
x− ϭ

dx+
∫ −ϭ/ϵ

x+ Ϯ
dx+

∫ −ϭ/ϯ
(x+ Ϯ)Ϯ

dx.

Each can be integrated with a simple subsƟtuƟonwith u = x−ϭ or u = x+Ϯ
(or by directly applying Key Idea ϲ.ϭ.ϭ as the denominators are linear funcƟons).
The end result is

∫
ϭ

(x− ϭ)(x+ Ϯ)Ϯ
dx =

ϭ
ϵ
ln |x− ϭ| − ϭ

ϵ
ln |x+ Ϯ|+ ϭ

ϯ(x+ Ϯ)
+ C.

Example 7.ϱ.ϰ IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to integrate
∫

xϯ

(x− ϱ)(x+ ϯ)
dx.

SÊ½çã®ÊÄ Key Idea 7.ϱ.ϭ presumes that the degree of the numerator 
is less than the degree of the denominator. Since this is not the case here, we 
begin by using polynomial division to reduce the degree of the numerator. We 
omit the steps, but encourage the reader to verify that

xϯ

(x− ϱ)(x+ ϯ)
= x+ Ϯ+

ϭϵx+ ϯϬ
(x− ϱ)(x+ ϯ)

.

Using Key Idea ϲ.ϱ.ϭ, we can rewrite the new raƟonal funcƟon as:

ϭϵx+ ϯϬ
(x− ϱ)(x+ ϯ)

=
A

x− ϱ
+

B
x+ ϯ

for appropriate values of A and B. Clearing denominators, we have

ϭϵx+ ϯϬ = A(x+ ϯ) + B(x− ϱ)
= (A+ B)x+ (ϯA− ϱB).

This implies that:

ϭϵ = A+ B
ϯϬ = ϯA− ϱB.

Solving this system of linear equaƟons gives

ϭϮϱ/ϴ = A
Ϯϳ/ϴ = B.
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We can now integrate.
∫

xϯ

(x− ϱ)(x+ ϯ)
dx =

∫ (

x+ Ϯ+
ϭϮϱ/ϴ
x− ϱ

+
Ϯϳ/ϴ
x+ ϯ

)

dx

=
xϮ

Ϯ
+ Ϯx+

ϭϮϱ
ϴ

ln |x− ϱ|+ Ϯϳ
ϴ

ln |x+ ϯ|+ C.

Example 7.ϱ.ϱ IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to evaluate
∫

ϳxϮ + ϯϭx+ ϱϰ
(x+ ϭ)(xϮ + ϲx+ ϭϭ)

dx.

SÊ½çã®ÊÄ The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea ϲ.ϱ.ϭ. We have:

ϳxϮ + ϯϭx+ ϱϰ
(x+ ϭ)(xϮ + ϲx+ ϭϭ)

=
A

x+ ϭ
+

Bx+ C
xϮ + ϲx+ ϭϭ

.

Now clear the denominators.

ϳxϮ + ϯϭx+ ϱϰ = A(xϮ + ϲx+ ϭϭ) + (Bx+ C)(x+ ϭ)
= (A+ B)xϮ + (ϲA+ B+ C)x+ (ϭϭA+ C).

This implies that:

ϳ = A+ B
ϯϭ = ϲA+ B+ C
ϱϰ = ϭϭA+ C.

Solving this system of linear equaƟons gives the nice result of A = ϱ, B = Ϯ and
C = −ϭ. Thus

∫
ϳxϮ + ϯϭx+ ϱϰ

(x+ ϭ)(xϮ + ϲx+ ϭϭ)
dx =

∫ (
ϱ

x+ ϭ
+

Ϯx− ϭ
xϮ + ϲx+ ϭϭ

)

dx.

The first termof this new integrand is easy to evaluate; it leads to a ϱ ln |x+ϭ|
term. The second term is not hard, but takes several steps and uses subsƟtuƟon
techniques.

The integrand
Ϯx− ϭ

xϮ + ϲx+ ϭϭ
has a quadraƟc in the denominator and a linear

term in the numerator. This leads us to try subsƟtuƟon. Let u = xϮ+ϲx+ϭϭ, so
du = (Ϯx+ ϲ) dx. The numerator is Ϯx− ϭ, not Ϯx+ ϲ, but we can get a Ϯx+ ϲ
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term in the numerator by adding Ϭ in the form of “ϳ− ϳ.”

Ϯx− ϭ
xϮ + ϲx+ ϭϭ

=
Ϯx− ϭ+ ϳ− ϳ
xϮ + ϲx+ ϭϭ

=
Ϯx+ ϲ

xϮ + ϲx+ ϭϭ
− ϳ

xϮ + ϲx+ ϭϭ
.

Wecannow integrate the first termwith subsƟtuƟon, leading to a ln |xϮ+ϲx+ϭϭ|
term. The final term can be integrated using arctangent. First, complete the
square in the denominator:

ϳ
xϮ + ϲx+ ϭϭ

=
ϳ

(x+ ϯ)Ϯ + Ϯ
.

An anƟderivaƟve of the laƩer term can be found using Theorem ϲ.ϭ.ϯ and sub-
sƟtuƟon: ∫

ϳ
xϮ + ϲx+ ϭϭ

dx =
ϳ√
Ϯ
tan−ϭ

(
x+ ϯ√

Ϯ

)

+ C.

Let’s start at the beginning and put all of the steps together.
∫

ϳxϮ + ϯϭx+ ϱϰ
(x+ ϭ)(xϮ + ϲx+ ϭϭ)

dx =
∫
(

ϱ
x+ ϭ

+
Ϯx− ϭ

xϮ + ϲx+ ϭϭ

)

dx

=

∫

ϱ
x+ ϭ

dx+
∫

Ϯx+ ϲ
xϮ + ϲx+ ϭϭ

dx−
∫

ϳ
xϮ + ϲx+ ϭϭ

dx

= ϱ ln |x+ ϭ|+ ln |xϮ + ϲx+ ϭϭ| − ϳ√
Ϯ
tan−ϭ

(

x+ ϯ√
Ϯ

)

+ C.

As with many other problems in calculus, it is important to remember that one 
is not expected to “see” the final answer immediately aŌer seeing the problem. 
Rather, given the iniƟal problem, we break it down into smaller problems that 
are easier to solve. The final answer is a combinaƟon of the answers of the 
smaller problems.

ParƟal FracƟon DecomposiƟon is an important tool when dealing with raƟo-
nal funcƟons. Note that at its heart, it is a technique of algebra, not calculus, 
as we are rewriƟng a fracƟon in a new form. Regardless, it is very useful in the 
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.
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Exercises
Terms and Concepts
ϭ. Fill in the blank: ParƟal FracƟonDecomposiƟon is amethod

of rewriƟng funcƟons.

Ϯ. T/F: It is someƟmes necessary to use polynomial division
before using ParƟal FracƟon DecomposiƟon.

ϯ. Decompose ϭ
xϮ − ϯx

without solving for the coefficients, as
done in Example ϲ.ϱ.ϭ.

ϰ. Decompose ϳ− x
xϮ − ϵ

without solving for the coefficients, as
done in Example ϲ.ϱ.ϭ.

ϱ. Decompose x− ϯ
xϮ − ϳ

without solving for the coefficients, as
done in Example ϲ.ϱ.ϭ.

ϲ. Decompose Ϯx+ ϱ without solving for the coefficients, asxϯ + ϳx
done in Example 7.ϱ.ϭ.

Problems
In Exercises ϳ – Ϯϲ, evaluate the indefinite integral.

ϳ.
∫

ϳx+ ϳ
xϮ + ϯx− ϭϬ

dx

ϴ.
∫

ϳx− Ϯ
xϮ + x

dx

ϵ.
∫ −ϰ

ϯxϮ − ϭϮ
dx

ϭϬ.
∫

ϲx+ ϰ
ϯxϮ + ϰx+ ϭ

dx

ϭϭ.
∫

x+ ϳ
(x+ ϱ)Ϯ

dx

ϭϮ.
∫ −ϯx− ϮϬ

(x+ ϴ)Ϯ
dx

ϭϯ.
∫

ϵxϮ + ϭϭx+ ϳ
x(x+ ϭ)Ϯ

dx

ϭϰ.
∫ −ϭϮxϮ − x+ ϯϯ

(x− ϭ)(x+ ϯ)(ϯ− Ϯx)
dx

ϭϱ.
∫

ϵϰxϮ − ϭϬx
(ϳx+ ϯ)(ϱx− ϭ)(ϯx− ϭ)

dx

ϭϲ.
∫

xϮ + x+ ϭ
xϮ + x− Ϯ

dx

ϭϳ.
∫

xϯ

xϮ − x− ϮϬ
dx

ϭϴ.
∫

ϮxϮ − ϰx+ ϲ
xϮ − Ϯx+ ϯ

dx

ϭϵ.
∫

ϭ
xϯ + ϮxϮ + ϯx

dx

ϮϬ.
∫

xϮ + x+ ϱ
xϮ + ϰx+ ϭϬ

dx

Ϯϭ.
∫

ϭϮxϮ + Ϯϭx+ ϯ
(x+ ϭ)(ϯxϮ + ϱx− ϭ)

dx

ϮϮ.
∫

ϲxϮ + ϴx− ϰ
(x− ϯ)(xϮ + ϲx+ ϭϬ)

dx

Ϯϯ.
∫

ϮxϮ + x+ ϭ
(x+ ϭ)(xϮ + ϵ)

dx

Ϯϰ.
∫

xϮ − ϮϬx− ϲϵ
(x− ϳ)(xϮ + Ϯx+ ϭϳ)

dx

Ϯϱ.
∫

ϵxϮ − ϲϬx+ ϯϯ
(x− ϵ)(xϮ − Ϯx+ ϭϭ)

dx

Ϯϲ.
∫

ϲxϮ + ϰϱx+ ϭϮϭ
(x+ Ϯ)(xϮ + ϭϬx+ Ϯϳ)

dx

In Exercises Ϯϳ – ϯϬ, evaluate the definite integral.

Ϯϳ.
∫ Ϯ

ϭ

ϴx+ Ϯϭ
(x+ Ϯ)(x+ ϯ)

dx

Ϯϴ.
∫ ϱ

Ϭ

ϭϰx+ ϲ
(ϯx+ Ϯ)(x+ ϰ)

dx

Ϯϵ.
∫ ϭ

−ϭ

xϮ + ϱx− ϱ
(x− ϭϬ)(xϮ + ϰx+ ϱ)

dx

ϯϬ.
∫ ϭ

Ϭ

x
(x+ ϭ)(xϮ + Ϯx+ ϭ)

dx

Do the remaining problems using a CAS or Wolfram Alpha.
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Solutions 7.5
1. raƟonal

2. T

3. A
x + B

x−3

4. A
x−3 + B

x+3

5. A
x−

B√
7
+

x+
√

7

6. A
x + Bx

2+
+C

x 7

7. 3 ln |x− 2|+ 4 ln |x+ 5|+ C

8.

9.

9 ln |x+ 1| − 2 ln |x|+ C
1
3 (ln |x+ 2| − ln |x− 2|) + C

10. ln |x+ 1|+ ln |3x+ 1|+ C

11. ln |x+ 5| − x+
2
5 + C

−12. 4
x+8 − 3 ln |x+ 8|+ C

13. x+
5
1 + 7 ln |x|+ 2 ln |x+ 1|+ C

14.

15. 2
3

− ln |2x− 3|+ 5 ln |x− 1|+ 2 ln |x+ 3|+ C

− 1
5 ln |5x− 1|+ ln |3x− 1|+ 3

7 ln |7 x+ 3|+ C

16.

17.

x+ ln |x− 1| − ln |x+ 2|+ C
x
2
2
+ x+ 9

125 ln |x− 5|+ 9
64 ln |x+ 4| − 2

35 + C

18. 2x+ C

19. 1
6

( ∣ ∣
− ln ∣x2 + 2x+ 3∣+ 2 ln |x| −

√
2 tan−1

(
x+1√

2

))
+ C

−20. 3 ∣∣ ∣∣
2 ln x2 + 4x+ 10 + x+

tan −1
(

x+2√
6

)
√

6
+ C∣ ∣

21. ln ∣3x2 + 5x− 1∣+ 2 ln |x+ 1|+ C

22.

23.
∣∣ ∣∣ x

3

2 ln |x− 3|+ 2 ln |x2 + 6x+ 10| − 4 tan−1(x+ 3) + C( )9
10 ln x2 + 9 + 1

5 ln |x+ 1| − 4
15 tan

−1 + C( ∣ ∣
3 ln ∣x2 + 2x+ 17∣− 4 ln |x− 7|+ tan −1 ( x+1

4
))

24. 1
2

25. 3
( ∣ ∣ )
ln ∣x2 − 2x+ 11∣+ ln |x− 9| + 3

√
2
5 tan

−1
(

x−1√
10

+ C)
∣ ∣1

2 2 tan −1 ( x+5√
2
)

+ C

+ C26. ln ∣x2 + 10x + 27∣ + 5 ln |x + 2| − 6
√

26. ln(2000/243) ≐ 2.108

27. 5 ln(9/4) − ln(17/2) ≐ 3.3413

28. −π/4 + tan−1 3 − ln(11/9) ≐ 0.263

29. 1/8

27.

28.

29.

30.

■
■
■

■
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7.6  Improper Integrals  In the definition of definite integral , ∫ 
b

f(x)dx, it was assumed
a

that the integrand was bounded  (not infinite) on the interval of integration. A lso it was assumed 
that the limits of integration  a  and  b  were real numbers, not the extended reals,  -∞  or  +∞.   

   In applications, these restrictions are unnecessary and undesirable. With one caution*, these 
new type of integrals can be evaluated in the usual way.

a b
X

Y

y = f(x)

*Caution: If f(x) is infinite at an interior point x
of the interval, a < x < b, break up the interval so
that the infinity occurs at endpoints.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 X
5

10

15

20

25

y = 1
x2

Example  Evaluate  ∫-1

1 dx
x2 .

=  - 1
x -1

1

=  - 1
1  - (- 1

-1 )

Normally do not integrate 
across a point where the 
integrand is infinite.

Correct:

∫
-1

1 
x
dx
2  ≈  ∫

-1

0- 

x
dx
2 +  ∫ 0

1
+ x
dx
2

=  - 1
x -1

0- +  - 1
x 0+

1 hyperreal arithmetic

=  (- 1
0- - - 1

-1 ) + (- 1
1 - - 1

0+ )

     =  (+∞ - 1) +  (-1 + ∞)

     =  2(+∞) - 2

     =  +∞.

Note:  We allow  +∞  as an answer because in all applications this answer is meaningful. If this is a 
‘find the area under the curve’ problem, it would cost infinite many  $'s  to buy the paint to coat it.

=  -2.
Wrong!  The answer should be positive since  f(x) > 0  on the interval   -1 ≤ x ≤ 1.
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Type I  Improper Integrals:  infinite limits of integration 
Type II  Improper Integrals:  infinite integrands                
Mixed Type I, Type II  Integrals

Possible Outcomes:
* An extended real number
* Does not exist

Note in your Apex readings that the author uses limit methods. The limit method is more prone 
toward making errors. Hyperreal methods also seem more natural; you work these just like 
you did for 'proper integrals'.

Example  Type I 

0 1 2 3 4
X

11

e
-x

∫ 0

+∞
e-x dx  =  - e-x +∞

0

       =  - e-∞ - (- e0)
      =   0 + 1

       =  1

Example  Type I 

-3 -2 -1 0 1 2 3
X

11

1
x2+ 1

∫ -∞

+∞ dx
x2+ 1

  =   arctan x
-∞

+ ∞

    =   arctan(+∞) - arctan(-∞) 
=  π2  - (-π2 )

  =  π

Example  Mixed Type        

0 1 2 3 4 5
X

1

2

3

4

5
1/x

1 2 3 4 5 6
X

-3

-2

-1

0

1

2

3
ln x

∫
0

+∞ dx
x =  ln x

0 +

+∞

                  =  ln(+∞) - ln(0+) 
                  =  +∞ - (-∞)
                  =  {∞ + ∞}

  =  +∞ 

Exercise  

e
x

↓

cosh x =
ex+ e-x

2

cos x =
e i x+ e- i x

2
↑

∫ -∞  x2+ 1Show that
+∞   x dx

does not exists because it is the indeterminate form {∞ - ∞}.           

} With hyperreal methods, these categories 
are not very relevant. 

Answer: See the front cover or the next page

Use the more natural hyperreal 
notation when doing improper
integrals:

+. 0+  = dx,  dx > 0 
0- = -dx,  dx > 0
a+  = a + 0 ,  etc. +
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.......

0.5

.

1

.
x

.

y

5 10

Figure 7.6.ϭ: Graphing  f(x) =     
1

Improper IntegraƟon
We begin this secƟon by considering the following definite integrals:

•
∫ ϭϬϬ

Ϭ

ϭ
ϭ+ xϮ dx ≐ ϭ.ϱϲϬϴ,

•
∫ ϭϬϬϬ

Ϭ

ϭ
ϭ+ xϮ dx ≐ ϭ.ϱϲϵϴ,

•
∫ ϭϬ,ϬϬϬ

Ϭ

ϭ
ϭ+ xϮ dx ≐ ϭ.ϱϳϬϳ.

NoƟce how the integrand is ϭ/(ϭ + xϮ) in each integral (which is sketched 
in Figure 7.ϴ.ϭ). As the upper bound gets larger, one would expect the “area 
under the curve” would also grow. While the definite integrals do increase in 
value as the upper bound grows, they are not increasing by much. In fact, 
consider:

∫ b

Ϭ

ϭ
ϭ+ xϮ

dx = tan−ϭ x
∣
∣
∣

b

Ϭ
= tan−ϭ b− tan−ϭ Ϭ = tan−ϭ b.

As b → ∞, tan−ϭ b → π/Ϯ. Therefore it seems that as the upper bound b grows,

the value of the definite integral
∫ b

Ϭ

ϭ
ϭ+ xϮ dx approaches π/Ϯ ≐ ϭ.ϱϳϬϴ. This

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

Whenwe defined the definite integral
∫ b

a
f(x) dx, wemade two sƟpulaƟons:

ϭ. The interval over which we integrated, [a, b], was a finite interval, and

Ϯ. The funcƟon f(x) was conƟnuous on [a, b] (ensuring that the range of f
was finite).

In this secƟon we consider integrals where one or both of the above condiƟons do not hold. 
Such integrals are called improper integrals.
c                                                                                                                                                                                                     
c
Note: when using hyperreal methods, the only time you should break up the interval of 
integration is when the the integrand has an infinite value in the interior of the interval 
of integration.
c 
NOTE   In a previous example we saw that

x dx
= {∞ - ∞},indeterminate. The integral does not exist.

-10 -5 5 X

x

x
2 +

1
 1

∫-∞
+∞  

1 + x2

10

1 + x 2

One might think that, by symmetry about the origin, 
the answer should be  0. But we always agree that this 
integral does not exist. In applications this agreement 
also often makes sense. Think about why this is true.

Nevertheless, in some advanced applications, there is a 
variation called the Cauchy Principal Value of the integral
which in this case is  0. In this course we will not allow it.
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.....

f(x) =
ϭ
xϮ

. ϭ. 5. ϭϬ.

Ϭ.5

.

ϭ

.
x

.

y

x
ϭ
Ϯ Figure 7.6.Ϯ: A graph of f(x) =    in Ex-

ample 7.6.ϭ.

Improper Integrals with Infinite Bounds

DefiniƟon 7.6.ϭ Improper Integrals with Infinite Bounds; Converge,
Diverge

ϭ. Let f be a conƟnuous funcƟon on [a,∞). Define
∫ ∞

a
f(x) dx to be lim

b→∞

∫ b

a
f(x) dx.

Ϯ. Let f be a conƟnuous funcƟon on (−∞, b]. Define
∫ b

−∞
f(x) dx to be lim

a→−∞

∫ b

a
f(x) dx.

ϯ. Let f be a conƟnuous funcƟon on (−∞,∞). Let c be any real num-
ber; define
∫ ∞

−∞
f(x) dx to be lim

a→−∞

∫ c

a
f(x) dx + lim

b→∞

∫ b

c
f(x) dx.

An improper integral is said to converge if its corresponding limit exists;
otherwise, it diverges. The improper integral in part ϯ converges if and
only if both of its limits exist.

Example 7.6.ϭ EvaluaƟng improper integrals
Evaluate the following improper integrals.

ϭ.
∫ ∞

ϭ

ϭ
xϮ

dx

Ϯ.
∫ ∞

ϭ

ϭ
x
dx

ϯ.
∫ Ϭ

−∞
ex dx

ϰ.
∫ ∞

−∞

ϭ
ϭ+ xϮ

dx

SÊ½çã®ÊÄ

ϭ.
∫ ∞

ϭ

ϭ
xϮ

dx = lim
b→∞

∫ b

ϭ

ϭ
xϮ

dx = lim
b→∞

−ϭ
x

∣
∣
∣

b

ϭ

= lim
b→∞

−ϭ
b

+ ϭ

= ϭ.

A graph of the area defined by this integral is given in Figure 7.6.Ϯ.

Limit Talk.
Grain of salt material.

-

We prefer not to use the
term 'improper'.
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Example  ∫0

+∞sin  x dx  does not exist because the answer depends on the positive infinite number  X.

X
X

-1

1

sin x

⋯
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f(x) =
1
x

. 1. 5. 10.

0.5

.

1

.
x

.

y

ϭ
xFigure 7.6.ϯ: A graph of f(x) = 

in Example 7.6.ϭ.

.....

f(x) = ex

. −1. −5. −10.

1

.
x

.

y

Figure 7.6.ϰ: A graph of f(x) = ex
in Ex-ample 7.6.ϭ.

.....

f(x) =
ϭ

ϭ + xϮ

.
−ϭϬ

.
−5

.
5

.
ϭϬ

.

ϭ

.

x

.

y

Figure 7.6.ϱ: A graph of f(x) = ϭ
ϭ+xϮ in

Example 7.6.ϭ.

Ϯ.
∫ ∞

ϭ

ϭ
x
dx = lim

b→∞

∫ b

ϭ

ϭ
x
dx

= lim
b→∞

ln |x|
∣
∣
∣

b

ϭ

= lim
b→∞

ln(b)

= +∞.

The limit does not exist, hence the improper integral
∫ ∞

ϭ

ϭ
x
dx diverges.

Compare the graphs in Figures 7.6.Ϯ and 7.6.ϯ; noƟce how the graph of 
f(x) = ϭ/x is noƟceably larger. This difference is enough to cause the 
improper integral to diverge.

ϯ.
∫ Ϭ

−∞
ex dx = lim

a→−∞

∫ Ϭ

a
ex dx

= lim
a→−∞

ex
∣
∣
∣

Ϭ

a

= lim
a→−∞

eϬ − ea

= ϭ.
A graph of the area defined by this integral is given in Figure 7.6.ϰ.

ϰ. We will need to break this into two improper integrals and choose a value 
of c as in part ϯ of DefiniƟon 7.6.ϭ. Any value of c is fine; we choose c = Ϭ.

∫ ∞

−∞

ϭ
ϭ+ xϮ

dx = lim
a→−∞

∫ Ϭ

a

ϭ
ϭ+ xϮ

dx+ lim
b→∞

∫ b

Ϭ

ϭ
ϭ+ xϮ

dx

= lim
a→−∞

tan−ϭ x
∣
∣
∣

Ϭ

a
+ lim

b→∞
tan−ϭ x

∣
∣
∣

b

Ϭ

= lim
a→−∞

(
tan−ϭ Ϭ− tan−ϭ a

)
+ lim

b→∞

(
tan−ϭ b− tan−ϭ Ϭ

)

=

(

Ϭ− −π

Ϯ

)

+
(π

Ϯ
− Ϭ
)

.

Each limit exists, hence the original integral converges and has value:

= π.

A graph of the area defined by this integral is given in Figure 7.6.ϱ.

∫
-∞

+∞ dx
x2+1  =  arctan x -

+
∞
∞ =  arctan(+∞) - arctan(-∞)  =  π2  - (-π2   =  π

Hyperreally

-20 -10 X

π
2

arctan x

10 20
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f(x) =
ln x
xϮ

.
ϭ

.
5

.
ϭϬ

.

Ϭ.Ϯ

.

Ϭ.4

.

x

.

y

Figure 7.6.ϲ: A graph of f(x) = in Ex-ln
xϮ
x 

ample 7.6.Ϯ.

The previous secƟon introduced l’Hôpital’s Rule, a method of evaluaƟng lim-
its that return indeterminate forms. It is not uncommon for the limits resulƟng
from improper integrals to need this rule as demonstrated next.

ntExample 7.6.Ϯ Improper i egraƟon and l’Hôpital’s Rule
Evaluate the improper integral

∫ ∞

ϭ

ln x
xϮ

dx.

SÊ½çã®ÊÄ This integral will require the use of IntegraƟon by Parts. Let
u = ln x and dv = ϭ/xϮ dx. Then

∫ ∞

ϭ

ln x
xϮ

dx = lim
b→∞

∫ b

ϭ

ln x
xϮ

dx

= lim
b→∞

(

− ln x
x

∣
∣
∣

b

ϭ
+

∫ b

ϭ

ϭ
xϮ

dx

)

= lim
b→∞

(

− ln x
x

− ϭ
x

)∣
∣
∣
∣

b

ϭ

= lim
b→∞

(

− ln b
b

− ϭ
b
− (− ln ϭ− ϭ)

)

.

The ϭ/b and ln ϭ terms go to Ϭ, leaving lim
b→∞

− ln b
b

+ ϭ. We need to evaluate

lim
b→∞

ln b
b

with l’Hôpital’s Rule. We have:

lim
b→∞

ln b
b

by LHR
= lim

b→∞

ϭ/b
ϭ

= Ϭ.

Thus the improper integral evaluates as:

∫ ∞

ϭ

ln x
xϮ

dx = ϭ.

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integraƟon
was infinite. We now consider another type of improper integraƟon, where the
range of the integrand is infinite.

Be aware of this

_
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Note: In DefiniƟon 7.6.Ϯ, c can be one of 
the endpoints (a or b). In that case, there 
is only one limit to consider as part of the 
definiƟon.

.....

f(x) =
1√
x

.
0.5

.
1

.

5

.

10

. x.

y

√
xFigure 7.6.ϳ: A graph of f(x) = ϭ in Ex-

ample 7.6.ϯ.

.....

f(x) =
ϭ
xϮ

.
−ϭ
.

−Ϭ.5
.

Ϭ.5
.

ϭ
.

5

.

ϭϬ

. x.

y

ϭ
Ϯ Figure 7.6.ϴ: A graph of f(x) = x in Ex-

ample 7.6.ϯ.

DefiniƟon 7.6.Ϯ Improper IntegraƟon with Infinite Range

Let f(x) be a conƟnuous funcƟon on [a, b] except at c, a ≤ c ≤ b, where
x = c is a verƟcal asymptote of f. Define

∫ b

a
f(x) dx = lim

t→c−

∫ t

a
f(x) dx+ lim

t→c+

∫ b

t
f(x) dx.

Example 7.6.ϯ Improper integraƟon of funcƟons with infinite range
Evaluate the following improper integrals:

ϭ.
∫ ϭ

Ϭ

ϭ√
x
dx Ϯ.

∫ ϭ

−ϭ

ϭ
xϮ

dx.

SÊ½çã®ÊÄ

ϭ. A graph of f(x) = ϭ/
√
x is given in Figure 7.6.ϳ. NoƟce that f has a verƟcal

asymptote at x = Ϭ; in some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?

∫ ϭ

Ϭ

ϭ√
x
dx = lim

a→Ϭ+

∫ ϭ

a

ϭ√
x
dx

= lim
a→Ϭ+

Ϯ
√
x
∣
∣
∣

ϭ

a

= lim
a→Ϭ+

Ϯ
(√

ϭ−
√
a
)

c  = Ϯ. 

It turns out that the region does have a finite area even though it has no 
upper bound (strange things can occur in mathemaƟcs when considering 
the infinite).

Ϯ. The funcƟon f(x) = ϭ/xϮ has a verƟcal asymptote at x = Ϭ, as shown
in Figure 7.6.ϴ, so this integral is an improper integral. Let’s eschew 
using limits for a moment and proceed without recognizing the improper 
nature of the integral. This leads to:

∫ ϭ

−ϭ

ϭ
xϮ

dx = −ϭ
x

∣
∣
∣

ϭ

−ϭ

= −ϭ− (ϭ)
= −Ϯ. (!)

_

Clearly the area in quesƟon is above the x-axis, yet the area is supposedly 
negaƟve! Why does our answer not match our intuiƟon? To answer this, 
evaluate the integral using DefiniƟon 7.6.Ϯ.

−ϭ

ϭ
xϮ

dx = lim
t→Ϭ− −ϭ

ϭ
xϮ

dx+ lim
t→Ϭ+

∫ ϭ ∫ t ∫ ϭ

t

ϭ
xϮ

dx

= lim
t→Ϭ−

−ϭ
x

∣
∣
∣

t

−ϭ
+

t→
lim
Ϭ+

−
x
ϭ ∣∣
∣

ϭ

t

= lim
(
→t Ϭ−

−
(

t

−
→

ϭ
t
− ϭ+ lim

Ϭ+
−ϭ+

t
ϭ

⇒ ∞− ϭ
)

+ ϭ+∞
)

.

Neither limit converges hence the original improper integral diverges. The 
nonsensical answer we obtained by ignoring the improper nature of the 
integral is just that: nonsensical*.

113

*Actually, the answer, +    , is completely
sensical.
    If this is an area problem, you would not 
be able to afford to buy enough paint to 
cover it.
    If this was a work problem, you could not 
afford to purchase enough energy to do 
the project.

∞
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f(x) =
1
x q

.

f(x) =
1
x p

. p < 1 < q.

1

.

x

.

y

Figure 7.6.ϵ: Ploƫng funcƟons of 
the form ϭ/x p in Example 7.6.ϰ.

Understanding Convergence and Divergence

OŌenƟmes, but not often, we are interested in knowing simply whether or 
not an improper integral converges, and not necessarily the value of a 
convergent integral. We provide here several tools that help determine the 
convergence or divergence of improper integrals without integraƟng.

Our first tool is to understand the behavior of funcƟons of the form
ϭ
xp

.

Be aware of this topic. Read carefully, but don't memorize.

It is good practice not to integrate across an infinite discontinuity. However, this can be done if the 
antiderivative is continuous at the discontinuity of the integrand.

Example  

-3 -2 -1 0 1 2 3
X

1

2

3

4

5

1

x23
f(x) =

Clearly,   ∫
-1
  1 dx

x2/3  =  F(1) - F(-1)  =  3 - (-3)  =  6

-2 -1 1 2 X

-4

-2

2

4

F (x)
an antiderivative

NOTE  The details of finding  F(x)  are somewhat complicated 
and are omitted.

Try it with a CAS or Wolfram Alpha.

Example 6.8.4 a∫ƟonImproper integr of 1/xp

Determine the values of p for which
∞

1

1
xp

dx converges.

SÊ½çã®ÊÄ We begin by integraƟng and then evaluaƟng the limit.∫ ∞

1

1
xp

dx = lim
b→∞

∫ b

1

1
xp

dx

= lim
b→∞

∫ b

1
x−p dx (assume p ≠ 1)

= lim
b→∞

1
−p+ 1

∣∣∣x−p+1
b

= lim
b→∞

1
1− p

( 1

b1−p − 11−p).
When does this limit converge – i.e., when is this limit not ∞? This limit con-
verges precisely when the power of b is less than 0: when 1− p < 0 ⇒ 1 < p.

Lf  p < 1, the integral is +∞.
If  p > 1, the integral is a real number.

_
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Note: We used the upper and 
lower bound of “ϭ” in Key Idea 7.6.ϭ 
for convenience. It can be replaced by 
any a where a > Ϭ.

Our analysis shows that if p > ϭ, then
∫ ∞

ϭ

ϭ
xp

dx converges. When p < ϭ

the improper integral diverges; we showed in Example 7.ϴ.ϭ that when p = ϭ 
the integral also diverges.

Figure 7.6.ϵ graphs y = ϭ/x with a dashed line, along with graphs of y 
= ϭ/xp, p < ϭ, and y = ϭ/xq, q > ϭ. Somehow the dashed line forms a 
dividing line between convergence and divergence.

The result of Example 7.6.ϰ provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ ϭ

Ϭ

ϭ
xp

dx. These results are summarized in the

following Key Idea.

Key Idea 7.6.ϭ Convergence of Improper Integrals
∫ ∞

ϭ

ϭ
xp

dx and
∫ ϭ

Ϭ

ϭ
xp

dx.

ϭ. The improper integral
∫ ∞

ϭ

ϭ
xp

dx converges when p > ϭ and diverges when p ≤ ϭ.

Ϯ. The improper integral
∫ ϭ

Ϭ

ϭ
xp

dx converges when p < ϭ and diverges when p ≥ ϭ.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We oŌen use integrands of the form ϭ/xp to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

Theorem 7.6.ϭ Direct Comparison Test for Improper Integrals 

Let f and g be conƟnuous on [a, ∞) where Ϭ ≤ f(x) ≤ g(x).

ϭ. If
∫ ∞

a
g(x) dx converges, then

∫ ∞

a
f(x) dx converges.

Ϯ. If
∫ ∞

a
f(x) dx diverges, then

∫ ∞

a
g(x) dx diverges.

We do not use the
diverge/converge
terminology.
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f(x) = e−xϮ

.

f(x) =
ϭ
xϮ

. ϭ. Ϯ. ϯ. ϰ.

Ϭ.ϱ

.

ϭ

.
x

.

y

Figure 7.6.ϭϬ: Graphs of f(x) = e−xϮ 

and f(x) = ϭ/xϮ in Example 7.ϴ.ϱ.

.....

f(x) =
ϭ√

xϮ − x

.

f(x) =
ϭ
x

.
Ϯ

.
4

.
6

.

Ϭ.Ϯ

.

Ϭ.4

.

x

.

y

Figure 7.6.ϭϭ: Graphs of f(x) = ϭ/
√
xϮ − x

and f(x) = ϭ/x in Example 7.ϴ.ϱ.

Example 7.6.ϱ Determining convergence of improper integrals
m

ϭ.
∫ ∞

ϭ
e−xϮ dx Ϯ.

Deter ine the convergence of 
∫
the following improper integrals.

∞

ϯ

ϭ√
xϮ − x

dx

on [ϭ, ∞). We know from Key Idea 7.6.ϭ

SÊ½çã®ÊÄ

ϭ. The funcƟon f(x) = e−xϮ does not have an anƟderivaƟve expressible in 

terms of elementary funcƟons, so we cannot integrate directly. It is com-
parable to g(x) = ϭ/xϮ, and as demonstrated in 

∫
Figure 7.6.ϭϬ, e−xϮ 

<  1/x 
∞

ϭ

ϭ
xϮ

dx converges,

hence
∫

∞

ϭ
e−xϮ dx also converges.

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a liƩle
“too nice.” For instance, it was convenient that

ϭ
x
<

ϭ√
xϮ − x

, but what if the

“−x” were replaced with a “+Ϯx+ ϱ”? That is, what can we say about the con-

vergence of
∫ ∞

ϯ

ϭ√
xϮ + Ϯx+ ϱ

dx? We have
ϭ
x
>

ϭ√
xϮ + Ϯx+ ϱ

, so we cannot

use Theorem 7.ϴ.ϭ.
In cases like this (and many more) it is useful to employ the following theo-

rem.

___ __

Ϯ. Note that for large values of x,
ϭ√ ϭ√

xϮ
=

ϭ
x
. We know from Key

∫
∞

ϯ

ϭ
x
dx diverges, so we seekIdea 

xϮ − x

7.6.ϭ and  the subsequent  note that to 

compare the original integrand to 1/x.

It is easy to see that when x > Ϭ, we have x = 
√
xϮ    > 

√
xϮ − x.

reciprocals reverses the inequality, giving

ϭ
x
<

ϭ√
xϮ − x

.

∞ ϭ
x
dxdiverges,

∫ ∞ ϭ
ϯ ϯ

√
xϮ − x

dx
∫

Using Theorem 7.ϴ.ϭ, we conclude that since    

diverges as well. Figure 7.ϴ.ϭϭ illustrates this.

≐

2

-
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.....

f(x) =
ϭ√

xϮ + Ϯx + 5

.

f(x) =
ϭ
x

.
5

.
ϭϬ

.
ϭ5

.
ϮϬ

.

Ϭ.Ϯ

.

x

.

y

ϭ√
xϮ+Ϯx+ϱ

ϭ
x

Figure 7.6.ϭϮ: Graphing f(x) = 

and f(x) = in Example 7.6.ϲ.

Theorem 7.6.Ϯ Limit Comparison Test for Improper Integrals

Let f and g be conƟnuous funcƟons on [a,∞)where f(x) > Ϭ and g(x) >
Ϭ for all x. If

lim
x→∞

f(x)
g(x)

= L, Ϭ < L < ∞,

then ∫ ∞

a
f(x) dx and

∫ ∞

a
g(x) dx

either both converge or both diverge.

Example 7.6.ϲ Determining convergence of improper integrals
Determine the convergence of

∫ ∞

ϯ

ϭ√
xϮ + Ϯx+ ϱ

dx.

SÊ½çã®ÊÄ As x gets large, the denominator of the integrand will begin
to behave much like y = x. So we compare ϭ√

xϮ + Ϯx+ ϱ
to ϭ

x
with the Limit

Comparison Test:

lim
x→∞

ϭ/
√
xϮ + Ϯx+ ϱ
ϭ/x

= lim
x→∞

x√
xϮ + Ϯx+ ϱ

.

The immediate evaluaƟonof this limit returns∞/∞, an indeterminate form.
Using l’Hôpital’s Rule seems appropriate, but in this situaƟon, it does not lead
to useful results. (We encourage the reader to employ l’Hôpital’s Rule at least
once to verify this.)

The trouble is the square root funcƟon. To get rid of it, we employ the fol-
lowing fact: If lim

x→c
f(x) = L, then lim

x→c
f(x)Ϯ = LϮ. (This is true when either c or L

is∞.) So we consider now the limit

lim
x→∞

xϮ

xϮ + Ϯx+ ϱ
.

This converges to ϭ, meaning the original limit also converged to ϭ. As x gets
very large, the funcƟon ϭ√

xϮ + Ϯx+ ϱ
looks verymuch like ϭ

x
. Sincewe know that

∫ ∞

ϯ

ϭ
x
dxdiverges, by the Limit Comparison Testwe know that

∫ ∞

ϯ

ϭ√
xϮ + Ϯx+ ϱ

dx

also diverges. Figure 7.6.ϭϮ graphs   f(x) = ϭ/
√
xϮ + Ϯx + ϱ and f(x) = ϭ/x,

il-lustraƟng that as x gets large, the f uncƟons become indisƟnguishable.
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Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a liƩle more difficult to employ,
they are omiƩed from this text.

This chapter has explored many integraƟon techniques. We learned SubsƟ-
tuƟon, which “undoes” the Chain Rule of differenƟaƟon, as well as IntegraƟon
by Parts, which “undoes” the Product Rule. We learned specialized techniques
for handling trigonometric funcƟons and introduced the hyperbolic funcƟons,
which are closely related to the trigonometric funcƟons. All techniques effec-
Ɵvely have this goal in common: rewrite the integrand in a new way so that the
integraƟon step is easier to see and implement.

As stated before, integraƟon is, in general, hard. It is easy to write a funcƟon
whose anƟderivaƟve is impossible to write in terms of elementary funcƟons,
and evenwhen a funcƟon does have an anƟderivaƟve expressible by elementary
funcƟons, it may be really hard to discover what it is. The powerful computer
algebra systemMathemaƟca® has approximately ϭ,ϬϬϬ pages of code dedicated
to integraƟon.

Do not let this difficulty discourage you. There is great value in learning in-
tegraƟon techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximat-
ing the value of integraƟon.

The next chapter stresses the uses of integraƟon. We generally do not find
anƟderivaƟves for anƟderivaƟve’s sake, but rather because they provide the so-
luƟon to some typeof problem. The following chapter introduces us to a number
of different problems whose soluƟon is provided by integraƟon.

Note: The Apex author and most mathematicians use the terminology   
converge or diverge. We prefer the terms exists (as an extended real 
number) or does not exist because of concreteness and applications. In 
applications an infinite answer is always meaningful.

Note: Work a few assigned problem both by the hyperreal method and 
the limit method. See if there are any for which the hyperreal method 
does not apply, but for which the limit method works.
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Exercises 8.6
Terms and Concepts
ϭ. The definite integral was defined with what two sƟpula-

Ɵons?

Ϯ. If lim
b→∞

∫ b

Ϭ
f(x) dx exists, then the integral

∫ ∞

Ϭ
f(x) dx is

said to .

ϯ. If
∫ ∞

ϭ
f(x) dx = ϭϬ, and Ϭ ≤ g(x) ≤ f(x) for all x, then we

know that
∫ ∞

ϭ
g(x) dx .

ϰ. For what values of p will
∫ ∞

ϭ

ϭ
xp

dx converge?

ϱ. For what values of p will
∫ ∞

ϭϬ

ϭ
xp

dx converge?

ϲ. For what values of p will
∫ ϭ

Ϭ

ϭ
xp

dx converge?

Problems
In Exercises ϳ – ϯϰ, evaluate the given improper integral.

ϳ.
∫ ∞

Ϭ
eϱ−Ϯx dx

ϴ.
∫ ∞

ϭ

ϭ
xϯ

dx

ϵ.
∫ ∞

ϭ
x−ϰ dx

ϭϬ.
∫ ∞

−∞

ϭ
xϮ + ϵ

dx

ϭϭ.
∫ Ϭ

−∞
Ϯx dx

ϭϮ.
∫ Ϭ

−∞

(

ϭ
Ϯ

)x

dx

ϭϯ.
∫ ∞

−∞

x
xϮ + ϭ

dx

ϭϰ.
∫ ∞

ϯ

ϭ
xϮ − ϰ

dx

ϭϱ.
∫ ∞

Ϯ

ϭ
(x− ϭ)Ϯ

dx

ϭϲ.
∫ Ϯ

ϭ

ϭ
(x− ϭ)Ϯ

dx

ϭϳ.
∫ ∞

Ϯ

ϭ
x− ϭ

dx

ϭϴ.
∫ Ϯ

ϭ

ϭ
x− ϭ

dx

ϭϵ.
∫ ϭ

−ϭ

ϭ
x
dx

ϮϬ.
∫ ϯ

ϭ

ϭ
x− Ϯ

dx

Ϯϭ.
∫ π

Ϭ
secϮ x dx

ϮϮ.
∫ ϭ

−Ϯ

ϭ
√

|x|
dx

Ϯϯ.
∫ ∞

Ϭ
xe−x dx

Ϯϰ.
∫ ∞

Ϭ
xe−xϮ dx

Ϯϱ.
∫ ∞

−∞
xe−xϮ dx

Ϯϲ.
∫ ∞

−∞

ϭ
ex + e−x dx

Ϯϳ.
∫ ϭ

Ϭ
x ln x dx

Ϯϴ.
∫ ϭ

Ϭ
xϮ ln x dx

Ϯϵ.
∫ ∞

ϭ

ln x
x

dx

ϯϬ.
∫ ϭ

Ϭ
ln x dx

ϯϭ.
∫ ∞

ϭ

ln x
xϮ

dx

ϯϮ.
∫ ∞

ϭ

ln x√
x
dx

ϯϯ.
∫ ∞

Ϭ
e−x sin x dx

ϯϰ.
∫ ∞

Ϭ
e−x cos x dx
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In Exercises ϯϱ – ϰϰ, use the Direct Comparison Test or the
Limit Comparison Test to determine whether the given def-
inite integral converges or diverges. Clearly state what test
is being used and what funcƟon the integrand is being com-
pared to.

ϯϱ.
∫ ∞

ϭϬ

ϯ√
ϯxϮ + Ϯx− ϱ

dx

ϯϲ.
∫ ∞

Ϯ

ϰ√
ϳxϯ − x

dx

ϯϳ.
∫ ∞

Ϭ

√
x+ ϯ√

xϯ − xϮ + x+ ϭ
dx

ϯϴ.
∫ ∞

ϭ
e−x ln x dx

ϯϵ.
∫ ∞

ϱ
e−xϮ+ϯx+ϭ dx

ϰϬ.
∫ ∞

Ϭ

√
x

ex
dx

ϰϭ.
∫ ∞

Ϯ

ϭ
xϮ + sin x

dx

ϰϮ.
∫ ∞

Ϭ

x
xϮ + cos x

dx

ϰϯ.
∫ ∞

Ϭ

ϭ
x+ ex

dx

ϰϰ.
∫ ∞

Ϭ

ϭ
ex − x

dx

Solutions 7.7
1. 0/0,∞/∞, 0 · ∞,∞−∞, 00, 1∞,∞0

2. F

3. F

4. The base of an expression is approaching 1 while its power is
growing without bound.

5. derivaƟves; limits

6. Answers will vary.

7. Answers will vary.

8. Answers will vary.

9. 3

10. −5/3

11. −1

−12.
√
2/2

13. 5

14. 0

15. 2/3

16. a/b

17. ∞

18. 1/2

19. 0

20. 0

21. 0

22. ∞

23. ∞

24. ∞

25. 0

26. 2

27. −2

28. 0

29. 0

30. 0

31. 0

32. 0

33. ∞

34. ∞

35. ∞

36. 0

37. 0

38. e

39. 1

40. 1

41. 1

42. 1

43. 1

44. 0

45. 1

46. 1

47. 1

48. 1

49. 2

50. 1/2

51. −∞

52. 1

53. 0

54. 3
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.

y

(c)

Figure 7.7.ϭ: Graphically represenƟng 
three definite integrals that cannot be 
evaluated using anƟderivaƟves.

7.7  Numerical IntegraƟon
The Fundamental Theorem of Calculus gives a concrete technique for finding 
the exact value of a definite integral. That technique is based on compuƟng an-
ƟderivaƟves. Despite the power of this theorem, there are sƟll situaƟons where 
we must approximate the value of the definite integral instead of finding its ex-
act value. The first situaƟon we explore is where we cannot compute the an-
ƟderivaƟve of the integrand. The second case is when we actually do not know 
the funcƟon in the integrand, but only its value when evaluated at certain points.

An elementary funcƟon is any funcƟon that is a combinaƟon of polynomial, 
nth root, raƟonal, exponenƟal, logarithmic and trigonometric funcƟons. We can 
compute the derivaƟve of any elementary funcƟon, but there are many elemen-
tary funcƟons of which we cannot compute an anƟderivaƟve. For example, the 
following funcƟons do not have anƟderivaƟves that we can express with ele-
mentary funcƟons:

e−xϮ , sin(xϯ) and
sin x
x

.

The simplest way to refer to the anƟderivaƟves of e−xϮ is to simply write
∫
e−xϮ dx.
This secƟon outlines three common methods of approximaƟng the value of

definite integrals. We describe each as a systemaƟc method of approximaƟng
area under a curve. By approximaƟng this area accurately, we find an accurate
approximaƟon of the corresponding definite integral.

We will apply the methods we learn in this secƟon to the following definite
integrals:

∫ ϭ

Ϭ
e−xϮ dx,

∫ π
Ϯ

− π
ϰ

sin(xϯ) dx, and
∫ ϰπ

Ϭ.ϱ

sin(x)
x

dx,

as pictured in Figure 7.7.ϭ.

The LeŌ and Right Hand Rule Methods  Earlier we addressed the 
problem of evaluaƟng definite integrals by approximaƟng the area under the 
curve using rectangles. We revisit those ideas here before introducing other 
methods of approximaƟng definite integrals.

We start with a review of notaƟon. Let f be a conƟnuous funcƟon on the

interval [a, b]. We wish to approximate
∫ b

a
f(x) dx. We parƟƟon [a, b] into n

equally spaced subintervals, each of length∆x =
b− a
n

. The endpoints of these
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y = e−xϮ

. Ϭ.Ϯ. Ϭ.ϰ. Ϭ.ϲ. Ϭ.8. ϭ.

Ϭ.ϱ

.

ϭ
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y
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y = e−xϮ

. Ϭ.Ϯ. Ϭ.ϰ. Ϭ.ϲ. Ϭ.8. ϭ.

Ϭ.ϱ

.

ϭ

.
x

.

y

∫ ϭ
Ϭ e−xϮ dx in

(b)

Figure 7.7.Ϯ: ApproximaƟng 
Example 7.7.ϭ.

subintervals are labeled as

xϭ = a, xϮ = a+∆x, xϯ = a+ Ϯ∆x, . . . , xi = a+ (i− ϭ)∆x, . . . , xn+ϭ = b.

Key Idea ϱ.ϯ.ϭ states that to use the LeŌ Hand Rule we use the summaƟon
n∑

i=ϭ
f(xi)∆x and to use the Right Hand Rule we use

n∑

i=ϭ
f(xi+ϭ)∆x. We review

the use of these rules in the context of examples.

Example 7.7.ϭ ApproximaƟng definite integrals with rectangles

Approximate
∫ ϭ

Ϭ
e−xϮ dx using the LeŌ and Right Hand Rules with ϱ equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by parƟƟoning the interval [Ϭ, ϭ] into ϱ equally
spaced intervals. We have∆x = ϭ−Ϭ

ϱ = ϭ/ϱ = Ϭ.Ϯ, so

xϭ = Ϭ, xϮ = Ϭ.Ϯ, xϯ = Ϭ.ϰ, xϰ = Ϭ.ϲ, xϱ = Ϭ.ϴ, and xϲ = ϭ.

Using the LeŌ Hand Rule, we have:

n∑

i=ϭ
f(xi)∆x =

(
f(xϭ) + f(xϮ) + f(xϯ) + f(xϰ) + f(xϱ)

)
∆x

=
(
f(Ϭ) + f(Ϭ.Ϯ) + f(Ϭ.ϰ) + f(Ϭ.ϲ) + f(Ϭ.ϴ)

)
∆x

≐
(
ϭ+ Ϭ.ϵϲϭ+ Ϭ.ϴϱϮ+ Ϭ.ϲϵϴ+ Ϭ.ϱϮϳ)(Ϭ.Ϯ)

≐ Ϭ.ϴϬϴ.

Using the Right Hand Rule, we have:

n∑

i=ϭ
f(xi+ϭ)∆x =

(
f(xϮ) + f(xϯ) + f(xϰ) + f(xϱ) + f(xϲ)

)
∆x

=
(
f(Ϭ.Ϯ) + f(Ϭ.ϰ) + f(Ϭ.ϲ) + f(Ϭ.ϴ) + f(ϭ)

)
∆x

≐
(
Ϭ.ϵϲϭ+ Ϭ.ϴϱϮ+ Ϭ.ϲϵϴ+ Ϭ.ϱϮϳ+ Ϭ.ϯϲϴ)(Ϭ.Ϯ)

≐ Ϭ.ϲϴϭ.

Figure 7.7.Ϯ shows the rectangles used in each method to approximate the 
definite integral. These graphs show that in this parƟcular case, the LeŌ Hand 
Rule is an over approximaƟon and the Right Hand Rule is an 
under approximaƟon. To get a beƩer approximaƟon, we could use more 
rectangles, as we did
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xi Exact Approx. sin(xϯi )
xϭ −π/ϰ −Ϭ.ϳϴϱ −Ϭ.ϰϲϲ
xϮ −ϳπ/ϰϬ −Ϭ.ϱϱϬ −Ϭ.ϭϲϱ
xϯ −π/ϭϬ −Ϭ.ϯϭϰ −Ϭ.Ϭϯϭ
xϰ −π/ϰϬ −Ϭ.Ϭϳϴϱ Ϭ
xϱ π/ϮϬ Ϭ.ϭϱϳ Ϭ.ϬϬϰ
xϲ π/ϴ Ϭ.ϯϵϯ Ϭ.Ϭϲϭ
xϳ π/ϱ Ϭ.ϲϮϴ Ϭ.Ϯϰϲ
xϴ ϭϭπ/ϰϬ Ϭ.ϴϲϰ Ϭ.ϲϬϭ
xϵ ϳπ/ϮϬ ϭ.ϭϬ Ϭ.ϵϳϭ
xϭϬ ϭϳπ/ϰϬ ϭ.ϯϰ Ϭ.ϲϵϬ
xϭϭ π/Ϯ ϭ.ϱϳ −Ϭ.ϲϳϬ

π
Ϯ
π
ϰ

Figure 7.7.ϯ: 
∫ Table of values used to

approximate sin(xϯ) dx.
−
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(b)
π

Ϯ
− π

ϰ

∫

Figure 7.7.ϰ   :
ϯ 
ApproximaƟng

sin(x ) dx in Example 7.7.Ϯ.

Chapter 7 IntegraƟon

earlier. We could also average the LeŌ and Right Hand Rule results together, 
giving

Ϭ.ϴϬϴ+ Ϭ.ϲϴϭ
Ϯ

= Ϭ.ϳϰϰϱ.

SÊ½çã®ÊÄ We begin by finding∆x:

b− a
n

=
π/Ϯ− (−π/ϰ)

ϭϬ
=

ϯπ
≐ Ϭ.Ϯϯϲ.

LeŌ Hand Rule:
π
Ϯ

− π
ϰ

sin(xϯ) dx ≐ (ϭ.ϵϭ)(Ϭ.Ϯϯϲ) = Ϭ.ϰϱϭ.

Right Hand Rule:
∫ π

Ϯ

− π
ϰ

sin(xϯ) dx ≐ (ϭ.ϳϭ)(Ϭ.Ϯϯϲ) = Ϭ.ϰϬϰ.

Average of the LeŌ and Right Hand Rules: Ϭ.ϰϮϳϱ.
The actual answer, accurate to ϯ places aŌer the decimal, is Ϭ.ϰϲϬ. Our ap-

proximaƟons were once again fairly good. The rectangles used in each approx-
imaƟon are shown in Figure 7.7.ϰ. It is clear from the graphs that using more 
rectangles (and hence, narrower rectangles) should result in a more accurate 
approximaƟon.

The Trapezoidal Rule

In Example 7.7.ϭ we approximated the value of
∫ ϭ

Ϭ
e−xϮ dxwith ϱ rectangles

of equal width. Figure 7.7.Ϯ shows the rectangles used in the LeŌ and Right

40

It is useful to write out the endpoints of the subintervals in a table; in Figure 
7.7.ϯ, we give the exact values of the endpoints, their decimal approximaƟons, 
and decimal approximaƟons of sin(xϯ) evaluated at these points.

Once this table is created, it is straighƞorward to approximate the definite 
integral using the LeŌ and Right Hand Rules. (Note: the table itself is easy to 
create, especially with a standard spreadsheet program on a computer. The 
last two columns are all that are needed.) The LeŌ Hand Rule sums the first ϭϬ 
values  iof sin  x ) and mulƟplies the sum by ∆x ; the Right Hand Rule sums the 
last ϭϬ.

3   
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Figure 7.7.ϱ: ApproximaƟng
∫ ϭ
Ϭ e−xϮ dx

using ϱ trapezoids of equal widths.

..
a
.

b

.
h

.

Area = a+b
2 h

Figure 7.7.ϲ: The area of a trapezoid.

xi e−xϮi

Ϭ ϭ
Ϭ.Ϯ Ϭ.ϵϲϭ
Ϭ.ϰ Ϭ.ϴϱϮ
Ϭ.ϲ Ϭ.ϲϵϴ
Ϭ.ϴ Ϭ.ϱϮϳ
ϭ Ϭ.ϯϲϴ

Figure 7.7ϳ: A table of values of e−xϮ 
.

Hand Rules. These graphs clearly show that rectangles do not match the shape
of the graph all that well, and that accurate approximaƟons will only come by
using lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure ϱ.ϱ.ϱ, we show the region under f(x) = e−xϮ on [Ϭ, ϭ]
approximated with ϱ trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a beƩer
approximaƟon of

∫ ϭ
Ϭ e−xϮ dx. (In fact, these trapezoids seem to give a great ap-

proximaƟon of the area!)
The formula for the area of a trapezoid is given in Figure ϱ.ϱ.ϲ. We approxi-

mate
∫ ϭ
Ϭ e−xϮ dx with these trapezoids in the following example.

Example 7.7.ϯ ApproximaƟng definite integrals using trapezoids

Use ϱ trapezoids of equal width to approximate
∫ ϭ

Ϭ
e−xϮ dx.

SÊ½çã®ÊÄ To compute the areas of the ϱ trapezoids in Figure ϱ.ϱ.ϱ, it
will again be useful to create a table of values as shown in Figure ϱ.ϱ.ϳ.

The leŌmost trapezoid has legs of length ϭ and Ϭ.ϵϲϭ and a height of Ϭ.Ϯ.
Thus, by our formula, the area of the leŌmost trapezoid is:

ϭ+ Ϭ.ϵϲϭ
Ϯ

(Ϭ.Ϯ) = Ϭ.ϭϵϲϭ.

Moving right, the next trapezoid has legs of length Ϭ.ϵϲϭ and Ϭ.ϴϱϮ and a height
of Ϭ.Ϯ. Thus its area is:

Ϭ.ϵϲϭ+ Ϭ.ϴϱϮ
Ϯ

(Ϭ.Ϯ) = Ϭ.ϭϴϭϯ.

The sum of the areas of all ϱ trapezoids is:

ϭ+ Ϭ.ϵϲϭ
Ϯ

(Ϭ.Ϯ) +
Ϭ.ϵϲϭ+ Ϭ.ϴϱϮ

Ϯ
(Ϭ.Ϯ) +

Ϭ.ϴϱϮ+ Ϭ.ϲϵϴ
Ϯ

(Ϭ.Ϯ)+

Ϭ.ϲϵϴ+ Ϭ.ϱϮϳ
Ϯ

(Ϭ.Ϯ) +
Ϭ.ϱϮϳ+ Ϭ.ϯϲϴ

Ϯ
(Ϭ.Ϯ) = Ϭ.ϳϰϰϱ.

We approximate
∫ ϭ

Ϭ
e−xϮ 

dx ≐ Ϭ.ϳϰϰϱ.

There are many things to observe in this example. Note how each term in
the final summaƟonwasmulƟplied by both ϭ/Ϯ and by∆x = Ϭ.Ϯ. We can factor
these coefficients out, leaving a more concise summaƟon as:
ϭ
Ϯ
(Ϭ.Ϯ)

[

(ϭ+Ϭ.ϵϲϭ)+(Ϭ.ϵϲϭ+Ϭ.ϴϱϮ)+(Ϭ.ϴϱϮ+Ϭ.ϲϵϴ)+(Ϭ.ϲϵϴ+Ϭ.ϱϮϳ)+(Ϭ.ϱϮϳ+Ϭ.ϯϲϴ)
]

.
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Now noƟce that all numbers except for the first and the last are added twice.
Therefore we can write the summaƟon even more concisely as

Ϭ.Ϯ
Ϯ

[

ϭ+ Ϯ(Ϭ.ϵϲϭ+ Ϭ.ϴϱϮ+ Ϭ.ϲϵϴ+ Ϭ.ϱϮϳ) + Ϭ.ϯϲϴ
]

.

This is the heart of the Trapezoidal Rule, wherein a definite integral
∫ b

a
f(x)dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints xϭ,
xϮ, . . ., xn+ϭ, we again have∆x =

b− a
n

. Thus:

∫ b

a
f(x) dx ≈

n∑

i=ϭ

f(xi) + f(xi+ϭ)

Ϯ
∆x

=
∆x
Ϯ

n∑

i=ϭ

(
f(xi) + f(xi+ϭ)

)

=
∆x
Ϯ

[

f(xϭ) + Ϯ
n∑

i=Ϯ
f(xi) + f(xn+ϭ)

]

.

Example 7.7.ϰ Using the Trapezoidal Rule
∫ π

Ϯ

− π
ϰ

sin(xϯ) dx using the Trapezoidal RuleRevisit Example 7.7.Ϯ and approximate 

and ϭϬ equally spaced subintervals.

SÊ½çã®ÊÄ We refer back to Figure 7.7.ϯ for the table of values of sin(xϯ).
Recall that ∆x  = ϯπ/ϰϬ ≐ Ϭ.Ϯϯϲ. Thus we have:
∫ π

Ϯ

− π
ϰ
sin(xϯ) dx ≐ Ϭ.

Ϯ
Ϯϯϲ

[

− Ϭ.ϰϲϲ+ Ϯ
(

− Ϭ.ϭϲϱ+ (−Ϭ.Ϭϯϭ) + . . .+ Ϭ.ϲϵ
)

+ (−Ϭ.ϲϳ)
]

= Ϭ.ϰϮϳϱ.

NoƟce how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this secƟon;
the real work is creaƟng a table of xi and f(xi) values. Once this is completed, ap-
proximaƟng the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computaƟons and make using lots
of subintervals easy.

Also noƟce the approximaƟons the Trapezoidal Rule gives. It is the average
of the approximaƟons given by the LeŌ and Right Hand Rules! This effecƟvely
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Figure 7.7.ϴ: A graph of a funcƟon f and 
a parabola that approximates it well on 
[ϭ, ϯ].

renders the LeŌ and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximaƟon is needed, one is gener-
ally beƩer off using the Trapezoidal Rule instead of either the LeŌ or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The LeŌ Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a funcƟon f with constant funcƟons
on small subintervals and then computes the definite integral of these constant
funcƟons. The Trapezoidal Rule is really approximaƟng a funcƟon fwith a linear
funcƟon on a small subinterval, then computes the definite integral of this linear
funcƟon. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximaƟng fwith a constant func-
Ɵon and then with a linear funcƟon. What is next? A quadraƟc funcƟon. By
approximaƟng the curve of a funcƟon with lots of parabolas, we generally get
an even beƩer approximaƟon of the definite integral. We call this process Simp-
son’s Rule, named aŌer Thomas Simpson (ϭϳϭϬ-ϭϳϲϭ), even though others had
used this rule as much as ϭϬϬ years prior.

Simpson’s Rule

Given one point, we can create a constant funcƟon that goes through that
point. Given two points, we can create a linear funcƟon that goes through those
points. Given three points, we can create a quadraƟc funcƟon that goes through
those three points (given that no two have the same x–value).

Consider three points (xϭ, yϭ), (xϮ, yϮ) and (xϯ, yϯ)whose x–values are equally
spaced and xϭ < xϮ < xϯ. Let fbe the quadraƟc funcƟon that goes through these
three points. It is not hard to show that

∫ xϯ

xϭ
f(x) dx =

xϯ − xϭ
ϲ

(
yϭ + ϰyϮ + yϯ

)
. (7.ϰ)

Consider Figure ϱ.ϱ.ϴ. A funcƟon f goes through the ϯ points shown and the
parabola g that also goes through those points is graphed with a dashed line.
Using our equaƟon from above, we know exactly that

∫ ϯ

ϭ
g(x) dx =

ϯ− ϭ
ϲ
(
ϯ+ ϰ(ϭ) + Ϯ

)
= ϯ.

Since g is a good approximaƟon for f on [ϭ, ϯ], we can state that
∫ ϯ

ϭ
f(x) dx ≐ ϯ.
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xi e−xϮi

Ϭ ϭ
Ϭ.Ϯϱ Ϭ.ϵϯϵ
Ϭ.ϱ Ϭ.ϳϳϵ
Ϭ.ϳϱ Ϭ.ϱϳϬ
ϭ Ϭ.ϯϲϴ

(a)

.....

y = e−xϮ

. Ϭ.Ϯ5. Ϭ.5. Ϭ.75. ϭ.

Ϭ.5

.

ϭ

.
x

.

y

(b) Figure 7.7.ϵ: A table of values

xi sin(xϯi )
−Ϭ.ϳϴϱ −Ϭ.ϰϲϲ
−Ϭ.ϱϱϬ −Ϭ.ϭϲϱ
−Ϭ.ϯϭϰ −Ϭ.Ϭϯϭ
−Ϭ.Ϭϳϴϱ Ϭ
Ϭ.ϭϱϳ Ϭ.ϬϬϰ
Ϭ.ϯϵϯ Ϭ.Ϭϲϭ
Ϭ.ϲϮϴ Ϭ.Ϯϰϲ
Ϭ.ϴϲϰ Ϭ.ϲϬϭ
ϭ.ϭϬ Ϭ.ϵϳϭ
ϭ.ϯϰ Ϭ.ϲϵϬ
ϭ.ϱϳ −Ϭ.ϲϳϬ

Figure ϱ.ϱ.ϭϬ: Table of values used to
approximate

∫
π
Ϯ

− π
ϰ
sin(xϯ) dx in Example

ϱ.ϱ.ϲ.

NoƟce how the interval [ϭ, ϯ]was split into two subintervals as we needed ϯ
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a
f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width∆x = (b−
a)/n. We approximate fwith n/Ϯ parabolic curves, using EquaƟon (ϱ.ϰ) to com-
pute the area under these parabolas. Adding up these areas gives the formula:
∫ b

a f(x) dx ≐ 
∆

ϯ
x
[

f(xϭ)+ϰf(xϮ)+Ϯf(xϯ)+ϰf(xϰ)+. . .+Ϯf(xn−ϭ)+ϰf(xn)+f(xn+ϭ)
]

.

Note how the coefficients of the terms in the summaƟon have the paƩern ϭ, ϰ,
Ϯ, ϰ, Ϯ, ϰ, . . ., Ϯ, ϰ, ϭ.

Let’s demonstrate Simpson’s Rule with a concrete example.

Example 7.7.ϱ Using Simpson’s Rule

Approximate
∫ ϭ

Ϭ
e−xϮ dxusing Simpson’s Rule and ϰ equally spaced subintervals.

SÊ½çã®ÊÄ We begin bymaking a table of values as we have in the past,
as shown in Figure ϱ.ϱ.ϵ(a). Simpson’s Rule states that
∫ ϭ

Ϭ
e−xϮ 

dx ≐ 
Ϭ .Ϯϱ
ϯ

[

ϭ+ ϰ(Ϭ.ϵϯϵ) + Ϯ(Ϭ.ϳϳϵ) + ϰ(Ϭ.ϱϳϬ) + Ϭ.ϯϲϴ
]

= Ϭ.ϳϰϲϴϯ.

Recall in Example 7.7.ϭ we stated that the correct answer, accurate to ϰ 
places aŌer the decimal, was Ϭ.ϳϰϲϴ. Our approximaƟon with Simpson’s Rule, 
with ϰ subintervals, is beƩer than our approximaƟon with the Trapezoidal Rule 
using ϱ!

Figure 7.7.ϵ(b) shows f(x) = e−xϮ along with its approximaƟng parabolas, 
demonstraƟng how good our approximaƟon is. The approximaƟng curves are 
nearly indisƟnguishable from the actual funcƟon.

Example 7.7.ϲ Using Simpson’s Rule

Approximate
∫ π

Ϯ

− π
ϰ

sin(xϯ) dx using Simpson’s Rule and ϭϬ equally spaced inter-

vals.

SÊ½çã®ÊÄ Figure ϱ.ϱ.ϭϬ shows the table of values that we used in the 
past for this problem, shown here again for convenience. Again, ∆x  = (π/Ϯ +
π/ϰ)/ϭϬ ≐ Ϭ.Ϯϯϲ.

ψ
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y = sin(x3)

.

−1

.

1

.
−0.5

.
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.

1
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x

.

y

Figure ϱ.ϱ.ϭϭ: ApproximaƟng
∫

π
Ϯ

− π
ϰ
sin(xϯ) dx in Example ϱ.ϱ.ϲ with

Simpson’s Rule and ϭϬ equally spaced
intervals.

Simpson’s Rule states that
∫ π

Ϯ

− π
ϰ
sin(xϯ) dx ≐ Ϭ.

ϯ
Ϯϯϲ

[

(−Ϭ.ϰϲϲ) + ϰ(−Ϭ.ϭϲϱ) + Ϯ(−Ϭ.Ϭϯϭ) + . . .

. . .+ Ϯ(Ϭ.ϵϳϭ) + ϰ(Ϭ.ϲϵ) + (−Ϭ.ϲϳ)
]

= Ϭ.ϰϳϬϭ

Recall that the actual value, accurate to ϯ decimal places, is Ϭ.ϰϲϬ. Our ap-
proximaƟon is within one ϭ/ϭϬϬth of the correct value. The graph in Figure 7.7.ϭϭ 
shows how closely the parabolas match the shape of the graph.

Summary 

We summarize the key concepts of this secƟon thus far in the following Key 
Idea.

b− a
n

.

Consider

Key Idea 7.7.ϭ Numerical IntegraƟon

Let f be a conƟnuous funcƟon on [a, b], let n be a posiƟve integer, and let ∆x = 
Set xϭ = a

∫
, x
b
Ϯ = a + ∆x, . . ., xi = a + (i − ϭ)∆x, xn+ϭ = b.

a
f(x) dx.

LeŌ Hand Rule:
∫ b

a
f(x) dx ≐ ∆x

[

f(xϭ) + f(xϮ) + . . .+ f(xn)
]
.

Right Hand Rule:
∫ b

a
f(x) dx ≐ ∆x

[

f(xϮ) + f(xϯ) + . . .+ f(xn+ϭ)
]
.

Trapezoidal Rule:
∫ b

a
f(x) dx ≐ 

∆

Ϯ
x [f(xϭ) + Ϯf(xϮ) + Ϯf(xϯ) + . . .+ Ϯf(xn) + f(xn+ϭ)

]
.

Simpson’s Rule:
∫ b

a
f(x) dx ≐ 

∆

ϯ
x [f(xϭ) + ϰf(xϮ) + Ϯf(xϯ) + . . .+ ϰf(xn) + f(xn+ϭ)

]
(n even).

y = f(x)

X

Y

Δx Δx Δx

= a
xo x1 xi-1 xi xN-1

= b

xn

LH Rule              

RH Rule 

Trapezoidal Rule  

Simpson's Rule

ΔA i

Δ iA  = 

Δ iA  = 

Δ iA   = Δx  

Δx yi

Δx

3

  ( yi-       +1 yi ) 

 yi-1

Δ iA   = Δ   x    (yi-1 +        4 y
i )

  2

+  y i+1

You probably 
, Wolfram Alpha,          

for example, which will do numerical integration. Also, any professional CAS will do these.

For programmable calculators or computers - simply sum each term below from  1  to  n  for every rectangle. 
The formulas above are for hand calculations. Hopefully you do this more than once.

_

_
_

_
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Exercises 7.7
Terms and Concepts

ϭ. T/F: Simpson’s Rule is a method of approximaƟng an-
ƟderivaƟves.

Ϯ. What are the two basic situaƟons where approximaƟng the
value of a definite integral is necessary?

ϯ. Why are the LeŌ and Right Hand Rules rarely used?

ϰ. Simpson’s Rule is based on approximaƟng porƟons of a
funcƟon with what type of funcƟon?

Problems
In Exercises ϱ – ϭϮ, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = ϰ.

(b) Approximate the definite integral with Simpson’s Rule
and n = ϰ.

(c) Find the exact value of the integral.

ϱ.
∫ ϭ

−ϭ
xϮ dx

ϲ.
∫ ϭϬ

Ϭ
ϱx dx

ϳ.
∫ π

Ϭ
sin x dx

ϴ.
∫ ϰ

Ϭ

√
x dx

ϵ.
∫ ϯ

Ϭ
(xϯ + ϮxϮ − ϱx+ ϳ) dx

ϭϬ.
∫ ϭ

Ϭ
xϰ dx

ϭϭ.
∫ Ϯπ

Ϭ
cos x dx

ϭϮ.
∫ ϯ

−ϯ

√
ϵ− xϮ dx

In Exercises ϭϯ – ϮϬ, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = ϲ.

ϭϯ.
∫ ϭ

Ϭ
cos
(

xϮ
)

dx

ϭϰ.
∫ ϭ

−ϭ
ex

Ϯ
dx

ϭϱ.
∫ ϱ

Ϭ

√
xϮ + ϭ dx

ϭϲ.
∫ π

Ϭ
x sin x dx

ϭϳ.
∫ π/Ϯ

Ϭ

√
cos x dx

ϭϴ.
∫ ϰ

ϭ
ln x dx

ϭϵ.
∫ ϭ

−ϭ

ϭ
sin x+ Ϯ

dx

ϮϬ.
∫ ϲ

Ϭ

ϭ
sin x+ Ϯ

dx

In Exercises Ϯϱ – Ϯϲ, a region is given. Find the area of the 
region using both the Trapezoid's and Simpson’s Rule:

(a) where the measurements are in cenƟmeters, taken in
ϭ cm increments, and

(b) where the measurements are in hundreds of yards,
taken in ϭϬϬ yd increments.

Ϯϱ.

..

ϰ.
ϳ

.

ϲ.
ϯ

. ϲ.
9

. ϲ.
ϲ.

ϱ.
1Ϯϲ.

ϯ.
ϲ

ϯ.
ϲ

ϰ.
ϱ ϲ.

ϲ

ϱ.
ϲ

NOTE  #25 and #26 are especially good questions 
if you are going to build a free form swimming pool.
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......

1. F
2. When the anƟderivaƟve cannot be computed and when the

integrand is unknown.

3. They are superseded by the Trapezoidal Rule; it takes an equal
amount of work and is generally more accurate.

4. A quadraƟc funcƟon (i.e., parabola)

5. (a) 3/4
(b) 2/3
(c) 2/3

6. (a) 250
(b) 250
(c) 250

1
47. (a) (1+

√
2)π     1.896

(b) 1
6 (1+ 2

√
   

(c) 2

8. (a) 2+
√
2+

√
3    5.15

(b) 2/3(3+
√
2+ 2

√
3)   5.25

(c) 16/3    5.33

9. (a) 38.5781
(b) 147/4    36.75
(c) 147/4    36.75

10. (a) 0.2207
(b) 0.2005
(c) 1/5

11. (a) 0
(b) 0
(c) 0

12. (a) 9/2(1+
√
3)    12.294

(b) 3+ 6
√
3    13.392

(c)

13. Trapezoidal Rule: 0.9006 
Simpson’s Rule: 0.90452

14. Trapezoidal Rule: 3.0241 
Simpson’s Rule: 2.9315

15. Trapezoidal Rule: 13.9604 
Simpson’s Rule: 13.9066

16. Trapezoidal Rule: 3.0695 
Simpson’s Rule: 3.14295

17. Trapezoidal Rule: 1.1703 
Simpson’s Rule: 1.1873

18. Trapezoidal Rule: 2.52971 
Simpson’s Rule: 2.5447

19. Trapezoidal Rule: 1.0803 
Simpson’s Rule: 1.077

20. Trapezoidal Rule: 3.5472 
Simpson’s Rule: 3.6133

Solutions 7.7

≐  
≐2)π    2.005

≐  
≐  

≐  

≐  
≐  

≐  
≐  

 9π/2 ≐ 14.137
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I. Draw a picture illustrating the quantity. Label all quantities used in the problem.
II. Show a typical differential region. Label.

III. Find a simple formula for the differential element which is asymptotically equal its
exact amount.

IV. Integrate.
V. Evaluate.

I,     II     

y = sin x

π

2

X

1

Y

(x, y)

x
dx

dA

y = sin x

π

2

X

1

Y

(x, y)

x
dx

dA

⋯ ⋯

III

         Method 2
Properly magnified,  sin x  
appears constant, so

        dA ≈ sin(x)dx

Method 1 
Sin x  is continuous. So dx an infinitesimal 
implies dy  an infinitesimal.   

        dA ≈ sin(x)dx 

IV    A  = ∫ 0
π/2 sin x dx

V =   -cos x
0

π / 2

=   1.

Chapter 8     Applications of Integration
Preview  Differentials are important in discovering the fundamental law governing a quantity Q; over 
a short interval its behavior may be quite simple. If you want to know its growth rate, you divide by  dt  
or perhaps  dx  depending on whether the quantity changes in time or space. In the applications of 
this chapter, the total amount or the change in the amount  Q  is desired; it is the integral of  dQ  
obtained by summing the differentials of  Q  obtaining  ∫ t

t

1
2 dQ  or ∫ xx12 dQ. 

     In this chapter we examine the process of first determining the differential law and then obtaining  
its integral, the total amount. We will call this the Five Step Procedure. The steps are:

π
2

Here, because the curve is continuous, 
dx an infinitesimal implies dy is an 
infinitesimal which implies an  ≈  is 
justified.

Here, because the element looks exact, 
implies an  ≈  is justified. In applications
such intuitive reasoning is often justified. 

This procedure should be used on all relevant exercises in this chapter. Using end integral formulas 
often lead to mistakes. Also you want to be fluent with this procedure so that you can readily use it in 
your area of application. In the the sections from Apex Calculus, five steps are also required. In exams 
each step is worth 20% of the total points awarded the problem.
     Note that we will assume that the bounding functions are continuous so that  dx  an infinitesimal 
implies  dy  is an infinitesimal. We will begin with an example from Chapter 5, finding the area under a 
curve. 
Example  Find  the area under the curve  y = sin x, 0 ≤ x ≤ .

●
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f(x)
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g(x)

.
a

.
b

.

x

.

y

(a)

.....

f(x)

.

g(x)

.
a

.
b

.

x

.

y

(b)

.....

f(x)

.

g(x)

...

x

.

y

8.ϭ Area Between Curves
We are oŌen interested in knowing the area of a region. Forget momentarily 
that we addressed this already in SecƟon ϱ.ϰ and approach it instead using 
the technique described in Key Idea 8.Ϭ.ϭ.

Let Q be the area of a region bounded by conƟnuous funcƟons f and g. If we 
break the region into many subregions, we have an obvious equaƟon:

Total Area = sum of the areas of the subregions.
The issue to address next is how to systemaƟcally break a region into subregions. 
A graph will help. Consider Figure 8.ϭ.ϭ (a) where a region between two curves is 
shaded. While there are many ways to break this into subregions, one parƟcularly 
efficient way is to “slice” it verƟcally, as shown in Figure 8.ϭ.ϭ (b), into n equally 
spaced slices.
We now approximate the area of a slice. Again, we have many options, but 
using a rectangle seems simplest. Picking any x-value c  in the i-th slice, we set

subinterval and appropriate rectangles drawn. (Each of these rectangles 
represents a differental element.) Each slice has an area approximately equal to

Q =
n∑

i=ϭ

(
f(ci)− g(ci)

)
∆x.

Taking the limit as n → ∞ gives the exact area as
∫ b
a

(
f(x)− g(x)

)
dx.

Theorem 8.ϭ.ϭ Area Between Curves
(restatement of Theorem ϱ.ϰ.ϯ)

Let f(x) and g(x) be conƟnuous funcƟons defined on [a, b] where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves

∫ b

a

(
f(x)− g(x)

)
dx.(c)

Figure 8.ϭ.ϭ: Subdividing a region into 
verƟcal slices and approximaƟng the  areas 
with rectangles.

Note again from the above graphs that 
clearly
c          dA ≈ [top - bottom]dx
c                = [f(x) - g(x)]dx. 

Integrating from  a  to  b  gives the 
area. The text argument is complicated, 
hard to remember and no more 
rigorous. 
(But still, sometimes a detailed 
discussion is useful.)

dx

x

dA ≈ [f(x) - g(x)]dx

A  =  ∫a
b 
[f(x) - g(x)] dx

=  F(x) - G(x)

L

II

III

IV

V

i

i

i

the height of the rectangle to be f(c ) − g(c ), the difference of the corresponding i 
y-values. The width of the rectangle is a small difference in x-values, which we
represent with ∆x. Figure 8.1.1(c) shows sample points c  chosen in each

[f(ci) − g(ci)] ∆x; hence, the total area is approximately the Riemann Sum

bh¢9  Usually only one 
typical differential 
element ƛǎ ǎƘƻǿƴ ǿƛǘƘ  Ȅ  
ŎƘƻǎŜn ǘƻ ōŜ ŀǘ ǘƘŜ ƭŜŦǘ 
ƘŀƴŘ ǎƛŘŜ ƻŦ ǘƘŜ ŜƭŜƳŜƴǘΦ 
¢ƘŜ ŘƛŦŦŜǊŜƴǘƛŀƭ ŜƭŜƳŜƴǘ 
width dx  should also be 
shown.

In exercises and exams 
always use the full
Five Step Procedure.

. .a b

]a
b
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f(x)

.
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ϭϬ
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Ϯ
.

4π
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Figure 8.ϭ.Ϯ: Graphing an enclosed region 
in Example 8.ϭ.ϭ.

...

.. ϭ. Ϯ. ϯ. ϰ.

−ϰ

.

−Ϯ

.

Ϯ

. x.

y

Figure 8.ϭ.ϯ: Graphing a region enclosed
by two funcƟons in Example ϳ.ϭ.Ϯ.

.............

SÊ½çã®ÊÄ The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the region is
the value of the integral

∫ ϰπ

Ϭ

(
f(x)− g(x)

)
dx =

∫ ϰπ

Ϭ

(

sin x+ Ϯ−
(ϭ
Ϯ
cos(Ϯx)− ϭ

))

dx

= − cos x− ϭ
ϰ
sin(Ϯx) + ϯx

∣
∣
∣

ϰπ

Ϭ

= ϭϮπ ≐ ϯϳ.ϳ unitsϮ.

Example 8.ϭ.Ϯ Finding total area enclosed by curves
Find the total area of the region enclosed by the funcƟons f(x) = −Ϯx + ϱ and
g(x) = xϯ − ϳxϮ + ϭϮx − ϯ as shown in Figure 8.ϭ.ϯ.

SÊ½çã®ÊÄ A quick calculaƟon shows that f = g at x = ϭ, Ϯ and ϰ. One

can proceed thoughtlessly by compuƟng
∫ ϰ

ϭ

(
f(x) − g(x)

)
dx, but this ignores

the fact that on [ϭ, Ϯ], g(x) > f(x). (In fact, the thoughtless integraƟon returns
−ϵ/ϰ, hardly the expected value of an area.) Thus we compute the total area by
breaking the interval [ϭ, ϰ] into two subintervals, [ϭ, Ϯ] and [Ϯ, ϰ] and using the
proper integrand in each.

Total Area =

∫ Ϯ

ϭ

(
g(x)− f(x)

)
dx+

∫ ϰ

Ϯ

(
f(x)− g(x)

)
dx

=

∫ Ϯ

ϭ

(
xϯ − ϳxϮ + ϭϰx− ϴ

)
dx+

∫ ϰ

Ϯ

(
− xϯ + ϳxϮ − ϭϰx+ ϴ

)
dx

Example ϳ.ϭ.ϭ Finding area enclosed by curves
Find the area of the region bounded by f(x) = sin x + Ϯ, g(x) = 
x = Ϭ and x = ϰπ,  as shown in Figure 8.ϭ.Ϯ.

ϭ
Ϯ cos(Ϯx) − ϭ

= ϱ/ϭϮ+ ϴ/ϯ
= ϯϳ/ϭϮ = ϯ.Ϭϴϯ unitsϮ.

y =
√

x + Ϯ y = −(x − ϭ)Ϯ + ϯ

ϭ Ϯ

ϭ

Ϯ

ϯ

x

y

Figure 8.ϭ.ϰ: Graphing a region for 
Example 8.ϭ.ϯ.

The previous example makes note that we are expecƟng area to be posiƟve. 
When first learning about the definite integral, we interpreted it as “signed area 
under the curve,” allowing for “negaƟve area.” That doesn’t apply here; area is 
to be posiƟve.

The previous example also demonstrates that we oŌen have to break a given 
region into subregions before applying Theorem 8.ϭ.ϭ. The following example 
shows another situaƟon where this is applicable, along with an alternate view 
of applying the Theorem.

Example 8.ϭ.ϯ Finding area: integraƟng with respect to
__
y

Find the area
=

 of the region enclosed by the funcƟons y = 
√
x + Ϯ, y = −(x − ϭ)Ϯ 

+ ϯ and y  Ϯ, as shown in Figure 8.ϭ.ϰ.

-
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.....

x = (y − Ϯ)Ϯ

.

x =
√

ϯ − y + ϭ

.
ϭ

.
Ϯ

.

ϭ

.

Ϯ

.

ϯ

. x.

y

Figure 8.ϭ.ϱ: The region used in Example 
8.ϭ.ϯ with boundaries relabeled as
func-Ɵons of y.

SÊ½çã®ÊÄ We give two approaches to this problem. In the first approach, 
we noƟce that the region’s “right - left” is defined by two different curves. 
On [Ϭ, ϭ], the top funcƟon is y = 

√
x + Ϯ; on [ϭ, Ϯ], the top funcƟon is

y = −(x − ϭ)Ϯ + ϯ. Thus we compute the area as the sum of two integrals:

Total Area =

∫ ϭ

Ϭ

((√
x+ Ϯ

)
− Ϯ
)

dx+
∫ Ϯ

ϭ

((
− (x− ϭ)Ϯ + ϯ

)
− Ϯ
)

dx

= Ϯ/ϯ + Ϯ/ϯ
= ϰ/ϯ.

The second approach is clever and very useful in certain situaƟons. We are 
used to viewing curves as funcƟons of x; we input an x-value and a y-value is re-
turned. Some curves can also be described as funcƟons of y: input a y-value and 
an x-value is returned. We can rewrite the equaƟons describing the boundary 
by solving for x:

y = 
√
x + Ϯ ⇒ x = (y

√

− Ϯ)Ϯ    y = −(x − ϭ)Ϯ + ϯ ⇒ x  = ϯ − .

Figure 8.ϭ.ϱ shows the region with the boundaries relabeled. A differenƟal 
element, a horizontal rectangle, is also pictured. The width of the rectangle is a 
small change in y: ∆y. The height of the rectangle is a difference in x-values. 
The “top” x-value is the largest value, i.e., the rightmost. The “boƩom” x-value 

is the smaller, i.e., the leŌmost. Therefore the height of the rectangle is

(√

ϯ− y+ ϭ
)
− (y− Ϯ)Ϯ.

The area is found by integraƟng the above funcƟon with respect to y with
the appropriate bounds. We determine these by considering the y-values the
region occupies. It is bounded below by y = Ϯ, and bounded above by y = ϯ.
That is, both the “top” and “boƩom” funcƟons exist on the y interval [Ϯ, ϯ]. Thus

Total Area =

∫ ϯ

Ϯ

(√

ϯ− y+ ϭ− (y− Ϯ)Ϯ
)
dy

=
(

− Ϯ
ϯ
(ϯ− y)ϯ/Ϯ + y− ϭ

ϯ
(y− Ϯ)ϯ

)∣
∣
∣

ϯ

Ϯ

= ϰ/ϯ.

This calculus–based technique of finding area can be useful even with shapes 
that we normally think of as “easy.” Example 8.ϭ.ϰ computes the area of a trian-

gle. While the formula “ ϭϮ × base × height” is well known, in arbitrary triangles it
can be nontrivial to compute the height. Calculus makes the problem simple.

_

    y + 1    - _ _
■

,

 , 

-
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y = x + ϭ

.

y = −Ϯx + 7

.

y = − ϭ
Ϯ x +

5
Ϯ

.
ϭ

.
Ϯ

.
ϯ

.

ϭ

.

Ϯ

.

ϯ

. x.

y

Figure 8.ϭ.ϲ: Graphing a triangular region 
in Example 8.ϭ.ϰ.

. (a)

.....

Ϯ.
Ϯϱ

.

ϱ.
Ϭϴ

.
ϲ.

ϯϱ
.

ϱ.
Ϯϭ

.

Ϯ.
ϳϲ

.
ϭ

.
Ϯ

.
ϯ

.
ϰ

.
ϱ

.
ϲ

.
ϳ

.
ϴ

.
ϵ

.
ϭϬ

.
ϭϭ

.
ϭϮ

.
ϭ

.

Ϯ

.

ϯ

.

ϰ

.

ϱ

.

ϲ

.

ϳ

.

ϴ

. x.

y

(b)

Figure 8.ϭ.ϳ: (a) A sketch of a lake, and (b) 
the lake with length measurements.

Example 8.ϭ.ϰ Finding the area of a triangle 
Compute the area of the regions bounded by the lines
y = x+ ϭ, y = −Ϯx+ ϳ and y = − ϭ

Ϯ
ϱ
Ϯx + , as shown in Figure 8.ϭ.ϲ.

SÊ½çã®ÊÄ Recognize that there are two “top” funcƟons to this region,
causing us to use two definite integrals.

Total Area =

∫ Ϯ

ϭ

(
(x+ ϭ)− (−ϭ

Ϯ
x+

ϱ
Ϯ
)
)
dx+

∫ ϯ

Ϯ

(
(−Ϯx+ ϳ)− (−ϭ

Ϯ
x+

ϱ
Ϯ
)
)
dx

= ϯ/ϰ+ ϯ/ϰ
= ϯ/Ϯ.

We can also approach this by converƟng each funcƟon into a funcƟon of y. This
also requires Ϯ integrals, so there isn’t really any advantage to doing so. We do
it here for demonstraƟon purposes.

The “top” funcƟon is always x = ϳ−y
Ϯ while there are two “boƩom” func-

Ɵons. Being mindful of the proper integraƟon bounds, we have

Total Area =

∫ Ϯ

ϭ

(ϳ− y
Ϯ

− (ϱ− Ϯy)
)
dy+

∫ ϯ

Ϯ

(ϳ− y
Ϯ

− (y− ϭ)
)
dy

= ϯ/ϰ+ ϯ/ϰ
= ϯ/Ϯ.

Of course, the final answer is the same. (It is interesƟng to note that the area 
of all ϰ subregions used is ϯ/ϰ. This is coincidental.)

While we have focused on producing exact answers, we are also able to 
make approximaƟons using the principle of Theorem 8.ϭ.ϭ. The integrand in 
the theo-rem is a distance (“top minus boƩom”); integraƟng this distance 
funcƟon gives an area. By taking discrete measurements of distance, we can 
approximate an area using numerical integraƟon techniques developed in 
SecƟon ϱ.ϱ. The fol-lowing example demonstrates this.

Example 8.ϭ.ϱ Numerically approximaƟng area
To approximate the area of a lake, shown in Figure 8.ϭ.ϳ (a), the “length” of the 
lake is measured at ϮϬϬ-foot increments as shown in Figure 8.ϭ.ϳ (b), where the 
lengths are given in hundreds of feet. Approximate the area of the lake.

SÊ½çã®ÊÄ The measurements of length can be viewed as measuring

Ϭ

f(x) − g(x)
∫
“topϭϮ (minus boƩ 

)
om” of two funcƟons. The exact answer is found by integraƟng

dx, but of course we don’t know the funcƟons f and g. Our

discrete measurements instead allow us to approximate.
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We have the following data points:

(Ϭ, Ϭ), (Ϯ, Ϯ.Ϯϱ), (ϰ, ϱ.Ϭϴ), (ϲ, ϲ.ϯϱ), (ϴ, ϱ.Ϯϭ), (ϭϬ, Ϯ.ϳϲ), (ϭϮ, Ϭ).

We also have that∆x = b−a
n = Ϯ, so Simpson’s Rule gives

Area ≐ 
ϯ
Ϯ(ϭ · Ϭ+ ϰ · Ϯ.Ϯϱ+ Ϯ · ϱ.Ϭϴ+ ϰ · ϲ.ϯϱ+ Ϯ · ϱ.Ϯϭ+ ϰ · Ϯ.ϳϲ+ ϭ · Ϭ

)

= ϰϰ.Ϭϭϯ unitsϮ.

Since the measurements are in hundreds of feet, unitsϮ = (ϭϬϬ Ō)Ϯ =
ϭϬ, ϬϬϬ ŌϮ, giving a total area of ϰϰϬ, ϭϯϯ ŌϮ. (Since we are approximaƟng, we’d
likely say the area was about ϰϰϬ, ϬϬϬ ŌϮ, which is a liƩle more than ϭϬ acres.)

In the next secƟon we apply our applicaƟons–of–integraƟon techniques to
finding the volumes of certain solids.
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Exercises 8.ϭ
Terms and Concepts

ϭ. T/F: The area between curves is always posiƟve.

Ϯ. T/F: Calculus can be used to find the area of basic geometric
shapes.

ϯ. In your own words, describe how to find the total area en-
closed by y = f(x) and y = g(x).

ϰ. Describe a situaƟon where it is advantageous to find an
area enclosed by curves through integraƟon with respect
to y instead of x.

Problems

In Exercises ϱ – ϭϮ, find the area of the shaded region in the
given graph.

ϱ.

.....

y = ϭ
Ϯ cos x + ϭ

.

y = ϭ
Ϯ x + ϯ

.

Ϯ

.

ϰ

.

6

.
π

.
Ϯπ

. x.

y

ϲ.

.....
y = xϮ + x − ϭ

.

y = −ϯxϯ + ϯx + Ϯ

.

−ϭ

.

ϭ

.
−ϭ

.

ϭ

.

Ϯ

.

ϯ

.

x

.

y

ϳ.

.....

y = 1

.

y = 2

.

1

.

2

.
π

.
π/2

.

x

.

y

ϴ.

...

..

y = sin x

.

y = sin x + 1

.

1

.

2

.

π

.

π/2
.

x

.

y

ϵ.

...

..

y = sin(4x)

.

y = sec2 x

.

1

.

2

.
π/4

.
π/8.

x
.

y

ϭϬ.

.....

y = sin x

.

y = cos x

.−ϭ .

−Ϭ.ϱ

.

Ϭ.ϱ

.

ϭ

.

π/ϰ

.

π/Ϯ

.

ϯπ/ϰ

.

π

.

ϱπ/ϰ

.

x

.

y

ϭϭ.

.....

y = Ϯx

.

y = ϰx

.
Ϭ.ϱ

.
ϭ

.

ϭ

.

Ϯ

.

ϯ

.

ϰ

. x.

y

Use the Five Step Procedure in each problem
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ϭϮ.

y =
√

x + 1 y =
√
2 − x + 1

y = 1

1 2

1

2

x

y

In Exercises ϭϯ – ϮϬ, find the total area enclosed by the func-
Ɵons f and g.

ϭϯ. f(x) = ϮxϮ + ϱx− ϯ, g(x) = xϮ + ϰx− ϭ

ϭϰ. f(x) = xϮ − ϯx+ Ϯ, g(x) = −ϯx+ ϯ

ϭϱ. f(x) = sin x, g(x) = Ϯx/π

ϭϲ. f(x) = xϯ − ϰxϮ + x− ϭ, g(x) = −xϮ + Ϯx− ϰ

ϭϳ. f(x) = x, g(x) =
√
x

ϭϴ. f(x) = −xϯ + ϱxϮ + Ϯx+ ϭ, g(x) = ϯxϮ + x+ ϯ

ϭϵ. The funcƟons f(x) = cos(x) and g(x) = sin x intersect
infinitely many Ɵmes, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

ϮϬ. The funcƟons f(x) = cos(Ϯx) and g(x) = sin x intersect
infinitely many Ɵmes, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

In Exercises Ϯϭ – Ϯϲ, find the area of the enclosed region in
two ways:

ϭ. by treaƟng the boundaries as funcƟons of x, and

Ϯ. by treaƟng the boundaries as funcƟons of y.

Ϯϭ.

.....
ϭ

.
Ϯ

.
ϯ

.

ϭ

.

Ϯ

.

y = xϮ + ϭ

.

y = ϭ
ϰ (x − ϯ)Ϯ + ϭ

.

y = ϭ

. x.

y

ϮϮ.

.....

y =
√

x

.

y = −Ϯx + ϯ

.

y = − ϭ
Ϯ x

.

ϭ

.

Ϯ

. −ϭ.

−Ϭ.5

.

Ϭ.5

.

ϭ

.

x

.

y

Ϯϯ.

.....

y = x2

.

y = x + 2

.
−1

.
1

.
2

.

2

.

4

. x.

y

Ϯϰ.

x = 1
2 y

2

x = − 1
2 y + 1

1 2

−2

−1

1

x

y

Ϯϱ.

.....

y = xϭ/ϯ

.

y =
√

x − ϭ/Ϯ

. Ϭ.5. ϭ.

Ϭ.5

.

ϭ

.
x

.

y

Ϯϲ.

y =
√

x + 1 y =
√
2 − x + 1

y = 1

1 2

1

2

x

y
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In Exercises Ϯϳ – ϯϬ, find the area triangle formed by the given
three points.

Ϯϳ. (ϭ, ϭ), (Ϯ, ϯ), and (ϯ, ϯ)

Ϯϴ. (−ϭ, ϭ), (ϭ, ϯ), and (Ϯ,−ϭ)

Ϯϵ. (ϭ, ϭ), (ϯ, ϯ), and (ϯ, ϯ)

ϯϬ. (Ϭ, Ϭ), (Ϯ, ϱ), and (ϱ, Ϯ)

ϯϭ. Use the Trapezoidal Rule to approximate the area of the
pictured lake whose lengths, in hundreds of feet, are mea-
sured in ϭϬϬ-foot increments.

..

ϰ.
9

.

ϱ.
Ϯ. 7.

ϯ. ϰ.
ϱ

ϯϮ. Use Simpson’s Rule to approximate the area of the pictured
lake whose lengths, in hundreds of feet, are measured in
ϮϬϬ-foot increments.

..

ϰ.
2ϱ

.

ϲ.
ϲ

. ϳ.
ϳ

.

ϲ.
ϰϱ

.

ϰ.
9

Solutions 8.1
1. T

2. T

3. Answers will vary.

4. Answers may vary; one common answer is when the region has
two or more “top” or “boƩom” funcƟons when viewing the 
region with respect to x, but has only 1 “top” funcƟon and 1 
“boƩom” funcƟon when viewed with respect to y. The former 
area requires mulƟple integrals to compute, whereas the laƩer 
area requires one.

5. 4π + π2 ≐ 22.436

6. 16/3

7. π

8. π

9. 1/2

10. 2
√
2

11. 1/ ln 4

12. 4/3

13. 4.5

14. 4/3

15. 2− π/2

16. 8

17. 1/6

18. 37/12

19. All enclosed regions have the same area, with regions being the
reflecƟon of adjacent regions. One region is formed on
[π/4, 5π/4], with area 2

√
2.

20. On regions such as [π/6, 5π/6], the area is 3
√
3/2. On regions

such as [−π/2, π/6], the area is 3
√
3/4.

√
2) ≐ 0.514

21. 1

22. 5/3

23. 9/2

24. 9/4

25. 1/12(9− 2

26. 4/3

27. 1

28. 5

29. 4

30. 133/20

31. 219,000 Ō2

32. 623,333 Ō2
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, y = 0, x = 1 and x = 2  is revolved 

I, II

2
X

1/2

1

Y

dx

y
y = 1

x

(x,y)

8.2  Volumes by Slicing. The Disk Method:  5 Steps
Example   Find the volume when the region bounded by  y = x

1

about the X-axis.

III  ≐  π y2dx   = π 
x

1
2 dx

IV π∫1
2

x

dx
2

V π  - 1
x
  1

2

π

2

dV

      V =

=

= --

x

●

When the differential element is rotated about the x-axis, 
the result is asymptotically a disk whose volume is 
             dV   ≈  πy  dx .                         .

--

■

_

— X—

2  
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Figure 8.Ϯ.ϭ: The volume of a general 
right cylinder

8.Ϯ Readings Volume by Cross-SecƟonal Area;
Disk and WasherMethods

By orienƟng a solid along the x-axis, we can let A xi

The volume of a general right cylinder, as shown in Figure 8.Ϯ.ϭ, is
Area of the base × height.

We can use this fact as the building block in finding volumes of a variety of
shapes.

Given an arbitrary solid, we can approximate its volume by cuƫng it into n 
thin slices. When the slices are thin, each slice can be approximated well by a 
general right cylinder. Thus the volume of each slice is approximately its cross-
secƟonal area × thickness. (These slices are the differ 

(
en 

)
Ɵal elements.)
represent the cross-

secƟonal area of the i th slice, and let∆xi represent the thickness of this slice (the
thickness is a small change in x). The total volume of the solid is approximately:

Volume ≐
n∑

i=ϭ

[

Area × thickness
]

=

n∑

i=ϭ
A(xi)∆xi.

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to Ϭ) we can find the volume exactly.

Theorem 8.Ϯ.ϭ Volume By Cross-SecƟonal Area

The volume V of a solid, oriented along the x-axis with cross-secƟonal
area A(x) from x = a to x = b, is

V =

∫ b

a
A(x) dx.

Example 8.Ϯ.ϭ Finding the volume of a solid
Find the volume of a pyramid with a square base of side length ϭϬ in and a height 
of ϱ in.

SÊ½çã®ÊÄ There are many ways to “orient” the pyramid along the x-
axis; Figure 8.Ϯ.Ϯ gives one such way, with the pointed top of the pyramid at the 
origin and the x-axis going through the center of the base.

Each cross secƟon of the pyramid is a square; this is a sample differenƟal 
element. To determine its area A(x), we need to determine the side lengths of

dx

Figure 8.Ϯ.Ϯ: OrienƟng a pyramid 
along the x-axis in Example 8.Ϯ.ϭ
cc            dV ≈ A(x) dx
c                    = (2 x)2 dx = 4 x

2 dx            
V  =  4 ∫

0

5
x

2dx

0
5=  4 x3

3 

=  3
500_
_|
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Figure 8.Ϯ.ϯ: Cuƫng a slice in the pyramid 
in Example 8.Ϯ.ϭ at x = ϯ.

the square.
When x = ϱ, the square has side length ϭϬ; when x = Ϭ, the square has side 

length Ϭ. Since the edges of the pyramid are lines, it is easy to figure that each 
cross-secƟonal square has side length Ϯx, giving A(x) = (Ϯx)Ϯ = ϰxϮ.

If one were to cut a slice out of the pyramid at x = ϯ, as shown in Figure 
8.Ϯ.ϯ, one would have a shape with square boƩom and top with sloped sides. If
the slice were thin, both the boƩom and top squares would have sides lengths
of about ϲ, and thus the cross–secƟonal area of the boƩom and top would be
about ϯϲinϮ. Leƫng ∆x i represent the thickness of the slice, the volume of this
slice would then be about ϯϲ∆x iinϯ.

Cuƫng the pyramid into n slices divides the total volume into n equally–
spaced smaller pieces, each with volume (Ϯxi)Ϯ∆x, where xi is the approximate 
locaƟon of the slice along the x-axis and ∆x represents the thickness of each 
slice. One can approximate total volume of the pyramid by summing up the 
volumes of these slices:

Approximate volume =
n∑

i=ϭ
(Ϯxi)Ϯ∆x.

Taking the limit as n → ∞ gives the actual volume of the pyramid; recoginizing
this sum as a Riemann Sum allows us to find the exact answer using a definite
integral, matching the definite integral given by Theorem 8.Ϯ.ϭ.

We have

V = lim
n→∞

n∑

i=ϭ
(Ϯxi)Ϯ∆x

=

∫ ϱ

Ϭ
ϰxϮ dx

=
ϰ
ϯ
xϯ
∣
∣
∣

ϱ

=
ϱϬϬ
ϯ

Ϭ

inϯ ≐ ϭϲϲ.ϲϳ inϯ.

We can check our work by consulƟng the general equaƟon for the volume of a
pyramid (see the back cover under “Volume of A General Cone”):

ϭ
ϯ × area of base× height.

Certainly, using this formula from geometry is faster than our new method, but 
the calculus–based method can be applied to much more than just cones.

An important special case of Theorem 8.Ϯ.ϭ is when the solid is a solid of 
revoluƟon, that is, when the solid is formed by rotaƟng a shape around an axis. 

Start with a funcƟon y = f(x) from x = a to x = b. Revolving this curve 
about a horizontal axis creates a three-dimensional solid whose cross secƟons
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(a)

(b)

Figure 8.Ϯ.ϰ: Sketching a solid in Example 
8.Ϯ.Ϯ.

are disks (thin circles). Let R(x) represent the radius of the cross-secƟonal disk 
at x; the area of this disk is πR(x)Ϯ. Applying Theorem 8.Ϯ.ϭ gives the Disk 
Method.

Key Idea ϳ.8.ϭ The Disk Method

Let a solid be formed by revolving the curve y = f(x) from x = a to x = b
around a horizontal axis, and let R(x) be the radius of the cross-secƟonal
disk at x. The volume of the solid is

V = π

∫ b

a
R(x)Ϯ dx.

Example 8.Ϯ.Ϯ Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = ϭ/x, from x = ϭ 
to x = Ϯ, around the x-axis.

SÊ½çã®ÊÄ A sketch can help us understand this problem. In Figure 8.Ϯ.ϰ(a) 
the curve y = ϭ/x is sketched along with the differenƟal element – a disk – at x 
with radius R(x) = ϭ/x. In Figure 8.Ϯ.ϰ (b) the whole solid is pictured, along 
with the differenƟal element.

The volume of the differenƟal element shown in part (a) of the figure is ap-
proximately πR(xi)Ϯ∆x, where R(xi) is the radius of the disk shown and ∆x is 
the thickness of that slice. The radius R(xi) is the distance from the x-axis to the 
curve, hence R(xi) = ϭ/xi.

Slicing the solid into n equally–spaced slices, we can approximate the total 
volume by adding up the approximate volume of each slice:

Approximate volume =
n∑

i=ϭ
π

(
ϭ
xi

)Ϯ

∆x.

Taking the limit of the above sum as n → ∞ gives the actual volume; recog-
nizing this sum as a Riemann sum allows us to evaluate the limit with a definite
integral, which matches the formula given in Key Idea 8.Ϯ.ϭ:

V = lim
n→∞

n∑

i=ϭ
π

(
ϭ
xi

)Ϯ

∆x

= π

∫ Ϯ

ϭ

(
ϭ
x

)Ϯ

dx

= π

∫ Ϯ

ϭ

ϭ
xϮ

dx
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(a)

(b)

Figure 8.Ϯ.ϱ: Sketching a solid in Example 
8.Ϯ.ϯ.

(a)

(b)

Figure 8.Ϯ.ϲ: Establishing the Washer 
Method; see also Figure 8.Ϯ.ϳ.

= π

[

−ϭ
x

] ∣
∣
∣

Ϯ

ϭ

= π

[

−ϭ
Ϯ
− (−ϭ)

]

=
π

Ϯ
unitsϯ.

While Key Idea 8.Ϯ.ϭ is given in terms of funcƟons of x, the principle involved 
can be applied to funcƟons of y when the axis of rotaƟon is verƟcal, not hori-
zontal. We demonstrate this in the next example.

Example ϳ.Ϯ.ϯ Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = ϭ/x, from x = ϭ 
to x = Ϯ, about the y-axis.

SÊ½çã®ÊÄ Since the axis of rotaƟon is verƟcal, we need to convert the 
funcƟon into a funcƟon of y and convert the x-bounds to y-bounds. Since y = 
ϭ/x defines the curve, we rewrite it as x = ϭ/y. The bound x = ϭ corresponds to 
the y-bound y = ϭ, and the bound x = Ϯ corresponds to the y-bound y = ϭ/Ϯ.

Thus we are rotaƟng the curve x = ϭ/y, from y = ϭ/Ϯ to y = ϭ about the 
y-axis to form a solid. The curve and sample differenƟal element are sketched
in Figure 8.Ϯ.ϱ (a), with a full sketch of the solid in Figure 8.Ϯ.ϱ (b). We
integrate to find the volume:

V = π

∫ ϭ

ϭ/Ϯ

ϭ
yϮ

dy

= −π

y

∣
∣
∣

ϭ

ϭ/Ϯ

= π unitsϯ.

We can also compute the volume of solids of revoluƟon that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespecƟve of the hole, then subtract the volume of the hole. If the outside
radius of the solid is R(x) and the inside radius (defining the hole) is r(x), then
the volume is

V = π

∫ b

a
R(x)Ϯ dx− π

∫ b

a
r(x)Ϯ dx = π

∫ b

a

(
R(x)Ϯ − r(x)Ϯ

)
dx.

One can generate a solid of revoluƟon with a hole in the middle by revolving a 
region about an axis. Consider Figure 8.Ϯ.ϲ(a), where a region is sketched along
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Figure 8.Ϯ.ϳ: Establishing the Washer 
Method; see also Figure 8.Ϯ.ϲ.

(a)

(b)

(c)

Figure 8.Ϯ.ϴ: Sketching the differenƟal 
el-ement and solid in Example 8.Ϯ.ϰ.

with a dashed, horizontal axis of rotaƟon. By rotaƟng the region about the axis, a 
solid is formed as sketched in Figure 8.Ϯ.ϲ(b). The outside of the solid has radius 
R(x), whereas the inside has radius r(x). Each cross secƟon of this solid will be 
a washer (a disk with a hole in the center) as sketched in Figure 8.Ϯ.ϳ. This leads 
us to the Washer Method.

Key Idea ϳ.Ϯ.Ϯ The Washer Method

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross secƟon at x will be a washer with outside radius R(x)
and inside radius r(x). The volume of the solid is

V = π

∫ b

a

(

R(x)Ϯ − r(x)Ϯ
)

dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = Ϭ.

Example ϳ.Ϯ.ϰ Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the region bounded by y =
xϮ − Ϯx + Ϯ and y = Ϯx − ϭ about the x-axis.

SÊ½çã®ÊÄ A sketch of the region will help, as given in Figure 8.Ϯ.ϴ(a). 
RotaƟng about the x-axis will produce cross secƟons in the shape of washers, as 
shown in Figure 8.Ϯ.ϴ(b); the complete solid is shown in part (c). The outside
radius of this washer is R(x) = Ϯx + ϭ; the inside radius is r(x) = xϮ − Ϯx + Ϯ. As
the region is bounded from x = ϭ to x = ϯ, we integrate as follows to compute
the volume.

V = π

∫ ϯ

ϭ

(

(Ϯx− ϭ)Ϯ − (xϮ − Ϯx+ Ϯ)Ϯ
)

dx

= π

∫ ϯ

ϭ

(
− xϰ + ϰxϯ − ϰxϮ + ϰx− ϯ

)
dx

= π
[

− ϭ
ϱ
xϱ + xϰ − ϰ

ϯ
xϯ + ϮxϮ − ϯx

]∣
∣
∣

ϯ

ϭ

=
ϭϬϰ
 

When rotaƟng about a verƟcal axis, the outside and inside radius funcƟons
must be funcƟons of y.

мр
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(a)

(b)

(c)

Figure 8.Ϯ.ϵ: Sketching the solid in 
Example 8.Ϯ.ϱ.

Example 8.Ϯ.ϱ Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the triangular region with ver-
Ɵces at (ϭ, ϭ), (Ϯ, ϭ) and (Ϯ, ϯ) about the y-axis.

SÊ½çã®ÊÄ The triangular region is sketched in Figure 8.Ϯ.ϵ(a); the dif-
ferenƟal element is sketched in (b) and the full solid is drawn in (c). They help us 
establish the outside and inside radii. Since the axis of rotaƟon is verƟcal, each 
radius is a funcƟon of y.

The outside radius R(y) is formed by the line connecƟng (Ϯ, ϭ) and (Ϯ, ϯ); it 
is a constant funcƟon, as regardless of the y-value the distance from the line to 
the axis of rotaƟon is Ϯ. Thus R(y) = Ϯ.

The inside radius is formedby the line connecƟng (ϭ, ϭ) and (Ϯ, ϯ). The equa-
Ɵon of this line is y = Ϯx−ϭ, but we need to refer to it as a funcƟon of y. Solving
for x gives r(y) = ϭ

Ϯ (y+ ϭ).
We integrate over the y-bounds of y = ϭ to y = ϯ. Thus the volume is

V = π

∫ ϯ

ϭ

(

ϮϮ −
(ϭ
Ϯ
(y+ ϭ)

)Ϯ
)

dy

= π

∫ ϯ

ϭ

(

− ϭ
ϰ
yϮ − ϭ

Ϯ
y+

ϭϱ
ϰ

)

dy

= π
[

− ϭ
ϭϮ

yϯ − ϭ
ϰ
yϮ +

ϭϱ
ϰ
y
]∣
∣
∣

ϯ

ϭ

=
ϭϬ
ϯ  
π ≐ ϭϬ.ϰϳ unitsϯ.

This secƟon introduced a new applicaƟon of the definite integral. Our de-
fault view of the definite integral is that it gives “the area under the curve.” How-
ever, we can establish definite integrals that represent other quanƟƟes; in this 
secƟon, we computed volume.

The ulƟmate goal of this secƟon is not to compute volumes of solids. That 
can be useful, but what is more useful is the understanding of this basic 
principle of integral calculus, outlined in Key Idea 8.Ϭ.ϭ: to find the exact value 
of some quanƟty,

• we start with an approximaƟon (in this secƟon, slice the solid and approx-
imate the volume of each slice),

• then make the approximaƟon beƩer by refining our original approxima-
Ɵon (i.e., use more slices),

• then use limits to establish a definite integral which gives the exact value.
We pracƟce this principle in the next secƟon where we find volumes by slic-
ing solids in a different way.
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Exercises 8.Ϯ
Terms and Concepts

ϭ. T/F: A solid of revoluƟon is formed by revolving a shape
around an axis.

Ϯ. In your ownwords, explain how the Disk andWasherMeth-
ods are related.

ϯ. Explain the how the units of volume are found in the inte-
gral of Theorem ϳ.Ϯ.ϭ: if A(x) has units of inϮ, how does
∫

A(x) dx have units of inϯ?

ϰ. A fundamental principle of this secƟon is “ can be
found by integraƟng an area funcƟon.”

Problems
In Exercises ϱ – ϴ, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by revolving the region about the x-
axis.

ϱ.

.....

y = ϯ − xϮ

.
−Ϯ
.

−ϭ
.

ϭ
.

Ϯ
.

ϭ

.

Ϯ

.

ϯ

. x.

y

ϲ.

.....

y = 5x

.
Ϭ.5

.
ϭ

.
ϭ.5

.
Ϯ

.

5

.

ϭϬ

. x.

y

ϳ.

.....

y = cos x

. 0.5. 1. 1.5.

0.5

.

1

.
x

.

y

ϴ.
.....

y =
√

x

.
y = x

.

0.5

.

1

.

0.5

.

1

.

x

.

y

In Exercises ϵ – ϭϮ, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by revolving the region about the y-
axis.

ϵ.
.....

y = ϯ − xϮ

.

−Ϯ

.

−ϭ

.

ϭ

.

Ϯ

.
ϭ

.

Ϯ

.

ϯ

.

x

.

y

ϭϬ.
.....

y = 5x

.

Ϭ.5

.

ϭ

.

ϭ.5

.

Ϯ

.
5
.

ϭϬ

.

x

.

y

ϭϭ.

.....

y = cos x

.

0.5

.

1

.

1.5

.

0.5

.

1

.

x

.

y

(Hint: IntegraƟon By Parts will be necessary, twice. First let
u = arccosϮ x, then let u = arccos x.)

Use the Five Step Procedure in each problem

It is an excellent exercise to translate each of the examples of  
Apex above into the 5 step Method.
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ϭϮ.

.....

y =
√

x

.

y = x

.

0.5

.

1

.

0.5

.

1

.

x

.

y

In Exercises ϭϯ – ϭϴ, a region of the Cartesian plane is de-
scribed. Use the Disk/Washer Method to find the volume of
the solid of revoluƟon formed by rotaƟng the region about
each of the given axes.

ϭϯ. Region bounded by: y =
√
x, y = Ϭ and x = ϭ.

Rotate about:

(a) the x-axis
(b) y = ϭ

(c) the y-axis
(d) x = ϭ

ϭϰ. Region bounded by: y = ϰ− xϮ and y = Ϭ.
Rotate about:

(a) the x-axis
(b) y = ϰ

(c) y = −ϭ
(d) x = Ϯ

ϭϱ. The triangle with verƟces (ϭ, ϭ), (ϭ, Ϯ) and (Ϯ, ϭ).
Rotate about:

(a) the x-axis
(b) y = Ϯ

(c) the y-axis
(d) x = ϭ

ϭϲ. Region bounded by y = xϮ − Ϯx+ Ϯ and y = Ϯx− ϭ.
Rotate about:

(a) the x-axis
(b) y = ϭ

(c) y = ϱ

ϭϳ. Region bounded by y = ϭ/
√
xϮ + ϭ, x = −ϭ, x = ϭ and

the x-axis.
Rotate about:

(a) the x-axis
(b) y = ϭ

(c) y = −ϭ

ϭϴ. Region bounded by y = Ϯx, y = x and x = Ϯ.
Rotate about:

(a) the x-axis
(b) y = ϰ

(c) the y-axis
(d) x = Ϯ

In Exercises ϭϵ – ϮϮ, a solid is described. Orient the solid along
the x-axis such that a cross-secƟonal area funcƟon A(x) can
be obtained, then apply Theorem ϳ.Ϯ.ϭ to find the volume of
the solid.

ϭϵ. A right circular cone with height of ϭϬ and base radius of ϱ.

ϱ

ϭϬ

ϮϬ. A skew right circular cone with height of ϭϬ and base radius
of ϱ. (Hint: all cross-secƟons are circles.)

ϱ

ϭϬ

Ϯϭ. A right triangular cone with height of ϭϬ and whose base is
a right, isosceles triangle with side length ϰ.

ϰ ϰ

ϭϬ

ϮϮ. A solid with length ϭϬ with a rectangular base and triangu-
lar top, wherein one end is a square with side length ϱ and
the other end is a triangle with base and height of ϱ.

ϭϬ

ϱ
ϱ

ϱ

15

—

5

⟶

⟶
——

—
—

h

23. Find the volume of water in the tank if it is filled to height  h.
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SecƟon 8.2
1. T

2. Answers will vary.

3. Recall that “dx” does not just “sit there;” it is mulƟplied by A(x)
and represents the thickness of a small slice of the solid.
Therefore dx has units of in, giving A(x) dx the units of in3.

4. volume

5. 48π
√
3/5 units3

6. 175π/3 units3

7. π2/4 units3

8. π/6 units3

9. 9π/2 units3

10. 35π/3 units3

11. π2 − 2π units3

12. 2π/15 units3

13. (a) π/2
(b) 5π/6
(c) 4π/5
(d) 8π/15

14. (a) 512π/15
(b) 256π/5
(c) 832π/15
(d) 128π/3

15. (a) 4π/3
(b) 2π/3
(c) 4π/3
(d) π/3

16. (a) 104π/15
(b) 64π/15
(c) 32π/5

17. (a) π2/2
(b) π2/2− 4π sinh−1(1)
(c) π2/2+ 4π sinh−1(1)

18. (a) 8π
(b) 8π
(c) 16π/3
(d) 8π/3

19. Placing the Ɵp of the cone at the origin such that the x-axis runs
through the center of the circular base, we have A(x) = πx2/4.
Thus the volume is 250π/3 units3.

20. The cross–secƟons of this cone are the same as the cone in
Exercise 19. Thus they have the same volume of 250π/3 units3.

21. Orient the cone such that the Ɵp is at the origin and the x-axis is
perpendicular to the base. The cross–secƟons of this cone are
right, isosceles triangles with side length 2x/5; thus the
cross–secƟonal areas are A(x) = 2x2/25, giving a volume of 80/3
units3.

22. Orient the solid so that the x-axis is parallel to long side of the
base. All cross–secƟons are trapezoids (at the far leŌ, the
trapezoid is a square; at the far right, the trapezoid has a top
length of 0, making it a triangle). The area of the trapezoid at x is
A(x) = 1/2(−1/2x+ 5+ 5)(5) = −5/4x+ 25. The volume is
187.5 units3.

23. 15 (h - 5) h(10 - h) + 375 sin-1
h - 5

5
+
375 π

2
V  = .  If you can work this one,

   you should get an A .+
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(a)

(b)

(c)

Figure 8.ϯ.ϭ:  Introducing 
the Shell Method.

8.ϯ Readings The Shell Method
OŌen a given problem can be solved in more than one way. A parƟcular method 
may be chosen out of convenience, personal preference, or perhaps necessity. 
UlƟmately, it is good to have opƟons.

The previous secƟon introduced the Disk and Washer Methods, which com-
puted the volume of solids of revoluƟon by integraƟng the cross–secƟonal area 
of the solid. This secƟon develops another method of compuƟng volume, the 
Shell Method. Instead of slicing the solid perpendicular to the axis of rotaƟon 
creaƟng cross-secƟons, we now slice it parallel to the axis of rotaƟon, creaƟng 
“shells.”

Consider Figure 8.ϯ.ϭ, where the region shown in (a) is rotated around the 
y-axis forming the solid shown in (b). A small slice of the region is drawn in (a), 
parallel to the axis of rotaƟon. When the region is rotated, this thin slice forms 
a cylindrical shell, as pictured in part (c) of the figure. The previous secƟon 
approximated a solid with lots of thin disks (or washers); we now approximate 
a solid with many thin cylindrical shells.

To compute the volume of one shell, first consider the paper label on a soup 
can with radius r and height h. What is the area of this label? A simple way of 
determining this is to cut the label and lay it out flat, forming a rectangle with 
height h and length Ϯπr . Thus the area is A = Ϯπr h; see Figure 8.ϯ.Ϯ(a).

Do a similar process with a cylindrical shell, with height h, thickness ∆x, and 
approximate radius r. Cuƫng the shell and laying it flat forms a rectangular solid
with length Ϯπr, height h and depth ∆x. Thus the volume is V ≈ Ϯπrh∆x; see

Figure 8.ϯ.Ϯ(b). (We say “approximately” since our radius was an approxima-
Ɵon.)

By breaking the solid into n cylindrical shells, we can approximate the volume
of the solid as

V ≐
n∑

i=ϭ
Ϯπrihi∆xi,

where ri, hi and ∆xi are the radius, height and thickness of the i th shell, respec-
Ɵvely.

This is a Riemann Sum. Rounding off yields the definite integral.

8.3  Volumes by Cylindrical Shell Method:  5 Steps
Find the volume when the region bounded by  y = 1

x
, y = 0, x = 1 and x = 2  is revolved about the Y-axis.

I, II.

1 2
X

1/2

1

Y

dx

y

x

y =
1
x

III.

IV. V  =  2π ∫1
2 dx

V. =  2π x]  =   2 2π1
2 I

Note that  dV  is independent of  dx.
Can you explain this intuitively?

DDistancDistance around:
     c = 2πx

r

_-dV  ≈  2π x y dx   =   2π x_· 
1
x dx  =  2π dx

N.

.
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Figure 8.ϯ.ϯ: Graphing a region in 
Example 8.ϯ.ϭ.
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.. 2πr

.

.
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. ∆x.

V ≈ 2πrh∆x

(a) (b)

Figure 8.ϯ.Ϯ: Determining the volume of a thin cylindrical shell.

Key Idea 8.ϯ.ϭ The Shell Method

Let a solid be formed by revolving a region R, bounded by x = a and
x = b, around a verƟcal axis. Let r(x) represent the distance from the axis
of rotaƟon to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of
the solid is

V = Ϯπ
∫ b

a
r(x)h(x) dx.

Special Cases:

ϭ. When the region R is bounded above by y = f(x) and below by y = g(x),
then h(x) = f(x)− g(x).

Ϯ. When the axis of rotaƟon is the y-axis (i.e., x = Ϭ) then r(x) = x.

Let’s pracƟce using the Shell Method.

Example 8.ϯ.ϭ Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region bounded by y = Ϭ, 
y = ϭ/(ϭ + xϮ), x = Ϭ and x = ϭ about the y-axis.

SÊ½çã®ÊÄ This is the region used to introduce the Shell Method in Fig-
ure 8.ϯ.ϭ, but is sketched again in Figure 8.ϯ.ϯ for closer reference. A line is 
drawn in the region parallel to the axis of rotaƟon represenƟng a shell that will
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(a)

(b)

(c)

Figure 8.ϯ.ϰ: Graphing a region in 
Example 8.ϯ.Ϯ.

be carved out as the region is rotated about the y-axis. (This is the differenƟal
element.)

The distance this line is from the axis of rotaƟon determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this line
determines h(x); the top of the line is at y = ϭ/(ϭ + xϮ), whereas the boƩom
of the line is at y = Ϭ. Thus h(x) = ϭ/(ϭ+ xϮ)− Ϭ = ϭ/(ϭ+ xϮ). The region is
bounded from x = Ϭ to x = ϭ, so the volume is

V = Ϯπ
∫ ϭ

Ϭ

x
ϭ+ xϮ

dx.

This requires subsƟtuƟon. Let u = ϭ + xϮ, so du = Ϯx dx. We also change the
bounds: u(Ϭ) = ϭ and u(ϭ) = Ϯ. Thus we have:

= π

∫ Ϯ

ϭ

ϭ
u
du

= π ln u
∣
∣
∣

Ϯ

ϭ

= π ln Ϯ ≐ Ϯ.ϭϳϴ unitsϯ.

Note: in order to find this volume using the Disk Method, two integrals would 
be needed to account for the regions above and below y = ϭ/Ϯ.

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

Example ϳ.ϯ.Ϯ Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the triangular region determined 
by the points (Ϭ, ϭ), (ϭ, ϭ) and (ϭ, ϯ) about the line x = ϯ.

SÊ½çã®ÊÄ The region is sketched in Figure 8.ϯ.ϰ(a) along with the dif-
ferenƟal element, a line within the region parallel to the axis of rotaƟon. In 
part (b) of the figure, we see the shell traced out by the differenƟal element, 
and in part (c) the whole solid is shown.

The height of the differenƟal element is the distance from y = ϭ to y = Ϯx+
ϭ, the line that connects the points (Ϭ, ϭ) and (ϭ, ϯ). Thus h(x) = Ϯx+ϭ−ϭ = Ϯx.
The radius of the shell formed by the differenƟal element is the distance from
x to x = ϯ; that is, it is r(x) = ϯ − x. The x-bounds of the region are x = Ϭ to
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(a)

(b)

(c)

Figure 8.ϯ.ϱ: Graphing a region in 
Example 8.ϯ.ϯ.

x = ϭ, giving

V = Ϯπ
∫ ϭ

Ϭ
(ϯ− x)(Ϯx) dx

= Ϯπ
∫ ϭ

Ϭ

(
ϲx− ϮxϮ) dx

= Ϯπ
(

ϯxϮ − Ϯ
ϯ
xϯ
) ∣
∣
∣

ϭ

Ϭ

=
ϭϰ
ϯ 

When revolving a region around a horizontal axis, we must consider the ra-
dius and height funcƟons in terms of y, not x.

Example 8.ϯ.ϯ Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region given in Example 8.ϯ.Ϯ 
about the x-axis.

SÊ½çã®ÊÄ The region is sketched in Figure 8.ϯ.ϱ(a) with a sample dif-
ferenƟal element. In part (b) of the figure the shell formed by the differenƟal 
element is drawn, and the solid is sketched in (c). (Note that the triangular re-
gion looks “short and wide” here, whereas in the previous example the same 
region looked “tall and narrow.” This is because the bounds on the graphs are 
different.)

The height of the differenƟal element is an x-distance, between x = ϭ
Ϯy− ϭ

Ϯ
and x = ϭ. Thus h(y) = ϭ−( ϭϮy− ϭ

Ϯ ) = − ϭ
Ϯy+

ϯ
Ϯ . The radius is the distance from

y to the x-axis, so r(y) = y. The y bounds of the region are y = ϭ and y = ϯ,
leading to the integral

V = Ϯπ
∫ ϯ

ϭ

[

y
(

−ϭ
Ϯ
y+

ϯ
Ϯ

)]

dy

= Ϯπ
∫ ϯ

ϭ

[

−ϭ
Ϯ
yϮ +

ϯ
Ϯ
y
]

dy

= Ϯπ
[

−ϭ
ϲ
yϯ +

ϯ
ϰ
yϮ
] ∣
∣
∣

ϯ

ϭ

= Ϯπ
[
ϵ
ϰ
− ϳ

ϭϮ

]

=
ϭϬ
ϯ 

π ≐ ϭϰ.ϲϲ unitsϯ.

π ≐ ϭϬ.ϰϳϮ unitsϯ.
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Figure 8.ϯ.ϲ: Graphing a region in 
Example 8.ϯ.ϰ.

At the beginning of this secƟon it was stated that “it is good to have opƟons.” 
The next example finds the volume of a solid rather easily with the Shell Method, 
but using the Washer Method would be quite a chore.

Example 8.ϯ.ϰ Finding volume using the Shell Method
Find the volume of the solid formed by revolving the region bounded by y = sin x 
and the x-axis from x = Ϭ to x = π about the y-axis.

SÊ½çã®ÊÄ The region and a differenƟal element, the shell formed by this 
differenƟal element, and the resulƟng solid are given in Figure 8.ϯ.ϲ. The 
radius of a sample shell is r(x) = x; the height of a sample shell is h(x) = sin x, 
each from x = Ϭ to x = π.  Thus the volume of the solid is

V = Ϯπ
∫ π

Ϭ
x sin x dx.

This requires IntegraƟon By Parts. Set u = x and dv = sin x dx; we leave it to
the reader to fill in the rest. We have:

= Ϯπ
[

− x cos x
∣
∣
∣

π

Ϭ
+

∫ π

Ϭ
cos x dx

]

= Ϯπ
[

π + sin x
∣
∣
∣

π

Ϭ

]

= Ϯπ
[

π + Ϭ
]

= ϮπϮ ≐ ϭϵ.ϳϰ unitsϯ.

Note that in order to use the Washer Method, we would need to solve y =
sin x for x, requiring the use of the arcsine funcƟon. We leave it to the reader
to verify that the outside radius funcƟon is R(y) = π − arcsin y and the inside
radius funcƟon is r(y) = arcsin y. Thus the volume can be computed as

π

∫ ϭ

Ϭ

[

(π − arcsin y)Ϯ − (arcsin y)Ϯ
]

dy.

This integral isn’t terrible given that the arcsinϮ y terms cancel, but it is more
onerous than the integral created by the Shell Method.

We end this secƟon with a table summarizing the usage of the Washer and
Shell Methods.
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Key Idea 8.ϯ.Ϯ Summary of the Washer and Shell Methods

Let a region R be given with x-bounds x = a and x = b and y-bounds
y = c and y = d.

Washer Method Shell Method

Horizontal
Axis

π

∫ b

a

(
R(x)Ϯ − r(x)Ϯ

)
dx Ϯπ

∫ d

c
r(y)h(y) dy

VerƟcal
Axis

π

∫ d

c

(
R(y)Ϯ − r(y)Ϯ

)
dy Ϯπ

∫ b

a
r(x)h(x) dx

As in the previous secƟon, the real goal of this secƟon is not to be able to
compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approximaƟng, then using limits to refine the approximaƟon to give the
exact value. In this secƟon, we approximate the volume of a solid by cuƫng it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approximaƟon of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summaƟon can be evaluated as a definite integral,
giving the exact value.

We use this same principle again in the next secƟon, where we find the
length of curves in the plane.
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Exercises 8.ϯ
Terms and Concepts

ϭ. T/F: A solid of revoluƟon is formed by revolving a shape
around an axis.

Ϯ. T/F: The Shell Method can only be used when the Washer
Method fails.

ϯ. T/F: The Shell Method works by integraƟng cross–secƟonal
areas of a solid.

ϰ. T/F: When finding the volume of a solid of revoluƟon that
was revolved around a verƟcal axis, the Shell Method inte-
grates with respect to x.

Problems

In Exercises ϱ – ϴ, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by revolving the region about the y-axis.

ϱ.

.....

y = ϯ − xϮ

.
−Ϯ
.

−ϭ
.

ϭ
.

Ϯ
.

ϭ

.

Ϯ

.

ϯ

. x.

y

ϲ.

.....

y = 5x

.
Ϭ.5

.
ϭ

.
ϭ.5

.
Ϯ

.

5

.

ϭϬ

. x.

y

ϳ.

.....

y = cos x

. 0.5. 1. 1.5.

0.5

.

1

.
x

.

y

ϴ.

.....

y =
√

x

.

y = x

. 0.5. 1.

0.5

.

1

.
x

.

y

In Exercises ϵ – ϭϮ, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by revolving the region about the x-axis.

ϵ.

.....

y = ϯ − xϮ

.
−Ϯ
.

−ϭ
.

ϭ
.

Ϯ
.

ϭ

.

Ϯ

.

ϯ

. x.

y

ϭϬ.

.....

y = 5x

.
Ϭ.5

.
ϭ

.
ϭ.5

.
Ϯ

.

5

.

ϭϬ

. x.

y

Use the Five Step Procedure in each problem

Again, it is an excellent exercise to translate each of the 
examples of  Apex above into the 5 step Method.
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ϭϭ.

.....

y = cos x

. 0.5. 1. 1.5.

0.5

.

1

.
x

.

y

ϭϮ.

.....

y =
√

x

.

y = x

. 0.5. 1.

0.5

.

1

.
x

.

y

In Exercises ϭϯ – ϭϴ, a region of the Cartesian plane is de-
scribed. Use the Shell Method to find the volume of the solid
of revoluƟon formed by rotaƟng the region about each of the
given axes.

ϭϯ. Region bounded by: y =
√
x, y = Ϭ and x = ϭ.

Rotate about:

(a) the y-axis
(b) x = ϭ

(c) the x-axis
(d) y = ϭ

ϭϰ. Region bounded by: y = ϰ− xϮ and y = Ϭ.
Rotate about:

(a) x = Ϯ
(b) x = −Ϯ

(c) the x-axis
(d) y = ϰ

ϭϱ. The triangle with verƟces (ϭ, ϭ), (ϭ, Ϯ) and (Ϯ, ϭ).
Rotate about:

(a) the y-axis
(b) x = ϭ

(c) the x-axis
(d) y = Ϯ

ϭϲ. Region bounded by y = xϮ − Ϯx+ Ϯ and y = Ϯx− ϭ.
Rotate about:

(a) the y-axis
(b) x = ϭ

(c) x = −ϭ

ϭϳ. Region bounded by y = ϭ/
√
xϮ + ϭ, x = ϭ and the x and

y-axes.
Rotate about:

(a) the y-axis (b) x = ϭ

ϭϴ. Region bounded by y = Ϯx, y = x and x = Ϯ.
Rotate about:

(a) the y-axis
(b) x = Ϯ

(c) the x-axis
(d) y = ϰ

Solutions 8.3
1. T

2. F

3. F

4. T

5. 9π/2 units3

6. 70π/3 units3

7. π2 − 2π units3

8. 2π/15 units3

9. 48π
√
3/5 units3

10. 350π/3 units3

11. π2/4 units3

12. π/6 units3

13. (a) 4π/5
(b) 8π/15
(c) π/2
(d) 5π/6

14. (a) 128π/3
(b) 128π/3
(c) 512π/15
(d) 256π/5

15. (a) 4π/3
(b) π/3
(c) 4π/3
(d) 2π/3

16. (a) 16π/3
(b) 8π/3
(c) 8π

(b) 2π(1−
√
2+ sinh−1(1))

18. (a) 16π/3
(b) 8π/3
(c) 8π
(d) 8π

217. (a) 2π (       − 1)
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8.4   Arc Length 

What is the arc length, the length of the curve,  y = f(x),  a ≤ x ≤ b?

x

dx
dy

a b

ds

X

Y

y = f(x)

Theorem  Let  y = f(x)  be differentiable for  a ≤ x ≤ b. Then its arc length on that interval is

s  = ∫
a

b
1 +  dy

dx
2

dx.

Derivation
f  is differentiable on the interval. So  f  is differentiable a  x  and therefore locally linear or equivalently 
'asymptotically straight' there. Therefore

ds2 ≈  dx2 + dy2 Theorem of Pythagoras
         =   1 +  dy

dx 
2
dx2

 ds  =  1 +  dy
dx 

2 dx ⟹ s  = ∫
a

b
1 +  dy

dx 
2

dx.

Example  Find the length of  y = 2x3/2  for  0 ≤ x ≤ 1.

I., II.

y = 2x3/2

1

dx
ds     dy

x

1

2

X

Y

III. y = 2x3/2  ⇒   dy
dx  = 3x1/2

1 +  dy
dx


2
 = 1 + 9 x

IV. s  = ∫0

1
1 + 9 x dx

V. u = 1 + 9x,  du = 9dx
x = 0 → u = 1
x = 1 → u = 10

 s  =  1
9 ∫1

10
u du  =  1

9
2
3 1

10
u3/2

=  2
27 (10 10  - 1)

1 +  dy
dx

2

Note diagram below

m = dx
dy

1
meaning of slope

)
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ϭ

.
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ϰ. π.
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(a)
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Ϭ.ϱ

.

ϭ

.
π
ϰ.

π
Ϯ. ϯπ

ϰ. π.

√
Ϯ

Ϯ

.
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.

y

(b)

Figure 8.ϰ.ϭ: Graphing y = sin x on [Ϭ, π]  
and approximaƟng the curve with line 
segments.

.....

∆yi

.

∆xi

. xi. xi+1.

yi

.

yi+1

.
x

.

y

Figure 8.ϰ.Ϯ: Zooming in on the i th 

subin-terval [xi, xi+ϭ] of a parƟƟon of 
[a, b].

8.4  Arc Length and Surface Area Readings

In previous secƟons we have used integraƟon to answer the following quesƟons:

ϭ. Given a region, what is its area?

Ϯ. Given a solid, what is its volume?

h 

In this secƟon, we address a related quesƟon: Given a curve, what is its 
length? This is oŌen referred to as arc length.

Consider the graph of y = sin x on [Ϭ, π]  given in Figure 8.ϰ.ϭ(a). How long 
is this curve? That is, if we were to use a piece of string to exactly match the 
shape of this curve, how long would the string be?

As we have done in the past, we start by approximaƟng; later, we will refine 
our answer using limits to get an exact soluƟon.

The length of straight–line segments is easy to compute using the Distance 
Formula. We can approximate the length of the given curve by approximaƟng 
the curve with straight lines and measuring their lengths.

In Figure 8.ϰ.ϭ(b), the curve y = s in x has been approximated with ϰ line 
segments (the interval [Ϭ, π] has been divided into ϰ equally–lengthed subinter-
vals). It is clear that these four line segments approximate y = sin x very well 
on the first and last subinterval, though not so well in the middle. Regardless, 
the sum of the lengths of the line segments is ϯ.ϳϵ, so we approximate the arc 
length of y = sin x on [Ϭ, π] to be ϯ.ϳϵ.

In general, we can approximate the arc length of y = f(x) on [a, b] in the 
following manner. Let a = xϭ < xϮ < . . . < xn < xn+ϭ = b be a parƟƟon 
of [a, b] into n subintervals. Let ∆xi represent the length of the i th subinterval 
[xi, xi+ϭ].

Figure 8.ϰ.Ϯ zooms in on the i th subinterval where y = f(x) is approximated 
by a straight line segment. The dashed lines show that we can view this line seg-
ment as the hypotenuse of a right triangle whose sides have lengt ∆xi and ∆yi.
Using the Pythagorean Theorem, the length of this line segment is

√

∆xϮi +∆yϮi .
Summing over all subintervals gives an arc length approximaƟon

L ≐
n∑

i=ϭ

√

∆xϮi +∆yϮi .

As shown here, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a liƩle algebra.
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Note: This is our first use of differenƟability 
on a closed interval since SecƟon 5.2.

The theorem also requires that f ′ be 
con-Ɵnuous on [a, b]; while examples are 
ar-cane, it is possible for f to be 
differen-Ɵable yet f ′ is not conƟnuous.

In the above expression factor out a∆xϮi term:

n∑

i=ϭ

√

∆xϮi +∆yϮi =
n∑

i=ϭ

√

∆xϮi

(

ϭ+
∆yϮi
∆xϮi

)

.

Now pull the∆xϮi term out of the square root:

=
n∑

i=ϭ

√

ϭ+
∆yϮi
∆xϮi

∆xi.

This is nearly a Riemann Sum. Consider the ∆yϮi /∆xϮi term. The expression
∆yi/∆xi measures the “change in y/change in x,” that is, the “rise over run” of
f on the i th subinterval. The Mean Value Theorem of DifferenƟaƟon (Theorem
ϯ.Ϯ.ϭ) states that there is a ci in the i th subinterval where f ′(ci) = ∆yi/∆xi. Thus
we can rewrite our above expression as:

=

n∑

i=ϭ

√

ϭ+ f ′(ci)Ϯ ∆xi.

This is a Riemann Sum. As long as f ′ is conƟnuous, we can invoke Theorem ϱ.ϯ.Ϯ
and conclude

=

∫ b

a

√

ϭ+ f ′(x)Ϯ dx.

Theorem 8.ϰ.ϭ Arc Length

Let f be differenƟable on [a, b], where f ′ is also conƟnuous on [a, b]. Then
the arc length of f from x = a to x = b is

L =
∫ b

a

√

ϭ+ f ′(x)Ϯ dx.

As the integrand contains a square root, it is oŌen difficult to use the 
formula in Theorem 8.ϰ.ϭ to find the length exactly. When exact answers are 
difficult to come by, we resort to using numerical methods of approximaƟng 
definite integrals. The following examples will demonstrate this.
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Figure 8.ϰ.ϯ: A graph of f(x) = xϯ/Ϯ 

from Example 8.ϰ.ϭ.

Example 8.ϰ.ϭ Finding arc length
Find the arc length of f(x) = xϯ/Ϯ from x = Ϭ to x = ϰ.

SÊ½çã®ÊÄ We find f ′(x) = ϯ
Ϯx

ϭ/Ϯ; note that on [Ϭ, ϰ], f is differenƟable
and f ′ is also conƟnuous. Using the formula, we find the arc length L as

L =
∫ ϰ

Ϭ

√

ϭ+
(
ϯ
Ϯ
xϭ/Ϯ

)Ϯ

dx

=

∫ ϰ

Ϭ

√

ϭ+
ϵ
ϰ
x dx

=

∫ ϰ

Ϭ

(

ϭ+
ϵ
ϰ
x
)ϭ/Ϯ

dx

=
Ϯ
ϯ
· ϰ
ϵ
·
(

ϭ+
ϵ
ϰ
x
)ϯ/Ϯ ∣

∣
∣

ϰ

Ϭ

=
ϴ
Ϯϳ

(

ϭϬϯ/Ϯ − ϭ
)

≐ ϵ.Ϭϳunits.

A graph of f is given in Figure 8.ϰ.ϯ.

Example 8.ϰ.Ϯ Finding arc length
Find the arc length of f(x) =

ϭ
ϴ
xϮ − ln x from x = ϭ to x = Ϯ.

SÊ½çã®ÊÄ This funcƟon was chosen specifically because the resulƟng
integral can be evaluated exactly. We begin by finding f ′(x) = x/ϰ − ϭ/x. The
arc length is

L =
∫ Ϯ

ϭ

√

ϭ+
(
x
ϰ
− ϭ

x

)Ϯ

dx

=

∫ Ϯ

ϭ

√

ϭ+
xϮ

ϭϲ
− ϭ

Ϯ
+

ϭ
xϮ

dx

=

∫ Ϯ

ϭ

√

xϮ

ϭϲ
+

ϭ
Ϯ
+

ϭ
xϮ

dx

=

∫ Ϯ

ϭ

√
(
x
ϰ
+

ϭ
x

)Ϯ

dx
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Figure 8.ϰ.ϰ: A graph of f(x) = ϭϴ x
Ϯ − ln x

from Example 8.ϰ.Ϯ.

x
√
ϭ+ cosϮ x

Ϭ
√
Ϯ

π/ϰ
√

ϯ/Ϯ
π/Ϯ ϭ
ϯπ/ϰ

√

ϯ/Ϯ
π

√
Ϯ

Figure 8.ϰ.ϱ: A table of values of 

√to evaluate a definite integral in

Example 8.ϰ.ϯ.

=

∫ Ϯ

ϭ

(
x
ϰ
+

ϭ
x

)

dx

=

(
xϮ

ϴ
+ ln x

)
∣
∣
∣
∣
∣

Ϯ

ϭ

=
ϯ
ϴ
+ ln Ϯ ≐ ϭ.Ϭϳ units.

A graph of f is given in Figure 8.ϰ.ϰ; the porƟon of the curve measured in this 
problem is in bold.

The previous examples found the arc length exactly through careful choice 
of the funcƟons. In general, exact answers are much more difficult to come by 
and numerical approximaƟons are necessary.

Example 8.ϰ.ϯ ApproximaƟng arc length numerically
Find the length of the sine curve from x = Ϭ to x = π.

SÊ½çã®ÊÄ This is somewhat of a mathemaƟcal curiosity; in Example
ϱ.ϰ.ϯ we found the area under one “hump” of the sine curve is Ϯ square units;
now we are measuring its arc length.

The setup is straighƞorward: f(x) = sin x and f ′(x) = cos x. Thus

L =
∫ π

Ϭ

√

ϭ+ cosϮ x dx.

This integral cannot be evaluated in terms of elementary funcƟons sowewill ap-
proximate it with Simpson’s Method with n = ϰ. Figure ϳ.ϰ.ϱ gives

√
ϭ+ cosϮ x

evaluated at ϱ evenly spaced points in [Ϭ, π]. Simpson’s Rule then states that
∫ π

Ϭ

√

ϭ + cosϮ x dx ≐
π − Ϭ
ϰ · ϯ

(√
Ϯ+ ϰ

√

ϯ/Ϯ+ Ϯ(ϭ) + ϰ
√

ϯ/Ϯ+
√
Ϯ
)

= ϯ.ϴϮϵϭϴ.

Using a computer with n = ϭϬϬ the approximaƟon is L ≐ ϯ.ϴϮϬϮ; our approxi-
maƟon with n = ϰ is quite good.

y = 
√
ϭ + cosϮ x

■
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Figure 8.ϰ.ϲ: Establishing the formula for 
surface area.

Surface Area of Solids of RevoluƟon

We have already seen how a curve y = f(x) on [a, b] can be revolved around 
an axis to form a solid. Instead of compuƟng its volume, we now consider its 
surface area.

We begin as we have in the previous secƟons: we parƟƟon the interval [a, b] 
with n subintervals, where the i th subinterval is [xi, xi+ϭ]. On each subinterval, 
we can approximate the curve y = f(x) with a straight line that connects f(xi) 
and f(xi+ϭ) as shown in Figure 8.ϰ.ϲ(a). Revolving this line segment about the x-
axis creates part of a cone (called a frustum of a cone) as shown in Figure 8.ϰ.ϲ(b). 
The surface area of a frustum of a cone is

Ϯπ · length · average of the two radii R and r.

The length is given by L; we use the material just covered by arc length to 
state that

L ≐
√

ϭ+ f ′(ci)Ϯ∆xi

for some ci in the i th subinterval. The radii are just the funcƟon evaluated at the
endpoints of the interval. That is,

R = f(xi+ϭ) and r = f(xi).

Thus the surface area of this sample frustum of the cone is approximately

Ϯπ
f(xi) + f(xi+ϭ)

Ϯ
√

ϭ+ f ′(ci)Ϯ∆xi.

Since f is a conƟnuous funcƟon, the IntermediateValue Theoremstates there

is some di in [xi, xi+ϭ] such that f(di) =
f(xi) + f(xi+ϭ)

Ϯ
; we can use this to rewrite

the above equaƟon as
Ϯπf(di)

√

ϭ+ f ′(ci)Ϯ∆xi.

Summing over all the subintervals we get the total surface area to be approxi-
mately

Surface Area ≐
n∑

i=ϭ
Ϯπf(di)

√

ϭ+ f ′(ci)Ϯ∆xi,

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following theorem.
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Figure 8.ϰ.ϳ: Revolving y = sin x on [Ϭ, π]  
about the x-axis.

Theorem 8.ϰ.Ϯ Surface Area of a Solid of RevoluƟon

Let f be differenƟable on [a, b], where f ′ is also conƟnuous on [a, b].

ϭ. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) ≥ Ϭ, about the x-axis is

Surface Area = Ϯπ
∫ b

a
f(x)
√

ϭ+ f ′(x)Ϯ dx.

Ϯ. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a, b ≥ Ϭ, is

Surface Area = Ϯπ
∫ b

a
x
√

ϭ+ f ′(x)Ϯ dx.

(When revolving y = f(x) about the y-axis, the radii of the resulƟng frustum 
are xi and xi+ϭ; their average value is simply the midpoint of the interval. In the 
limit, this midpoint is just x. This gives the second part of Theorem 8.ϰ.Ϯ.)

Example 8.ϰ.ϰ Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving y = sin x on [Ϭ, π]
around the x-axis, as shown in Figure 8.ϰ.ϳ.

SÊ½çã®ÊÄ The setup is relaƟvely straighƞorward. Using Theoremϳ.ϰ.Ϯ,
we have the surface area SA is:

SA = Ϯπ
∫

Ϭ
sin x

√

ϭ+ cosϮ x dx

= −Ϯπ
ϭ
Ϯ
(

sinh−ϭ(cos x) + cos x
√

ϭ+ cosϮ x
)∣
∣
∣

π

Ϭ(

The integraƟon step above is nontrivial, uƟlizing an integraƟon method called 
Trigonometric SubsƟtuƟon.

It is interesƟng to see that the surface area of a solid, whose shape is defined 
by a trigonometric funcƟon, involves both a square root and an inverse hyper-
bolic trigonometric funcƟon.

Example 8.ϰ.ϱ Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving the curve y = xϮ on [Ϭ, ϭ] 
about the x-axis and the y-axis.

(.π

= Ϯπ
√
Ϯ+ sinh−ϭ ϭ

)

≐ ϭϰ.ϰϮ unitsϮ.(
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(a)

(b)

Figure 8.ϰ.ϴ: The solids used in Example 
8.ϰ.ϱ.

Figure 8.ϰ.ϵ: A graph of Gabriel’s Horn.

SÊ½çã®ÊÄ About the x-axis: the integral is straighƞorward to setup:

SA = Ϯπ
∫ ϭ

Ϭ
xϮ
√

ϭ+ (Ϯx)Ϯ dx.

Like the integral in Example 8.ϰ.ϰ, this requires Trigonometric SubsƟtuƟon.

=
π

ϯϮ

(

Ϯ(ϴxϯ + x)
√

ϭ+ ϰxϮ − sinh−ϭ(Ϯx)
)∣
∣
∣

ϭ

Ϭ

=
π

ϯϮ

(

ϭϴ
√
ϱ− sinh−ϭ Ϯ

)

≐ ϯ.ϴϭ unitsϮ.

The solid formed by revolving y = xϮ around the x-axis is graphed in Figure 8.ϰ.ϴ (a).
About the y-axis: since we are revolving around the y-axis, the “radius” of the 

solid is not f(x) but rather x. Thus the integral to compute the surface area is:

SA = Ϯπ
∫ ϭ

Ϭ
x
√

ϭ+ (Ϯx)Ϯ dx.

This integral can be solved using subsƟtuƟon. Set u = ϭ+ ϰxϮ; the new bounds
are u = ϭ to u = ϱ. We then have

=
π

ϰ

∫ ϱ

ϭ

√
u du

=
π

ϰ
Ϯ
ϯ
uϯ/Ϯ

∣
∣
∣
∣

ϱ

ϭ

=
π

ϲ

(

ϱ
√
ϱ− ϭ

)

≐ ϱ.ϯϯ unitsϮ.

The solid formed by revolving y = xϮ about the y-axis is graphed in Figure 8.ϰ.ϴ (b).

Our final example is a famous mathemaƟcal “paradox.”

Example 8.ϰ.ϲ The surface area and volume of Gabriel’s Horn
Consider the solid formed by revolving y = ϭ/x about the x-axis on [ϭ, ∞). Find the
volume and surface area of this solid. (This shape, as graphed in Figure 8.ϰ.ϵ, is 
known as “Gabriel’s Horn” since it looks like a very long horn that only a 
supernatural person, such as an angel, could play.)
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SÊ½çã®ÊÄ To compute the volume it is natural to use the Disk Method.
We have:

V = π

∫ ∞

ϭ

ϭ
xϮ

dx

= lim
b→∞

π

∫ b

ϭ

ϭ
xϮ

dx

= lim
b→∞

π

(−ϭ
x

)∣
∣
∣
∣

b

ϭ

= lim
b→∞

π

(

ϭ− ϭ
b

)

= π unitsϯ.

Gabriel’s Horn has a finite volume of π cubic units. Since we have already seen
that regions with infinite length can have a finite area, this is not too difficult to
accept.

We now consider its surface area. The integral is straighƞorward to setup:

SA = Ϯπ
∫ ∞

ϭ

ϭ
x
√

ϭ+ ϭ/xϰ dx.

IntegraƟng this expression is not trivial. We can, however, compare it to other
improper integrals. Since ϭ <

√

ϭ+ ϭ/xϰ on [ϭ,∞), we can state that

Ϯπ
∫ ∞

ϭ

ϭ
x
dx < Ϯπ

∫ ∞

ϭ

ϭ
x
√

ϭ+ ϭ/xϰ dx.

By Key Idea ϲ.ϴ.ϭ, the improper integral on the leŌ diverges. Since the integral
on the right is larger, we conclude it also diverges, meaning Gabriel’s Horn has
infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Hornwith a finite amount of paint,
but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of vol-
ume and area. However, we have seen a similar paradox before, as referenced
above. We know that the area under the curve y = ϭ/xϮ on [ϭ,∞) is finite, yet
the shape has an infinite perimeter. Strange things can occur when we deal with
the infinite.

A standard equaƟon from physics is “Work = force × distance”, when the
force applied is constant. In the next secƟon we learn how to compute work
when the force applied is variable.

NOTE  No real paradox here at all. When you paint the area under the curve,
the paint thickness is the same for all  x. Infinite area        infinite volume.

              When you fill the horn with paint, its thickness decreases in two dimensions:
⇒

"small  x small  =  very small"
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Exercises
Terms and Concepts

ϭ. T/F: The integral formula for compuƟng Arc Length was
found by first approximaƟng arc length with straight line
segments.

Ϯ. T/F: The integral formula for compuƟng Arc Length includes
a square–root, meaning the integraƟon is probably easy.

Problems
In Exercises ϯ – ϭϮ, find the arc length of the funcƟon on the
given interval.

ϯ. f(x) = x on [Ϭ, ϭ].

ϰ. f(x) =
√
ϴx on [−ϭ, ϭ].

ϱ. f(x) = ϭ
ϯ
xϯ/Ϯ − xϭ/Ϯ on [Ϭ, ϭ].

ϲ. f(x) = ϭ
ϭϮ

xϯ + ϭ
x
on [ϭ, ϰ].

ϳ. f(x) = Ϯxϯ/Ϯ − ϭ
ϲ
√
x on [Ϭ, ϵ].

ϴ. f(x) = cosh x on [− ln Ϯ, ln Ϯ].

ϵ. f(x) = ϭ
Ϯ
(

ex + e−x) on [Ϭ, ln ϱ].

ϭϬ. f(x) = ϭ
ϭϮ

xϱ + ϭ
ϱxϯ

on [.ϭ, ϭ].

ϭϭ. f(x) = ln
(

sin x
)

on [π/ϲ, π/Ϯ].

ϭϮ. f(x) = ln
(

cos x
)

on [Ϭ, π/ϰ].

In Exercises ϭϯ – ϮϬ, set up the integral to compute the arc
length of the funcƟon on the given interval. Do not evaluate
the integral.

ϭϯ. f(x) = xϮ on [Ϭ, ϭ].

ϭϰ. f(x) = xϭϬ on [Ϭ, ϭ].

ϭϱ. f(x) =
√
x on [Ϭ, ϭ].

ϭϲ. f(x) = ln x on [ϭ, e].

ϭϳ. f(x) =
√
ϭ− xϮ on [−ϭ, ϭ]. (Note: this describes the top

half of a circle with radius ϭ.)

ϭϴ. f(x) =
√

ϭ− xϮ/ϵ on [−ϯ, ϯ]. (Note: this describes the top
half of an ellipse with a major axis of length ϲ and a minor
axis of length Ϯ.)

ϭϵ. f(x) = ϭ
x
on [ϭ, Ϯ].

ϮϬ. f(x) = sec x on [−π/ϰ, π/ϰ].

In Exercises Ϯϭ – Ϯϴ, use Simpson’s Rule, with n = ϰ, to ap-
proximate the arc length of the funcƟon on the given interval.
Note: these are the same problems as in Exercises ϭϯ–ϮϬ.

Ϯϭ. f(x) = xϮ on [Ϭ, ϭ].

ϮϮ. f(x) = xϭϬ on [Ϭ, ϭ].

Ϯϯ. f(x) =
√
x on [Ϭ, ϭ]. (Note: f ′(x) is not defined at x = Ϭ.)

Ϯϰ. f(x) = ln x on [ϭ, e].

Ϯϱ. f(x) =
√
ϭ− xϮ on [−ϭ, ϭ]. (Note: f ′(x) is not defined at

the endpoints.)

Ϯϲ. f(x) =
√

ϭ− xϮ/ϵ on [−ϯ, ϯ]. (Note: f ′(x) is not defined
at the endpoints.)

Ϯϳ. f(x) = ϭ
x
on [ϭ, Ϯ].

Ϯϴ. f(x) = sec x on [−π/ϰ, π/ϰ].

In Exercises Ϯϵ – ϯϯ, find the surface area of the described
solid of revoluƟon.

Ϯϵ. The solid formed by revolving y = Ϯx on [Ϭ, ϭ] about the
x-axis.

ϯϬ. The solid formed by revolving y = xϮ on [Ϭ, ϭ] about the
y-axis.

ϯϭ. The solid formed by revolving y = xϯ on [Ϭ, ϭ] about the
x-axis.

ϯϮ. The solid formed by revolving y =
√
x on [Ϭ, ϭ] about the

x-axis.

ϯϯ. The sphere formed by revolving y =
√
ϭ− xϮ on [−ϭ, ϭ]

about the x-axis.

Use the Five Step Procedure in each problem

Again,  it is an excellent exercise to translate each of 
the examples of  Apex above into the 5 step Method.
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Solutions 8.4
1. T

2. F

3.
√
2

4. 6

5. 4/3

6. 6

7. 109/2

8. 3/2

9. 12/5

10. 79953333/400000 ≐ 199.883

11. − ln(2 − 
√
3) ≐ 1.31696

12. sinh−1 1

13. 0
∫ 1 √1+ 4x2 dx

14. 0
∫ 1 √1+ 100x18 dx

15.
∫ 1
√

1+ 4
1
x dx

16. 1

0∫ e
√

1+ x
1
2 dx

17.
∫ 1
−1

√
1+ 1

x
−
2

x2 dx

18.
∫ 3
−3

√
1+ 81

x2
−9x2 dx

19.
∫ 2
√

1+ x
1
4 dx

20.

1∫ π/4
−π/4

√
1+ sec2 x tan2 x dx

21. 1.4790

22. 1.8377

23. Simpson’s Rule fails, as it requires one to divide by 0. However,
recognize the answer should be the same as for y = x2; why?

24. 2.1300

25. Simpson’s Rule fails.

26. Simpson’s Rule fails.

27. 1.4058

28. 1.7625∫ 1
0 2x

√
5 dx = 2π

√
5∫ 1

0 x
√
1+ 4x2 dx = π/6(5

√
5− 1)∫ 1

0 x3
√
1+ 9x4 dx = π/27(10

√
10− 1)∫ 1

0
√
x
√

1+ 1/(4x) dx = π/6(5
√
5− 1)

29. 2π

30. 2π

31. 2π

32. 2π

33. 2π
∫ 1
0
√
1− x2

√
1+ x/(1− x2) dx = 4π

_
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Theorem   a ≈ A, b ≈ B  ⟺  a·A ≈ b·B

The most basic work problem in grade 10 physics is moving a through a straight line distance  d  by a constant  
force  F  is

W = F·d

d
F

          Awater tank problem is more complicated. An infinitesimal

element of volume dV meter^3 is lifted bya force

dF = dm ·g where g = 9.08 meter /sec2 is the acceleration of

gravity acting througha vertical distance dmeters.

The infinitesimal work done in lifting the element is then

dW = df ·h = (dm ·g) h = (δdV) g h = δ g hdV.

For water, δ = 1000 Kg
m3 .

h

dW = dF ·h
= (dm g) h
= (δ dV) g h
 = δ g h dV

dV

dF

8.5  Water Tank Problems There are many work problem in physics and engineering,
often involving advanced scientific concepts.    

      One easy to understand application is calculating the work required to fill a water tank. It is more 
complicated in some ways than the previous applications of integrations in that two asymptotic equality 
approximations are often required. Recall:
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Example  A water tank is made by rotating the curve  y = x2 meters,  0 ≤ x ≤ 2 meters  about the Y-axis.
How much work is required to fill the tank from a source 3 meters below the bottom of the tank?

2
X

-3

4

Y

(x, y)x
dy

h◼
◼

dV ≈ π x2 dy = πydy
h ≈ y- (-3) = y+ 3

dW ≈ δ g hdV
= δg(y+ 3) (πydy)
= δ gπy2 + 3 ydy

⇒ W  =  δ g π∫ 0
4y2

+ 2 y dy  =  δ g π
y3

3 + 3
2
y

2
0

4
Joules

Note that in these problems
there are two approximations:

radius of element      x≈

h      y≈    + 3
and we must use 

Theorem   A ≈ B, C ≈ D  ⟹
AC ≈ BD
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a. How much work is required to fill the tank from a well 10 meters below the bottom of the tank?
b. How much work is required to empty the full tank to a height 10 meters above the top of the tank?

#2.  A water tank is made by rotating the curve  y = x meters,  0 ≤ x ≤ 2 meters  about the Y-axis.
a. How much work is required to fill the tank from the bottom of the tank?
b. How much work is required to empty the full tank over the top of the tank?

#3.  A water tank is 5 meters high and has a circular cross section of radius  1 meter.
a. How much work is required to fill a half full tank from a well 10 meters below the bottom of the tank?
b. How much work is required to half empty a full tank to a height 10 meters above the top of the tank?

#4.  A water tank is 10 meters long and has an equilateral triangle cross section of side 2 meters, point down.
a. How much work is required to fill the tank from the bottom of the tank?
b. How much work is required to empty the full tank out over the top of the tank?

#5.  A water tank lying on its side is 5 meters long and has a circular cross section of radius  1 meter.
a. How much work is required to fill the tank from a well 4 meters below the bottom of the tank?
b. How much work is required to empty a full tank to a height 4 meters above the top of the tank?

#6.  A water tank is a sphere of radius 2 meters.
a. How much work is required to fill the tank from a well 5 meters below the bottom of the tank?
b. How much work is required to empty a full tank to a height 5 meters above the top of the tank?

Use the Five Step Procedure in each problem

Exercises  Use the grade 10 formula   dW = δ g h dV   in each problem.

#1.  A water tank is 5 meters high and has a square cross section 2 meters on a side.

#7.  How much work is required to fill the tank of Exercise 23 of section 2 in this chapter with water pumped  in
at the bottom of the tank? 
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0
Solutions  

#1a.

y
dy

h

-1 1 2 3 4
X

5

Y

h = y + 10 W =  4δ g ∫ 0
5
(y + 10)dy

       dV = 22 dy = 4 dy      =  250 δ g
                dW = δ g h dV = 4δ g (y +10)dy

#4a.

y x

dy

h

3 1

-1 1
X

Y

h = y W = 20
3
δ g ∫ 0

3
y

2 dy

By similar triangles      =  20 δ g
x

1 = y

3

y = 3 x
       dV = 2x · 10 dy

   = 20x dy
= 20

3
y dy

dW = δ g h dV = 20
3
δ g y2 dy
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8.6  Application to Economics.  Present and Future Value
A dollar at a future time is not worth as much as a dollar now, because a dollar now can be invested 
at the going interest rate and so will be worth more than one dollar at that future time.

We will assume in the calculations of this section that whether borrowing or investing, money is worth a 
constant going interest rate  r  over the period of time considered. The interest rate can include a component 
that compensates for inflation.

Discrete Investment or Income, Lump Sum   Recall the exponential lump sum growth formula  

   F  =  P e r t.   

F = P e r t  future value of a present sum 
Solving for P :

P = F e
- r t present value of a future sum 

Continuous Investments or Income  Suppose an investment is made or an income is received continu-
ously according or an investment /income stream  I = I(t) $

year . In the following derivation, we assume 

that  I(t)  is a continuous function and therefore approximately constant on the interval of length  dt; 
then the amount of money received/invested during that interval is approximately  

'rate × time' ≈  I(t) dt.

Time
0 t t+dt T

Total Money  The amount invested/received on the interval  dt :

dM ≈ I(t) dt.
So the total money invested/received is

M = ∫ 
 T

I(t) d t. 

Present Value  The present value of the money on the interval  dt  at time  0, by the discrete formula 

dP ≈ dM e-r t = I(t) e- r t dt 

So the total present value is
P = ∫ 0

T
I(t) e- r t dt

Future Value  The future value of the money on the interval  dt  at time  T, by the discrete formula (1):
dF ≈ dM e 

r (T-t) = I(t) e r (T-t) dt
So the total future value is

F = ∫ 0
T

I(t) er(T-t) dt

.
.. T t

0

 __- --
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Exercises 

 For each of #1 to 7 find:
a. The total money (received or invested)
b. The present value of this money.
c. The future value of this money.

#0.  You invest  $10000 lump sum now at an interest rate of 10% for 40 years. 
#1.  You invest  $1000 per year at an interest rate of 10% for 40 years.
#2.  You invest $100 t per year at an interest rate of 10% for 40 years.
#3.  You invest $10 t2 per year at an interest rate of 10% for 40 years

For each of $4 to 7 also determine how much should you pay for the annuity. 
Money is worth 10% interest.
#4.  You purchase an annuity which pays 10000 $/year for 20 years. 
#5.  You purchase an annuity which pays 10000 $/year forever. 
#6.  You purchase an annuity which pays 1000 t $/year for 20 years. 
#7.  You purchase an annuity which pays 1000 t $/year forever. 

Answer each of the following two questions. You wish to give you child 
$100,000 in 20 years for its education. You invest at 10%/year return.
#8.  What lump sum should you invest now?
#9.  At what constant yearly rate should you invest over the next 20 years?

10. Explain why interest implies inflation and why some of the world's
major religions have at times forbidden interest.

Use the Five Step Procedure in each problem
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Solutions/ Hints

#0.    M  =  total money invested  =  $ 10,000
P  =  present value  =  $ 10,000 
F  = future value  = 10000 e0.1 (40)  ≐  $ 545,982

#1.   M  =  ∫0
401000 dt

P  =  ∫0
401000 e

-0.1 t dt

F  =  ∫0
401000 e

0.1 (40-t) dt

 #2.   I(t)  =  100t
M  =  ∫0

40100 t dt

P  =  ∫0
40100 te

-0.1 t dt

F  =  ∫0
40100 te

0.1 (40-t) dt

#4.   P  =  ∫0
2010 000 e

-0.1 t dt

 #5.   The present value, what you should pay.
P  =  ∫0

+∞10 000 e
-0.1 t dt

               =  $100,000
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Chapter 9    Generalized Functions

Generalized functions and their special generalized calculus give correct answers in some important areas 
of application where ordinary calculus fails. One area is writing piecewise defined functions in a form 
where the Fundamental Theorem of Calculus applies.       Another is a way of representing impulse spikes 
or the density of a point particle in function form. 

9.1  Piecewise Defined Functions
In applications, functions are often defined by piecing together simpler continuous functions.

Example   The Unit Step Function, U(t). This piecewise defined function is very important in applications. 
For example, it  can represent ‘turning on’ an electric potential of  1 Volt  exactly at time  t = 0. 

-3 -2 -1 1 2 3 4
T

11

U (t)

Sectionally Continuous Functions  For both reasons of application and mathematics we modify 

acceptable types of piecewise defined functions.

Definition  A sectionally continuous function is a function which is

1. continuous on the real line except at finitely many points in each subinterval.
2. at each point of discontinuity  xi, f(xi

-) and  f(xi
+)  are finite real numbers.

f(xi
+)  is the limit from the right as  x  approaches  xi  

f(xi
-)  is the limit from the left as  x  approaches  xi

3. f(x)  is undefined at each point of discontinuity.
4. f(-∞) = 0  (this is not unduly restrictive because in many application, a quantity

is  0  initially or ‘turned on’ at some finite time after the creation).

176



The Unit Step Function is not a sectionally continuous function according to our definition because it is 
defined at the jump point  t = 0. A modification of that function, the Heaviside Generalized Function, is 
a sectionally continuous function. In applications, it is physically meaningful not to define the function 
at  t = 0  because one does not know and it does not matter whether a quantity is turned on exactly at 
or just before or just after  t = 0!  

-3 -2 -1 1 2 3 4
T

11

H (t)

Example  The Heaviside function multiplied by  3 and translated  2  to the right is  3 H(t - 2). 
It can represent ‘turning on’ an electric potential of  3 Volts  at  t = 2. 

1 2 3 4 5 6
T

1

2

3

3 H (t - 2)

Example  A sawtooth function. The open circle convention at discontinuities is normally assumed when 
working with generalized functions and will not usually be shown explicitly.

-1 1 2 3 4
X

11

Sawtooth (x)

Example   A more complicated sectionally continuous function is  

x - 8,   x > 2π

  0, x < 0
      c(x) =    sin x , 0 ⩽ x < 2π.

-2 2 4 6 8
X

11

c (x)
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Example  This jump function  j(x)  is not a sectionally continuous function because it has infinitely many 
discontinuities on the finite interval  0 < x < 1. (At endpoints of continuous subintervals, j(x) is not defined.) 
Nevertheless, because the discontinuities occur on an appropriate sequence of points, the theory we will 
develop in the next sections will also apply to this example.

X

Y

y = j(x)

1

1

Exercises

1. Write the equation for each sectionally continuous function using piecewise notation.

a.

-2 2 4 6 8 10
X

-1.0
-0.5

0.5
1.0

Y

b.

1 2 3 4 5 6
X

0.5
1.0
1.5
2.0
2.5

Y

c.

-2 -1 1 2 3 4 5
X

11

Y

d.

-4 -2 2 4 6 8 10
X

1

2
Y
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2. Graph each. Which are sectionally continuous functions? Graph each. Modify the ones which are not
sectionally continuous, when possible, so they are sectionally continuous.

a. f(x) =   0, x < -1
2, x ⩾ -1

b. g(x) =   0, x ≤ 0
x, x > 0

c. h(x) =
0, x < 0

sin (π x), 0 ⩽ x ⩽ 2
0, x > 2

d. k(x) =

0, x < 0
1, 0 < x < 2

-1, 2 < x < 4
0, x > 4

e. l(x) =  ex

e. m(x) =  e-x.

3. Invent four sectionally continuous functions. Graph each.

4. The Square Tooth Function (repeats indefinitely to the right).

-2 2 4 6 8 X

1

ST(x)

⋯

Graph each of the following. State if not a sectional continuous function.
a. y = 3ST(x)
b. y = -2ST(x)
c. y = ST(-x)
d. y = ST(2x)

e. y = sin x   ST (   )
f. y = 2 ST(x-2)

x
π

179



Solutions

1d.  y = 

0 x < -1
1 - x

0
-1 < x < 0
0 < x < 1

4 - (x - 3)2 1 < x < 5
0 5 > x < 6
1 6 < x < 8
0 x > 8

2a.  not sectionally continuous.

-3 -2 -1 1 2 3 X

-1

1

2

3

4
f(x)

2c.  sectionally continuous

-2 -1 1 2 3
X

-1.0

-0.5

0.5

1.0
h(x)

2e.  sectionally continuous

-4 -3 -2 -1 1 2 X

2

4

6

e
x
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9.2  Generalized Function Calculus Graphically
Generalized functions and their generalized integrals and derivatives give correct answers in 
many areas of applications where ordinary derivatives or integrals fail.

Generalized Integrals  First we note that, by the definition of definite  integral, ∫
a

b

f(x) dx,
does not exist if  f(x) is undefined somewhere on the interval a ≤ x ≤ b. 

y = c

a b
X

Y

NThis is because in the definition of integral,  ∑
i=1 f (xi

*
) dx  ≈> ∫

a

b

f(x) dx,  if for some choice of  dx,  f(x
i

*)  is

undefined, then the entire sum is undefined (even an infinitesimal defect poisons the whole sum). However, 
since the area under a point, no matter what's its value, is  0, we generalize the definition of definite integral 
to ignore isolated points where  f(x)  is undefined. Such an integral is called a generalized integral of  f.       
So in this graphical example we agree that  ∫

a

b
f(x) dx = (b-a)·c. Before we continue, recall the following for 

reference. 

Fact:

 If  f  is continuous (except at isolated points)  ⇒  ∫
a

x 
f (t) dt  is smooth (differentiable).  Proof: DIY

Integrating Derivatives  We would like, because of the Fundamental Theorem, the following to be true:

∫
a

x

f ' (t)dt  =  f(x) - f(a),

"the integral of the derivative of a function is the function minus its initial value". For sectionally functions,  

f(-∞) = 0. Then

∫-∞
x
f ' (t) dt = f (x)

This holds if  f(x)  is continuous using generalized integration. However, we will see that if  f  is not continuous, 
we will also have to generalize the idea of derivative for  

f ' (t) dt = f(x)  to hold.

An even better looking Fundamental Theorem!

  ∫
 
-
 
∞

 x
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Example  f(x)  is continuous. Everything is fine.  Verify mentally, using the slope and area interpretations.

-2 -1 1 2 X
1

2

3

y = f(x)

-2 -1 1 2 T
1

2

3

f '(t)

-2 -1 1 2 X
1
2
3


-∞

x

f '(t)dt = f(x)

The Heaviside Function  Let us recall the basic sectionally continuous function, H(x).

H(t) =   0
1

t < 0 .
t > 0

It is undefined at  t = 0.  It is useful as a multiplier in applications for ‘turning on’ a quantity at time  t = 0. 

-2 -1 1 2 3
T

-1

1

2

3
H(t)

Example  Let us try differentiating and then integrating  H(x). Everything is not fine.

-2 -1 1 2 3
T

-1

1

2

3
H(t)

-2 -1 1 2 3
T

-1

1

2

3
H ' (t)

-2 -1 1 2 3
-1

1

2

3


-∞

x

H ' (t) dt ≠ H(x)

The problem in this example is taking the ordinary derivative of  H(t)  at a discontinuity. Somehow we lose 
information at  x = 0. We will have to search for a correct 'generalized derivative'. (The generalized integral 
was used in integrating  H '(t)). Let us search for a more useful derivative by considering a modified 
Heaviside function and its derivative. 

ϵ
T

1

Hϵ(t)

ϵ
T

1/ϵ

Hϵ'(t)

⋮ ⋮

· · ·
ϵ

X

1

   Hϵ' (t) dt = Hϵ(x)
--∞∞

xx

In more detail:

X
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The above graph shows the approximation  Hϵ(t)  to  H(t)  with  ϵ  an infinitesimal.  The area under  Hϵ '(t)       
is  1,  just what we need. We call the resulting idea, the (Dirac) delta function, named after its inventor.          
It is written  δ(x).  
The delta function is not a function in the usual sense because at the 'interesting' place  x = 0,  it is undefined. 
It is called a distribution and is a  generalized function .

Definition  The Dirac Delta Function  δ(x)  is defined analytically by:

1. δ(x) = 0,  x ≠ 0

2.  δ(t) dt = H(x).   Conversely  the generalized derivative of  H(x)  is  δ(x). Equivalently
d
H(x) = δ (x) .

Graphically  δ(x)  is shown by an upward unit arrow with its tail at  (0, 0). 
The above  Hϵ '(t)  is a perfectly good definition for  δ(x)  because for every infinitesimal  ϵ > 0  the ‘spike’ fits 
between  0  and  ϵ.  Also the area of the spike, 1, is independent of  ϵ. However, most mathematicians prefer 
a definition free of infinitesimals. We will use the following definition although some proofs are easier if we 
use  Hϵ  (t),

The Dirac Delta Function  δ(x), a traditional definition
1. δ(x) = 0,  x ≠ 0
2. x

∫-∞δ(t)dt = H(x)  or conversely  d
dx

H(x) = δ(x)

Graphically  δ(x)  is shown as as a unit arrow with its tail at  (0, 0).

-2 -1 1 2 3 X

-1

1

2

3

δ(x)

We now with generalized functions, generalized derivatives and generalized integrals have the desired 

derivative of  H(x)  which satisfies  ∫-∞H ' (t) dt = H(x)!
x


-∞

x


-∞

x

H 'ϵ(t)  =     ϵ
0

0

t < O

O < t <

t > ϵ

ϵ

ϵ
T

1/ϵ

Hϵ'(t)

⋮
◼
 ⋮

◼

●●●

1 .

dx

'
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-2 -1 1 2 3 T

1

H(t)

-2 -1 1 2 3 T

1

H ' (t)

-2 -1 1 2 3 X

1


-∞

x
H ' (t) dt = H(x)

sThe method of finding the 'correct' generalized derivative of any generalized function is now clear.  
Its generalized derivative is just its ordinary derivative plus appropriated shifted delta functions  
multiplied by the magnitude of the function's jump at each discontinuity.  We say that  b δ(x-a)  is a 
‘delta function of strength  b  at  x = a'.

Example  Let  f(t)  be the function graphed below.

-2 2 4 6 8 X

-2

2

4

f(x)

Its generalized derivative is then:

-2 2 4 6 8 X

-4

-2

2

4
f ' (x)

You can verify, by visual generalized integration of  f '(t)  from  -∞  to  x, that the result is  f(x).

The Rule for Graphical Generalized Differentiation:

1. Draw the ordinary derivative of the function.
2. Add an arrow with length equal to the jump at each discontinuity.
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Summary   Functions which are  0  for  x  large and negative and which are 
continuous and ordinary differentiable except at isolated points and are bounded 
are called generalized functions. The  generalized function calculus consists of 
the generalized functions and ordinary functions together with their generalized 
derivatives and integrals. 

A generalized function with generalized differentiation and generalized 
integration satisfies the Fundamental Theorem of Calculus!

Exercises  Do all quickly.

1. Graph the generalized derivative  f '(x).  Verify its generalized integral is  f(x).

-2 2 4 6
X

1

2

3

f(x)

-2 2 4 6
X

-2

-1

1

2

3
f ' (x)

2. Graph the generalized derivative  g '(x).  Verify its generalized integral is  g(x).

-2 2 4 6 8
X

-3

-2

-1

1

2

3

g(x)

-2 2 4 6 8
X

-2

-1

1

2

3
g ' (x)

-2 2 4 6
X

1

2

3

f(x)

-2 2 4 6
X

-2

-1

1

2

3


-∞

x
 f ' (t) dt = f(x)
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a1

3. Invent your own  h(x).  Graph the generalized derivative   h '(x).  Verify its generalized integral is  h(x).

-2 2 4 6 8
X

-2

-1

1

2

3
h(x)

-2 2 4 6 8
X

-2

-1

1

2

3
h ' (x)

4. Generally 'integrating first and then differentiating' causes no problem:  ddx∫a
x
f(t)dt = f(x).

a. Prove this.  Hint: use the Fundamental Theorem of Calculus,  ∫
a

b
f(t) dt = F(b) - F(a).

b. Verify this graphically for the Heaviside function  H(x).

-3 -2 -1 1 2 3 4
X

-2

-1

1

2

3

(H
4

x)

-3 -2 -1 1 2 3 4
X

-2

-1

1

2

3

4


-∞

x

H(t) dt

-3 -2 -1 1 2 3 4
X

-2

-1

1

2

3

4

d

dx

-∞

x

H(t) dt

-2 2 4 6 8
X

-2

-1

1

2

3
h(x)

-2 2 4 6 8
X

-2

-1

1

2

3
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9.3  Generalized Functions Analytically

Review  The Heaviside Function  H(t)  

H(t) =   0
1

t < 0
t > 0

-2 -1 1 2 3
T

-1

1

2

3
H(t)

Review  The Dirac Delta Function  δ(x): 
1. δ(x) = 0,  x ≠ 0
2.  ∫-∞

x
δ(t)dt = H(x)  or conversely  d

dx
H(x) = δ(x)

Graphically  δ(x)  is shown by an upward unit arrow with its tail at  x = 0  on the X-axis.

-2 -1 1 2 3
X

-1

1

2

3

δ(x)

Using the Heaviside Step function to write equations of generalized functions 

First we do this for one function segment.

a b

X

Y

y = f(x)

y  = 'turn on  f(x)  at  x = a'  and then  'turn off  f(x)  at  x = b'
    =  f(x)H(x-a)  -  f(x)H(x-b).

For general generalized functions apply the above technique to each function segment.
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Example

-1 1 2 3 4 5
X

1

2

3

4
f(x)

x - 1

Its equation is 
f(x) = (x - 1)H(x-1) - (x - 1)H(x-3).

Generalized Calculus Properties of  H  and  δ
1. δ(x) = 0, x ≠ 0 1. δ(x-a) = 0, x ≠ a
2. ∫-∞

x
δ(t) dt = H(x) 2. ∫-∞

x
δ(t - a) dt = H(x-a)

3. H '(x) =  δ(x)
4. f(x) δ(x) = f(0) δ(x)

3. H '(x-a) = δ(x-a)
4. f(x) δ(x-a) = f(a) δ(x-a) 'Sifting Property'

The Sifting Property is useful in simplifying expressions involving the delta function.

Proof  The only mystery is #4, the Sifting Property.  f(x) δ(x) = f(0) δ(x)  follows from #1, since the only 
value of  f  that 'counts' is at  x = 0. 

y = f(x)
Y

Example  Let us look at the previous example.

f(x) = (x - 1)H(x-1) - (x - 1)H(x-3).

By the Product Rule 

f '(x) = 1 H(x-1) + (x - 1)δ(x-1) - 1 H(x-3) - (x - 1)δ(x-3)

          = H(x-1)  -  H(x-3)  -  2δ(x-3)          since by the Sifting Property:
(x - 1)δ(x-1)  = (1 - 1)δ(x-1)  = 0
(x - 1)δ(x-3)  = (3 - 1)δ(x-3)  = 2δ(x-3)

Note that this derivative does not involve a delta function at  x = 1. This is because  f  is continuous 
there. The graph of the derivative is

-1 1 2 3 4 5
X

-2

-1

1

2

f '(x)

which looks just right.

 I

X
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Interpretation of  δ '(x)   The delta function and its derivative are important in applications. 
Their geometric approximations are useful in understanding their properties.

Here are the approximations of  H(x)  and  δ(x)  again and  δ '(x). You can verify them by 
starting at the top with differentiation or starting at the bottom with integration.

ϵ
X

1

Hϵ(x)

ϵ
X

1

ϵ

δϵ(x)

⋮

To find the derivative of  δϵ(x) we will use another version of it in triangular form which also has area  1.

ϵ
X

1

ϵ

δϵ(x)

⋮

ϵ
X

1

ϵ2

δϵ'(x)

⋮

⋮....
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Graph of  δ ' (x)   A double headed arrow of length  1.

1

2

3

δ '(x)

-2 2 4 6
X

1

2

3

-2 -1 1 2 3

Physical Interpretations

δ(t) is a strong kick forward, 'unit impulse' at  t = 0. The area under it is  1. You can calculate
that the effect of a force  δ(t)  when applied to a particle is to produce an instantaneous change
in its velocity.

δ '(t)  is a very strong kick forwards followed immediately by an equal strong kick backward at  t = 0.  
The area under each spike is  +∞  for every non-zero  ϵ.  We will see that the effect of the force            
δ ''( t)  when applied to a particle is to produce an instantaneous change in its position with no net 
change of velocity.

Note  The Dirac Delta function is a genuine hyperreal based function, not the hyperreal extension of 
a real function. Clearly we need a hyper-hyperreal calculus based on hyperinfinitesimals  x  
smaller in size than any positive infinitesimal, in particular the  ϵ   we used in the pre-delta function.  
However, we can still get by thinking of the derivative as a slope and the integral as an area: there is 
no need here to develop a full hyper-hyperreal calculus.

Exercises  Work some from 1 to 9. Marvel the advanced application appendix.

1. A.  Write a formula for  f(x)  shown below in terms of  H  analytically. Find     in terms of  H  and  δ  
and simplify using the Sifting Property. Finally verify analytically that the Fundamental Theorem of 
Calculus holds.

_ B. Repeat part A but this time do graphically.

C. Why doesn't  f '(x)  involve a delta function?

f(x)

-

f(x)
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2. Repeat parts  1 A  and  1 B  for the function below.

4. Verify each by graphing and/or analytically.
a. ∫-∞

x
H(t)dt = x H(x) 

b. ∫-∞
x
∫-∞
t
H(s)ds dt = 1

2x
2 H(x)

3. Repeat parts  1 A  and  1 B  for the function below.

-2 2 4 6 8
X

-3

-2

-1

1

2

3

g(x)

ππ
X

11

y = g(x)
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5. Verify each Sifting Property of  δ '(x).
a. f(x) δ '(x) = -f '(0)δ(x)
b. f(x) δ '(x-a)= -f '(a)δ(x-a)

6. Graph each.
a. δ(x)
b. ∫-∞

x
δ(t)dt Write a formula for this function.

c. ∫-∞
x
∫-∞
t
δ(s)ds dt Write a formula for this function.

7. Criticise the graphical representation of  δ ' (x).

8. a.  Draw an approximation  δϵ'(x)  for  δ ''(x).
b. How would you show the graph of  δ ''(x)?
c. What is the Sifting Property of   δ ''(x)?

9. Show that  ∫-∞
+∞

δ(x)dx = 1.

10. A particle with mass 1 initially at rest at  x = 0. At  t = 0, the particle is subject to the following forces:
a. F = H(t)
b. F = δ(t)
c. F = δ '(t).

Use Newton's Law,  F = m a, to find the velocity and position as a function of time in each case. Graph

11. a. Find the antiderivatives of the functions  f(x)  and  g(x)  in exercises 1 and 2.
Notation:  F(x) =       f(t) dt.   ∫-∞

x
Verify the Fundamental Theorem of Calculus for these functions.
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I. Application to a vibrating string

     Find the solution for the plucked string problem with  f(x) = δ(x - π /2).  How would you produce this 
initial condition? The solution graphed below is the solution of the wave equation,  ∂2 

z /∂x2 =  ∂2 
z /∂t2.  

Study the solution and describe what happens.

II. Generalized Differentiability at a ridge - generalized derivatives work!

The solution for the plucked string problem with  f(x) = 
x, 0 ≤ x ≤ π

2

π - x, π
2 ≤ x ≤π

.  

Want to show that at a point where the solution is not differentiable in the ordinary sense, the solution satisfies 
the PDE in the generalized sense.

The string is plucked as shown below at  t = 0.

π
X

Z

At  t = π4   it looks like this. Surprise!

π
X

Z

A string is fixed at  x = 0  and  x = π. 
It is drawn up at  π/2  between two 
fingers into a pulse approximating a 
delta function and released at  t = 0. 
The motion of the pulse between  t = 0 
and  t = 2π   is shown.

Future types of applications, FYI.
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One half of a period of vibration is shown below.

A contour plot of the above is drawn below.

0 3π

4

π

0

π

4

π

0
3π

4 π

0

π

4

π

X

T

We will examine the solution at the red dot: x = 3π
4 , t = π4 .
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The curve through the red point in the X-direction is

π

2

3π

4
π
X

π

4

Z

The line through  the red point in the T-direction is

0
π

4

T

π

4

Z

a. Graphically find the generalized derivatives  ∂z
∂x

  and  ∂z
∂t

.  Note that they exist and are equal. Note: the symbol  ∂ 

is used instead of  d  when there is more than one independent variable

b. Graphically find the generalized derivatives  ∂
2z

∂x2   and  ∂
2z

∂t2
.  Note that they exist and are equal. This means the

wave equation at a sharp corner has a solution when generalized calculus is used, but not with ordinary calculus. 

In elementary calculus , this solution does not have 
either a first or second derivative in either the X-
direction or the T-direction at the corner point. 
Highly unsatisfactory (because the motion is real).

In generalized calculus , this solution does have 
both a first or second derivative in both the X-
direction and the T-direction everywhere. 
Completely satisfactory.

Exercise  Draw the first and second 
derivatives of the graphs on the left.
Of course they are equal respectively!
Thus the wave equation is satisfied at 
the red point.  
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Chapter 10  First 0rder Differential Equations

10.1  First Order Separable Differential Equations

The laws of growth of a quantity - particularly in finance, the natural sciences and engineering - are 
often expressed by equations where derivatives of the quantity appear. In this chapter we will begin 
the study of simple first order and second order differential equations. 

First order differential equations have the forms

dy
dx  =  f(x, y)           or           F(x, y, dy

dx )  =  0.

Their solutions have one arbitrary constant because in one way or another an indefinite integration is 
involved. The simple differential equation

dy
dx  =  x  has the general solution  y = x

2

2  + C.

The constant  C  is found by requiring the solution to pass through a point. If the solution goes through  
(2, 2), then  C = 0  and  y = x

2

2 .

How does a differential equation determine a solution?  Let us look at an example.

Example  Consider the differential equation  dy
dx  =  x + y. Let us find the solution passing through the

point  (0, 2).

Write the differential equation in its approximate differential form:
Δy ≐ (x + y)Δx.

     Start at  (0, 1). Chose  Δx = 1 (very large!). Find  Δy. Get the point (0+Δx, 1+Δy). Repeat.

(0, 1) ⟹      Δx = 1, Δy = (0 + 1)·1 ⟹         (1, 2)
(1, 2) ⟹      Δx = 1, Δy = (1 + 2)·1 ⟹         (2, 5)
(2, 5)  and so on. See the blue data points. Not bad? It goes roughly in the right direction when com-
pared to the exact solution, the black curve.

     For a better solution take  Δx = 0.1, say. Then you would get the red data. Much better. You could do 
this by hand in a few minutes with good mental arithmetic and concentration
    For a very good solution take  Δx = 0.01. Then you would get the purple data. The data points barely 

peek out from the under exact solution on the right. You could do this with some simple programming. 
    For a solution asymptotically equal to the exact solution, take  Δx = dx, an infinitesimal, of course! 
This is how a first order differential determines a solution.

196



Δx = 1

Δx = 0.1

Δx = 0.01Exact Solution

0.5 1.0 1.5 2.0 2.5 X

2

4

6

8

10

12

14

Y

→↑
Δx

Δy

The exact general solution of  dy
dx = x + y  is  y  =  Cex- x - 1. It is graphed for several values of  C  below. 

It is a homework problem to find this solution. The solution passing through  (0, 1)  is  

0.0 0.5 1.0 1.5 2.0 2.5
X

2

4

6

8

10

12
Y

 Solutions of
dy

dx
= x + y

C = 1 

C =C =C =
C = C =

y   =   2e x - x - 1.

——
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First order differential equations, Variables Separable

Both mathematicians and students like exact analytic methods which work for a large number of 
differential equations. One type is the variables separable equations:

      dy
dx  =  f(x) g(y)

    dy
g(y)  =  f(x) dx   separating variables

∫
dy
g(y)   =  ∫ f(x)dx integrating

The solution.

Example  Find the general solution of  dy
dx  =  y

x
.

dy
y

  =  dx
x

∫
dy   =  ∫

dx

separating variables

integrating

equivalent to  C  as the constant of integration. Why? 

Property 1 of logs

Property 2 of logs

Exponentiation

 y x

ln y  =  ln x + ln C 
ln y - ln x = ln       C 

ln(y /x)  =  ln C  
y =  Cx

Example  Find the solution of the initial value problem  
dy
dx =

x

y

y(0) = 1
.

dy
dx =

x

y

 y dy  =  x dx separating variables
∫ y dy  =  ∫ x dx integrating
y2

2   =  x
2

2  + C
2

2 looking ahead

y
2 - x

2  =  C2 a hyperbola
12 - 02  =  C2 initial condition
C

2  =  1

Solution:  y2 - x
2 = 1

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

X

Y

Since the bottom curve does not pass through the point  (0, 1), the correct solution is:

Solution: y = 1 + x2

-3 -2 -1 0 1 2 3
0.0
0.5
1.0
1.5
2.0
2.5
3.0

X

Y

Y
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Sometimes separation of variables is not entirely obvious.

Example  Find the general solution of  dy
dx  =  ex-y.

dy
dx  =  ex-y

   =  ex e-y property of exponents
 eydy  =  exdx        separating variables 

∫ ey dy  =  ∫ex dx integrating
        ey  =  ex +  C

  y  =  ln(ex +  C)             
Note:   y  =  ln ex +  ln C      

=  x + D
is wrong. Why?

Exercise 10.1.0  Find the exact solution of  dy
dx-- =  x + y.  Hint: make the change of variable  u = x + y.

Exercise 10.1.1 Which of the following equations are separable?

(a) y′ = sin(ty)

(b) y′ = et ey

(c) y y′ = t

(d) y′ = (t3 − t) arcsin(y)

(e) y′ = t2 lny + 4t3 lny

Exercise 10.1.2 Solve y′ = 1/(1+ t2).

Exercise 10.1.3 Solve the initial value problem y′ = tn with y(0) = 1 and n≥ 0.

Exercise 10.1.4 Solve y′ = ln t.

Exercise 10.1.5 Identify the constant solutions (if any) of y′ = t siny.

Exercise 10.1.6 Identify the constant solutions (if any) of y′ = tey.

Exercise 10.1.7 Solve y′ = t/y.

Exercise 10.1.8 Solve y′ = y2−1.

Exercise 10.1.9 Solve y′ = t/(y3−5). You may leave your solution in implicit form: that is, you may stop

once you have done the integration, without solving for y.

Exercise 10.1.10 Find a non-constant solution of the initial value problem y′ = y1/3, y(0) = 0, using

separation of variables. Note that the constant function y(t) = 0 also solves the initial value problem.

This shows that an initial value problem can have more than one solution.
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10.6 Generalized Functions Analytically

Review  The Heaviside Function  H(t)  

H(t) =   0
1

t < 0
t > 0

-2 -1 1 2 3
T

-1

1

2

3

U(t)

Review  The Dirac Delta Function  δ(x): 
1. δ(x) = 0,  x ≠ 0
2.  ∫-∞

x
δ(t)dt = H(x)  or conversely  d

dx
H(x) = δ(x)

Graphically  δ(x)  is shown by an upward unit arrow with its tail at  x = 0  on the X-axis.

-2 -1 1 2 3
X

-1

1

2

3

δ(x)

Using the Heaviside Step function to write equations of generalized functions

First we do this for one function segment.

a b
X

Y

y = f(x)

y  = 'turn on  f(x)  at  x = a'  and then  'turn off  f(x)  at  x = b'
    =  f(x)H(x-a)  -  f(x)H(x-b).

For general generalized functions apply the above technique to each function segment.
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Example*

-1 1 2 3 4 5
X

1

2

3

4
f(x)

x - 1

Its equation is 
f(x) = (x - 1)H(x-1) - (x - 1)H(x-3).

Generalized Calculus Properties of  H(x-a)  and  δ(x-a)
1. δ(x) = 0, x ≠ 0 1. δ(x-a) = 0, x ≠ a
2. ∫-∞

x
δ(t)dt = H(x) 2. ∫-∞

x
δ(t - a)dt = H(x-a)

3. H '(x) =  δ(x) 3. H '(x-a) = δ(x-a)
4. f(x) δ(x) = f(0) δ(x) 4. f(x) δ(x-a) = f(a) δ(x-a) 'Sifting Property'

Proofs  The only mystery is #4, the Sifting Property.  f(x) δ(x) = f(0) δ(x)  follows from #1, since the only value of  f  
that 'counts' is at  x = 0.  The Sifting Property is useful in simplifying expressions involving the delta function.

Example  Let us look at the previous example.
f(x) = (x - 1)H(x-1)  -  (x - 1)H(x-3).

By the Product Rule 
f '(x) = 1 H(x-1)  + (x - 1)δ(x-1)  -  1 H(x-3)  -  (x - 1)δ(x-3)
          = H(x-1)  -  H(x-3)  -  2δ(x-3)          since by the Sifting Property:

(x - 1)δ(x-1)  = (1 - 1)δ(x-1)  = 0
(x - 1)δ(x-3)  = (3 - 1)δ(x-3)  = 2δ(x-3)

Note that this derivative does not involve a delta function at  x = 1. This is because  f  is continuous there. The 
graph of the derivative is

-1 1 2 3 4 5
X

-2

-1

1

2

3
f'(x)

which looks just right.
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Interpretation of  δ '(x)   The delta function and its derivative are important in applications. Their geometric 
approximations are useful in understanding their properties.

Here are the approximations of  H(x),  δ(x),  and   δ '(x). You can verify them by starting at the top with differentia-
tion or starting at the bottom with integration.

ϵ
X

1

Hϵ(x)

ϵ
X

1

ϵ

δϵ(x)

To find the derivative of  δϵ(x) we will use another version of it in triangular form which also has area  1.

ϵ
X

1

ϵ

δϵ(x)

ϵ
X

1

ϵ2

δϵ'(x)
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Graph of  δ ' (x)   A double headed arrow of length  1.

-2 -1 1 2 3
X

-1

1

2

3

δ'(x)

Physical Interpretations
H(t)  is a constant force of magnitude 1  starting at  t = 0.
δ(t)  is a strong kick forward, 'unit impulse' at  t = 0. The area under it is  1. You can calculate that the effect 

of a force  δ(t)  when applied to a particle is to produce an instantaneous change in its velocity.
δ '(t)  is a very strong kick forwards followed immediately by an equal strong kick backward at  t = 0. The 

area under each spike is  +∞  as  ϵ → 0.  We will see that the effect  of the force  δ '(t)  when applied to a particle 
is to produce an instantaneous change in its position with no net change of velocity.

Exercises  Work 1 to 6,  10, 11. Marvel at advanced applications.

1.  Write a formula for  f(x)  in terms of  H.  Find  f '(x)  and simplify. Graph  f '(x)  by hand and computer.

-2 2 4 6
X

1

2

3

f(x)

-2 2 4 6
X

-2

-1

1

2

3
f'(x)

Why doesn't  f '(x)  involve a delta function? Do both graphically and analytically.

2.  Write a formula for  g(x)  in terms of  U.  Find  g '(x)  and simplify. Graph  g '(x)  by hand and computer.

-2 2 4 6 8
X

-3

-2

-1

1

2

3

g(x)
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-2 2 4 6 8
X

-2

-1

1

2

3
g'(x)

3. Invent your own  h(x).  Write a formula for  h(x)  in terms of  U.  Find  h '(x)  and simplify. Graph  h(x)  and  h '(x)
by hand and by computer. h  should have two non-zero segments one of which is non-constant.

-2 2 4 6 8
X

-2

-1

1

2

3
h(x)

-2 2 4 6 8
X

-2

-1

1

2

3
h'(x)

4. Verify each by graphing.
a. ∫-∞

x
H(t)dt = x H(x) 

b. ∫-∞
x
∫-∞
t
H(s)ds dt = 1

2x
2 H(x)

5. Verify each Sifting Property of  δ '(x).
a. f(x) δ '(x) = -f '(0)δ(x)
b. f(x) δ '(x-a)= -f '(a)δ(x-a)

6. Graph each.
a. δ(x)
b. ∫-∞

x
δ(t)dt Write a formula for this function.

c. ∫-∞
x
∫-∞
t
δ(s)ds dt Write a formula for this function.

7. Criticise the graphical representation of  δ ' (x).

204



8.  a.  Draw an approximation  δϵ'(x)  for  δ ''(x).
     b.  How would you show the graph of  δ ''(x)?
     c.  What is the Sifting Property of   δ ''(x)?

9.  Show that  ∫-∞
+∞

δ(x)dx = 1.

10.  A particle with mass 1 initially at rest at  x = 0. At  t = 0, the particle is subject to the following forces:
a.  F = H(t)
b.  F = δ(t)
c.  F = δ '(t).

Use Newton's Law,  F = m a, to find the velocity and position as a function of time in each case.

11.  Show that  f(x)  in Example * satisfies the fundamental theorem of calculus 

∫-∞
x
f ' (t)dt = f(x).
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A simple, but important and useful, type of separable equation is the first order homogeneous linear

equation:

Definition 10.1.2.1: First Order Homogeneous Linear Equation

A first order homogeneous linear differential equation is one of the form y′+ p(t)y = 0 or equiva-

lently y′ =−p(t)y.

“Homogeneous” refers to the zero on the right side of the equation, provided that y′ and y are on the

left. “Linear” in this definition indicates that both y′ and y appear independently and explicitly; we don’t

see y′ or y to any power greater than 1, or multiplied by each other (i.e. y′y).

Solutions 10.1

10.1.2 y = arctan t +C

10.1.3 y =
tn+1

n+1
+1

10.1.4 y = t lnt− t +C

10.1.5 y = nπ , for any integer n.

10.1.6 none

10.1.7 y =±
√

t2+C

10.1.8 y =±1, y = (1+Ae2t)/(1−Ae2t)

10.1.9 y4/4−5y = t2/2+C

10.1.10 y = (2t/3)3/2 

10.2  First Order Homogeneous Linear Equations
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Example 10.2.1: Linear Examples

The equation y′ = 2t(25−y) can be written y′+2ty = 50t. This is linear, but not homogeneous. The

equation y′ = ky, or y′− ky = 0 is linear and homogeneous, with a particularly simple p(t) = −k.

The equation y′+ y2 = 0 is homogeneous, but not linear.

Since first order homogeneous linear equations are separable, we can solve them in the usual way:

−p(t)y
∫ 

     =
1

y
dy =

∫

−p(t)dt

ln |y| = P(t)
P(t
+
) + C 

C

y = ±e
P ty  = Ae(     ),       where    ±e  

where P(t) is an anti-derivative of −p(t). As in previous examples, if we allow A = 0 we get the constant
solution y = 0.

Example 10.2.2 Solving an IVP

Solve the initial value problem

y′+ ycos t = 0,

subject to y(0) = 1/2 and y(2) = 1/2.

Solution. We start with

P(t) =

∫

−cos t dt =−sin t,

so the general solution to the differential equation is

y = Ae−sin t .

To compute A we substitute:
1

2
= Ae−sin0 = A,

so the solutions is

y =
1

2
e−sin t .

For the second problem,

1

2
= Ae−sin2

A =
1

2
esin2

so the solution is

y =
1

2
esin2e−sin t .

dy
dx

C = A
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Differential Equations

Example 10.2.2

Solve the initial value problem ty′+3y = 0, y(1) = 2, assuming t > 0.

Solution. We write the equation in standard form: y′+3y/t = 0. Then

P(t) =
∫

−3

t
dt =−3ln t

and

y = Ae−3ln t = At−3.

Substituting to find A: 2 = A(1)−3 = A, so the solution is
 y = 2t−3.

Exercises for 10.2

Find the general solution of each equation in the following exercises.

Exercise 10.2.1 y′+5y = 0

Exercise 10.2.2 y′−2y = 0

Exercise 10.2.3 y′+
y

1+ t2
= 0

Exercise 10.2.4 y′+ t2y = 0

In the following exercises, solve the initial value problem.

Exercise 10.2.5 y′+ y = 0, y(0) = 4

Exercise 10.2.6 y′−3y = 0, y(1) =−2

Exercise 10.2.7 y′+ ysin t = 0, y(π) = 1

Exercise 10.2.8 y′+ yet = 0, y(0) = e

Exercise 10.2.9 y′+ y
√

1+ t4 = 0, y(0) = 0

Exercise 10.2.10 y′+ ycos(et) = 0, y(0) = 0

Exercise 10.2.11 ty′−2y = 0, y(1) = 4

Exercise 10.2.12 t2y′+ y = 0, y(1) =−2, t > 0

Exercise 10.2.13 t3y′ = 2y, y(1) = 1, t > 0

Exercise 10.2.14 t3y′ = 2y, y(1) = 0, t > 0

Exercise 10.2.15 A function y(t) is a solution of y′+ky = 0. Suppose that y(0) = 100 and y(2) = 4. Find

k and find y(t).

Exercise 10.2.16 A function y(t) is a solution of y′+ tky = 0. Suppose that y(0) = 1 and y(1) = e−13.

Find k and find y(t).

Exercise 10.2.17 A bacterial culture grows at a rate proportional to its population. If the population is

one million at t = 0 and 1.5 million at t = 1 hour, find the population as a function of time.

Exercise 10.2.18 A radioactive element decays with a half-life of 6 years. If a mass of the element weighs

ten pounds at t = 0, find the amount of the element at time t.
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Solutions 10.2

 10.2.1 y = Ae−5t

10.2.2 y = Ae2t

10.2.3 y = Ae−arctan t

10.2.4 y = Ae−t3/3

10.2.5 y = 4e−t

10.2.6 y = −2e3t−3

10.2.7 y = e1+cos t

10.2.8 y = e2e−et

10.2.9 y = 0

10.2.10 y = 0

10.2.11 y = 4t2

10.2.12 y = −2e(1/t)−1

10.2.13 y = e1−t−2

10.2.14 y = 0

10.2.15 k = ln5, y = 100e−t ln 5

10.2.16 k = −12/13, y = exp(−13t1/13)

10.2.17 y = 106et ln(3/2) 

10.2.18  y = 10e−t ln(2)/6
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e
P(t)

y 
′ +  e

  P(t)   p(t)y  =  e P(t) f ( t)

d

dt
   (eP(t)y)  =  eP(t) f ( t). Product Rule

Integrating both sides gives

eP(t)y =

∫

eP(t) f (t) dt

∫

eP(t) f ( t)  dt + C,   the solution

10.3 First Order Linear Equations

y' + p(t)y = f(t)

y  =  e P(t)

Example  Solve  dy
dt - 2 y = 6

dy
dt
d

dt

Integrating Factor =  e∫-2 dt =  e-2 t

e
-2 t - 2 y e-2 t = 6 e-2 t

[y e-2 t]  =  6 e-2 t

integrating both sidesy e-2 t  =  -3 e-2 t + C y

y =  -3 + C e
2 t

Note: in the exercises, use the procedure of the example. Don't use the red formula.

    A common method for solving such a differential equation is by multiplying both sides by the 
integrating factor:*    
c    e  P(t)

c  where  P(t)  is an antiderivative of  p(t).
Then

-   

.
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Exercises for 10.3

In the following exercises, find the general solution of the equation.

Exercise 10.3.1 y′+4y = 8

NOTE  Big people, when no one is watching, use Wolfram 
Alpha or other resources to evaluate difficult integrals.

10.3.7 y = At2− 1
3t

c

t

2

3
10.3.8 y = +

√
t

10.3.9 y = Acos t + sin t

10.3.10 y =
A

+1− t

sec t + tan tsec t + tan t

Exercise 10.3.2 y′ − 2y = 6

Exercise 10.3.3 y′ + ty = 5t

Exercise 10.3.4 y 
′ + e t y = −2et

Exercise 10.3.5 y′ − y = t2

Exercise 10.3.6 2y′ + y = t

Exercise 10.3.7  ty′ − 2y = 1/t, t > 0

Exercise 10.3.8 ty′ + y = 
√

t, t > 0

Exercise 10.3.9 y′ cos t +  ysin t = 1 , −π /2 < t < π /2

Exercise 10.3.10 y′ +  ysec t = tan t, −π /2 < t < π /2

Solutions 10.3

10.3.1 y =  Ae−4t + 2

10.3.2 y =  Ae2t − 3

10.3.3 y =  Ae−(1/2)t2 
+  5

10.3.4 y =  Ae−et − 2

10.3.5 y =  Aet − t2 − 2t − 2

10.3.6 y = Ae−t/2 + t − 2

10.3.11  a. Derive again the general 
solution of

   y′ + p(t)y = 0
   y(0) = yo
{ .

b. Show that the above system can
be written in the one-line form preferred in 
some applications by

y' + p(t)y = y o δ(t).

      Important Note     
Show it is correct by solving it. When you 
integrate, use generalized integration and the Sifting 
Property.

The idea here is that all solutions are  0  at minus 
infinity and get a displacement at  t = 0 because of   
an impulse force.

--
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d

dx
(xn) = n xn-1

d

dx
(ex) = ex d

dx
(ax) = axln a

d

dx
(ln x) = 1

x

d

dx
(logax) = 1

x ln a

d

dx
(sin x) = cos x d

dx
(cos x) = -sin x

d

dx
(tan x) = sec2x d

dx
(cot x) = - csc2x

d

dx
(sec x) = sec x tan x d

dx
(csc x) = - csc x cot x

d

dx
(sin-1x) = 1

1- x
2

d

dx
(cos-1x) = -1

1- x
2

d

dx
(tan-1x) = 1

1+ x
2

d

dx
(cot-1x) = -1

1+ x
2

d

dx
(sec-1x) = 1

x x
2- 1

d

dx
(csc-1x) = -1

x x
2- 1

d

dx
(sinh x) = cosh x d

dx
(cosh x) = sinh x

d

dx
(tanh x) = sech2x d

dx
(coth x) = - csch2x

d

dx
(sech x) = -sech x tanh x d

dx
(csch x) = - csch x coth x

d

dx
(sinh-1x) = 1

1+ x
2

d

dx
(cosh-1x) = 1

x
2- 1

d

dx
(tanh-1x) = 1

1- x
2 , |x| < 1 d

dx
(coth-1x) = -1

1- x
2 , |x| > 1

d

dx
(sech-1x) = -1

x 1 - x2

d

dx
(csch-1x) = -1

    |x|    x2 - 1

The above list includes derivatives of all the basic elementary functions.

Integral Formulas

∫ undu = un+1+ C ∫ du
u

 = ln |u| + C

∫ eudu = eu+ C ∫audu = a
u

ln a
+ C

∫ cos u du = sin u + C ∫ sin u du = -cos  u + C

∫ sec2u du = tan u + C ∫ csc2u du = -cot  u + C

∫ sec u tan u du = sec u + C ∫ csc u cot u du = -csc  u + C

∫ tan u du = ln |sec u| + C ∫ cot u du = ln |sin u| + C

∫ sec u du = ln |sec u + tan u| + C ∫ csc u du = ln |csc u -  cot u| + C

∫ cosh u du = sinh u + C ∫ sinh u du = cosh u + C

∫ sech2u du = tanh u + C ∫ csch2u du = -coth  u + C

∫ sech u tanh u du = -sech  u + C ∫ csch u coth u du = -csch  u + C

∫ du

1- u
2

= sin-1u + C ∫ du

u
2- 1

= cosh-1u + C

∫ du

1+ u
2

= sinh-1u + C ∫ du
1+ u

2  = tan-1u + C

∫ du
1- u

2  = tanh-1u + C, |u| < 1 ∫ du
1- u

2  = coth-1u + C, |u| > 1

∫ du

u u
2- 1

= sec-1u + C ∫ du

u 1- u
2

= sech-1u + C

∫ du

   |u|      u2+ 1
= csch-1u + C 

Integrals of basic inverse functions can always be done by integration by parts. 

Memory work in 2015: the boldface formulas

Memory work in 1958: all the formulas

Derivative Formulas
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