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Preface

Infinitesimal Calculus, Volume Il

In Volume | we set up, in detail, the basics of hyperreal calculus. The payoff was being able to do a

thorough, elementary and intuitive development of calculus. Proofs of the all basic operational
formulas and theorems were accomplished as well as more difficult foundational theorems such as the
Extreme Value Theorem and the Riemann Integrability of Continuous Functions over a Closed
Interval.

In this Volume Il, early/late transcendentals, we continue the theoretical development - especially
applications of integration - using hyperreal analysis. Historically, the fundamental starting point of
calculus was thedifferential . This is because the basic laws of science and geometric are often simpler
to discover over an infinitely short interval of space or time. Now, with the basics of elementary

applications better understood, it makes sense to start where students have better mathematical strengths.

To find the rate of change of Q with respect to t, thederivative, you divide the differential by dt. To
find the change in Q fromtime t; to t,,the integral of f(t) over the interval, you sum the infinitesimal
f(t)dt’s from t; to t, and find the closest real number to this sum.

49 - £(t)

dt
T
dQ = f(t)dt the differential
J
AQ= [Lf(t)dt

The greatest benefit of infinitesimal methods is providing a reliable, intuitive
and foolproof guide to setting up applications of integration.

The differential in modern textbooks is a real number and is relegated to a method of approximating
a function near a point. It is also used somewhat dishonestly and without further explanation in order to
be able to employ powerful infinitesimal techniques such as the method of change of variable in

integration and separation of variables in differential equations. The symbol %\)f now is a fraction

and needs no awkward discussion and the chain rule is obvious and proves itself (check it out in
Volume I.

The great tools of infinitesimal calculus are infinitesimals, which facilitates the ultra-precise

calculations used to do calculus and the equivalence relation = which enables the rapid
comparison and simplification of hyperreal expressions.

Later misuse of the ke?/ comparison symbols =, = and => is not a big problem because their
outputs tend to differ only by an infinitesimal. = Is the approximate equality for real numbers.



Chapter 6 Advanced Transcendental Functions

6.1 Inverse Functions Theory - a Review

The main purpose of the inverse function is to solve for the independent variable x in y = f(x):

y=fx) & x =10

I. When does f have an inverse? Answer: if for each y in the range of f, there is exactly one x.
Y Y

g y=g(x)

4 y —

X E7) X,

Eachy, one x. Some y's, more than one X.
We say that f is one-to-one or invertible if for each y, there is exactly one x (or equivalently f passes the
Horizontal Line Test.) Note that increasing functions are invertible; so are decreasing functions.

II. How to find the formula for f-!
y =1(x)
Solve for x:

x=/"\(y)

IIL. The inverse function y = f~'(x) We prefer as usual, in working with or studying 7! to call the dependent
variable y. So interchanging x and y:

y=/"()
(In applications, f~! is usually of interest only when it cannot be found exactly! f~! is then found numerically by
computer.) Note that y=f(x) and y =f"!(x) have different graphs and therefore are different functions.

IV. How to graph y=#f-1(x) Since we interchanged x and y to obtain the graph of y=#"1(x) from that of y =
f(x):

Reflect the graph of y = f(x) across the line y =x.

Note which equations have the same graph.

Y
a (3,4)g Y=X
3f e *(a,3)
[ ]
20 °
4
[ )
1 3 3 4 X

How it works

The point (a, b) reflected across
the line y=x is the point (b, a).
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V. Inverse Function Identities These identities are verified by following the
) =x arrows in the graphs below. Start at x in the
f(f—l (y)) =y left graph and at y in the right graph.
Y Y
y=f(x) y=1(x)
— Yy —
0 = I
N 4
X X 1 X
£-1(6x)) o

VI. Application: Universal Equation Solver
Solve:
f(x)=c
W) = e Taking f~! of both sides
The solution:

x=fYo |} Inverse function identity

VII. Calculus of a inverse function

y=1x) = x =

1=7O) 3—1 Differentiating implicitly; Chain Rule
by 1
O )]
or
dy _ 1
dx  dx | Live math.
dy

Easy Example y=f(x)=2x+1

Y

X
1 2

Passes the Horizontal Line Test. So f~!(x) exists.

II. Find the formula for f-1?
y =f(x)=2x+1
Solve for x: x = f~1(y)

. 1oL
x=fty)=3y-3

III. The inverse function. Interchange x and y.
101
y=f1(x)=3x-3.



IV. Its graph.

Y

5 y =f(x)

4

3

2 y=x

y y=f1®
o AR X
-2 -1 1 2 3 4 5

V. Inverse function Identities. Let us check.
1 _1 1_1 _1_
S ix) = 2f(x) -3 2 2x+1)-5 =x

f(/1(0) = 2/~ () +1=2(5x - )+ 1=x.

Properties VI and VII are left as exercises. They are important for more difficult examples.

Harder Example y=gx)=Vx-2

If you solve for x and then interchange x and y, you get y =g~ !(x) 23242, Lets see.

Y
4r 7
\i/y =g-1(x)
y =gKx)
1r /
-2 -1 1 2 3 4 5 X

Recall that squaring an equation can give spurious solutions. Clearly, reflecting y = g(x) about the line y = x,

the correct inverse is

y=g"'x)=x2+2,x=0.

Another Example with a problem y=h(x)=x*+1

If you solve for x and then interchange x and y, you get y=h"!(x) 4 Vx—1. Let's see.
Y
4 -
y =h(x)
3 L

The problem here is that the function y =h(x) is not one-to-one. So it does not have an inverse. Nevertheless,
it will be useful at times to do the best we can in finding a related inverse. What we do is restrict the domain to x = 0;
what remains is one-to-one. (We could, of course, made the domain choice x < 0. In many advanced applications,
there are good reasons for one choice over another.) Conclusion:
y=hx)=x>+1,x=0
y=mh'x)=vx-1
Y
4
y=hix)

3F

2[ y =h1_l(x)




A Very Difficult Problem y = k(x) =2*

Y
4.

y = k(x)

y =k(x) is a one-to-one function. So its inverse exists. However, there is no elementary way to solve for x
in terms of y.

What one does in such cases is to give the inverse function a name and let a computer program figure out the
value of y for each x. Inverse functions are most important when you can’t solve for x explicitly!

In this case, as you may remember from high school math:
y=k(x)=2*
y =k7(x) = log,(x), “log, base 2, of x.”

Every one-to-one function has an inverse which automatically satisfies properties I
to VI and VII also if the function is suitably differentiable. This knowledge gives
you much information about the inverse function which it inherits from the original
function. This is very helpful in that beginners often find inverse functions
particularly difficult. In addition, any properties peculiar to to the original function
also translate into properties of the inverse function. Keep this in mind as we
continue through this chapter.

Exercises 6.1 In cach problem, do steps I to V. Check by graphing or calculating. Semi-memorize the
seven steps.

Ly=f(x)= 1-x*, 0<x<1.

2.y=g(X)=vV1-x?,-1sx<0.

y = h(x)
il 8
|
1\ 4l
. |
3.y=h(x=2X. Hint A\
2+x !
|
S NI S R e 2
o
|
" y = k(x)
I 4r
I gl
2,
4. y=k(x) = x - 3x. Find one partial inverse. Hint:
You can use a CAS or Wolfram Alpha to solve for x. a4 2 i

2t

5. y=3" -



Solutions
1. 2.
v Y
1 1
y=y1-x y=1-x

#4. y =f(x) =x3 - 3x. Solve for x and interchange x and y. We

will get the leftmost of the three possible inverses using a CAS:
13

y= f_l(X) == ke 13 = L—L_H il .
(—xh[ —4+x2 ) ! 21

Graphing

y=X3—3X

4L

y =f(x)

/y= F'(x)




6.2 Exponential Functions Review. The Natural Exponential Function

Review of Exponents pX < exponent
base 7

Definition of Exponents For n anatural number:

b*=b
b*=b-b

b*=b-b-b

b"=b-b-b -+ b-b, n factors of b.

Properties of Exponents (m,n natural numbers)

1. bMph= pmh Example: b%-b*=(b-b)(b-b-b) = b**+3
2. t;r: = pm " Example: = 22££0= p5-3  cancelling 3 common factors
3. (bM)"=pm" Example: (b%)°= (b-b)(b-b)(b-b) = b32? = b?3, two groups of three

We would like to define b* for other real numbers x. We do this in such a way that the Properties
of Exponents hold.

Definition b° = 1 because, for example, b° = b33 = f; =1 (Property 2)

Definition b™" = = because b™" = bh°~" = fs: ;l;,
What about fractional powers? Consider bl/zzr pY2.pt2= (pM22=pl=p = p"2=4/b
Definitions:
bYn=1b
p"n = ( )m = Apm
Recall that if n is an eveninteger, b must be non-negative for m odd.

Definition Exponential Function with base b

y=b*

Domain: all x
Range: 0 <y <+

0<b <1 = decreasing function
b>1 = increasing function
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10
Do not allow because, for example,

Note: Exponential functions are not defined for bases b <0. because y = (-2)x
is not a real number if x = %

Choosing a base for calculus

Which base b has the ‘nicest’ derivative?

i _ bx+dx_ b _ bdx_ 1 "
wP)= T =T b
Answer: if &=Lms1, Exploring this using limit approximations:

if bhh;l—>1as h—0
orb"-1—hash—0

or b — 1+hash—0
orb — (1+h)Y"as h—0

Let us calculate (note that these calculations are elementary but tedious):

h (1+h)Y/"
1 (1+1)1 =2
0.1 (1.1)° = 2.5937424601 Why didn't we do an exact derivation or proof?
9.01 (1.01) 198 - 2.748138294 Unfortunately for advanced functions there is
1000 _ often no elementary algebra that can do the

0.001 (1.001) = 2.716923 job. So we resort to a numerical procedure.
0.0001 (1.0001)109%0 - 2 7181458

{ {

(%] 2.718 ...

So the base which has the nicest derivative is
e=2.718 -
called Euler'sConstant. Leonard Euler, 1707 to 1783,

was the world's most prolific calculus mathematician.

Euler is pronounced 'Oiler’

Definition The natural exponential function is

Memorize this. Easier than m.

=X a—
y=e€', €=2.718281828459045 Amaze your friends.

L(e") = e [e'dx = e+



11

-2 -1 1 2

Tables of values for graphing by hand

X e
-2 014
-1 037
0 1

1 27

2 7.4

Financial Application of The Natural Exponential Function
You learned in high school about compound interest. Compounding means that after a period of time,

the interest earned is added to the initial amount and the new larger amount continues earning
interest. The future value F of a present value P at a yearly interest rate r compounded n times

yearly (a high school formula) is
F=p(1+5)"

What if compounding is done continuously (n - +0)?
F = limpoae P(1+ ﬁ)"t

liMpee0 P(1 + ﬁ)nT'”

. 1rt . ,
llmh_>oP[(1+h)h] Letting h = -

Pe't Note By the definition of e: e = limp0(1 +h);_

F = pe't

Example You take the amount of money, $200,000, your mom gave you at age 20 to go to university
but instead invested it at a rate of 10% compounded continuously. Will you be able to retire from your

McRonald’s job at age 65 and live well?
F = 200000 e(65-20)
= 200000 e**
= $18,000,000

Yes! (but watch out for inflation)
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12
Exercises 6.2
1. On the same graph, plot by hand y=¢*, y=e?*and y =e*2,
2. Onthe graph, plotby hand y=e™ and y=e72%,
3. On the same graph, plot by hand y=¢** and y=e™.
4. On the same graph, plot by hand y =e*and y =e*2

5. Prove that x¥3 = %/ x . Hint: cube the left hand side.

6. L(e¥) = L(e¥) =
i(esinx) — i(ex2 cosx) —
i((XZ + 7)esinx) — %(Xe:_l) —
L{tan(e®)) = (e ™) =

7. fetdt= fetcos(et)dt:

[x e dx [eedx

8. Find the area under the curve y=¢* for 0 <x < 1. lllustrate with a graph.

9. You decided to go to university anyway. But you decided to save the amount you budgeted for
lunches for the four years, $15,000, and invest it at 10% for 45 years? Should you get a job with
retirement benefits?

r\nt .
10. Derive the formula F = P(l + H) . Start with the simple interest formula F = P(1 + rt). Derive
this last formula first.

11. A certain bacterium divides every hour. How many will there be after 24 hours.
a. Use the exact formula.

b. Compare with the continuous compounding formula. F = Pe"

Solutions 6.2
6. €343
_ e+ 2x
e*'"*- cos x ex€0sX(2y cos X - X sin x)
2xeSN 4+ (2 + 7) eSN% cos X €92li1) e
( ) (x+1)
sec’(e**)e?*- 3 etnXsac? x
7. et + C sinet+C
1/2e°+C e®+C
y=e"
8. e-1
X
1 2

1-24
11a N=1(1+}) " =16777216

? .
b. N =1 el 24 _ 2.64891 x ]_()lo This is vastly greater than the correct answer 16,777,216.
Here the bacteria start growing immediately, whatever this means; they do not wait an hour.
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6.3 The Natural Logarithmic Function. Other Bases

The inverse of the natural exponential function is the natural logarithmic function. We will follow the
steps of section 6.1 to discover its inverse function properties.

I. Does y=f(x) =¢€* have aninversesothat y = f(x) = e < x = f1(y)?

Yes, it satisfies the horizontal line test.

Il. Find its inverse function by solving
y =f(x) =& for x.
This cannot be done by elementary algebra. So we pretend we can and write
x=f"(y) = In(y) Note “logarithms are exponents”
where Iny is called the natural logarithm of y. In is the abbreviation of its Latin name Logarithimus
Naturalis. It is pronounced ‘ell-n x’ or ‘lon (rhymes with Ron) x’ or in advanced work is written ‘log x’.

1. The natural logarithm function. x & .
y=lnx
IV. The graph of y=Inx

Note The values of named functions
such as the natural logarithmic function
typically are calculated numerically by
computer and which you can then freely
use in any application.

V. The Inverse Function ldentities

In(e¥) = x  ‘easy logs’ e"X = x  ‘exponentiation’
Example 2 inbase e formis
Examples Joinx 2= pln2 = 0693
Inz=lnet=-1 Al

Inl1=1Ie’=0 |

lne=lnel=1 -

lne? =2 /1 23 48X
-

These values are useful for graphing y=Inx by hand.




Compare with the case of easy roots,
useful for the same reason.

Vo =+vo? =0
Vi=+12=1
V=22 =2

VI. Solving Exponential Equations
Example Solve

e?X=7
Ine?*= In7 Take the log of both sides
2x = In7 Easy logs
_1
x=3In7
=0.973 Calculator.
VII. Calculus
y=lnx & x=¢
dy _ 1 __1_1
dx ~ dxigy ~ & T X*
L(nx) =2 ooy C
dx ¢ fu - nlul +

Verify that the absolute value sign in the integral is appropriate.
dn(— B
In(-x) x <0 ={dx‘”< K A )

d - 4a
—dx(ln|x|) dx { ln(X) x>0 _dd [n()() x>0
X

Example
d (1n(cin y)) = —L—. - :
&(ln(sm X)) = Sy COSX = cotx Chain Rule

Example The absolute values sign allows us to find the ‘area’ below from x=-2 to x=-1.
1

X
2.

2L

%= Inj|
= In|-1] - In|-2|
=0-ln2
=-ln2

-0.693
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Further Properties of Logarithms
The Properties of Exponents
1. el = e

e -
2.e—y—e Y

3. (e¥)Y =e¥

translate directly into

Properties of Logarithms
1. In(xy) = Inx + lny

X _
2, lny = lnx-lny

3. InxY=ylnx

Proof of 1 In(xy)=Inx + Iny

n(xy) o
= ln(elnx elny) exponentiation
= In(eM¥+1nY) property 1 of exponents
=lnx+ lny easy logs
Other Bases
o (bY) = b" udu= L= 4
dx(b) b*Inb fb du=2=+c
-3 _
dx(log X) ~ xlnb
Proof
y=b* < Iny=xlnb
1dy _
;&—l b
dy _
o - Ylnb
= b lnb
Proof
y:long = x=b
1=b"inb
d_ 1
dx 7 pinb
— 1
~ xlnb

or do by general property VIl of inverse functions.
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Logarithmic Differentiation
There is one more general derivative formula we need. We do not yet know how to differentiate
y = f(x)g(X)_

Method: take |n of both sides.
Iny = ln(f(x)g(x))

= g(x) In(f(x)) Property 3 of logarithms
7= g () +glx) 72 implici differentiation
or
) f!
=y (gx) In(f(x) + glx) g
)5 £ NOTE Do not memorize this formula.
= f(x)? (g (x) In(f(x)) + g(x) ) ) Go through this process for each example.

Example Graph y=x* The natural domain of this functionis x>0.

X x*
1 1t=1
2 22=4

i e 1 You will learn how to do this exactly in Section 6 or now
M0 X = numerically, say, by evaluating 0.0001%%%°1= 0.999079.

Local extreme values y=x
by logarithmic differentiation.

y = x* "
Iny = Inx*=x1Inx
Ltopxx-d Al
L= y(inx+1)

=x*(lnx+1)=0 5l
= lnx=-1

x=e1=037

y=0.37%%7=0.69 !

1 2 X
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Another application of logarithmic differentiation is to the differentiation of some complicated terms.

Example
3
Find the derivative of y = (ﬁ;(xl)ru:;—zL.
Iny = In((x* + 1) +3In(x+2) - 5In(x + 4) Properties of logs
1dy_2x . 3 5
ydx T+l ox42 x+4 Logarithmic Differentiation

2, 3 5

_ (2+1) (x+2)°

- (x+4) (x2+1 X+2  x+4

This method is quick and produces a good looking answer.

Exercises 6.3

d d d 5 d i
1. ot (e2x+3) - < (exl) — = (e(2x+3) ) — i (esmx) —
d d [ e¥ d d
ax (e*tanx) = &(;-3) = - (COS(e2X+3)) = £ (X3 e2x+3) —
X — 1 _x _ Cosx _ COoSX _
2. IX2+1dX_ IOXZ"'ldX_ fsin2x+ldx_ fsin dx=
3. [eldt= féTcosxeS‘“de: [7dx= [x107 dx=

4. Prove Property 2 of Logarithms [n i =lnx-lIny.

5. Prove Property 3 of Logarithms lnxY = y Inx.

6. &(n3)= £(Inx?) = Z(Inx®) = Z(Inx") =
7. % (23)() - % (lOXZ) - % (7(2x+3)5) - % (zsinx) -

8. Work by logarithmic differentiation.
% (3% = % (sinx<s¥) =

9. Work by logarithmic differentiation. Compare with ordinary differentiation.

_ x(2+3)(x*-5)

a.y = x(x+3)(x+5) by = e

10. Write y = 10X in base e form.

Solutions

8b. y=sinxs¥

[ny=cosxIn(sinx)

LAY — sinx In(sinx) + cosx %X
y dx sinx
dy - (92X _ginx In(si >
o =Y\ Gy -sinx n(sin x)

2 . .
= sinxm“(COS X _sinx In(sin x)>

sinx

10. 10X - (elnlO)X - e,XlnlO
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6.4 Inverse Trig Functions: Algebra

The Inverse Sine Function
If you want to solve sin 8=0.347, you need the inverse sine function: 8=sin"10.347 =20.304°.
The inverse sine function has many other applications in advanced calculus based applications.
Note: from the graph below, the function y =sinx is not one-to-one. The best we can do is observe
that it is one-to-one, for example, on the interval - ’ET <x< 127 We call the inverse function for this
interval sin~!x (if you are a mathematician) or for everyone else arcsinx (who might forget that
sin"!x does not mean 1/sinx.) If you chose the magenta colored function your answers would be
between 90° and 270° (OK, but nobody does that!)

«—| alternate arcsin x

y =sinx
\" 1 ’\T 3\" ] X
AR | = T — 27
2 2 2
1+
_37
Inverse Trig Identities
sin(arcsinx)=x, -1<x<1 arcsin(sin x)=x,—§$xs %
Examples Be careful : see below
sin(arcsin2) DNE arcsin(sinr) = 0

. . arcsin(sin x)
sin(arcsin x)

A /.
i

These examples are correct. But some math users always take sin(arcsin x) = x and arcsin(sin x) = x regardless of domains,
but that could cause some serious mistakes.
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Origin of the arcsin notation Look at the unit circle below.

y=sin@
means

0 is an angle whose sine is y
which means

6 is an arc whose sineis y
which said quickly is

@ =arcsiny

Other Inverse Trig Identities arcsinx means an ‘angle whose sineis x’. Itis often useful to
construct a triangle illustrating this.

Picture of arcsinx

arcsinx

J1—x2

Full basic list of inverse sine identities (domains not shown) See picture above.

1}
X
1}
=
I
X
N

sin(arcsin x) cos(arcsin x)

tan(arcsin x) cot(arcsin x)

=
X |k

sec(arcsin x) csc(arcsin x)
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Basic Trig/ Inverse Trig Graphs, standard choices
sinx, arcsinx COS X, arccos x tanx, arctan x
=l L
2
r
>t
oz = X L T 3 X
2 2 T :
ot
. I~
-1 1 I
I
2 -1t
cotx, arccotx SecXx, arcsec x CSCX, arccsc x
3r 3
2+ 2L
n
2
™ X 3T 1 2 3 X
2
-1F [
D
2 [
-3t L

Alternate Choices. Warning Some textbooks and computer algebra systems may also choose
arccot, arcsec and arccsc differently! (You will see in evaluating integrals, an important use of inverse

trig functions, any reasonable choice leads to the same answer.)

alternate arccot x our arccotx

€

T

arccot x selection graph
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One would expect: ArcTan[x] + ArcCot[x] :g. Why? See the diagram below.

arctan x + arccot x
T
>

arccot x

arctan x

Is there a geometry problem when x<0?

Exercises 6.4

1. Solve using inverse trig functions. Evaluate by calculator.

a. sin@=.35 b. cosx:% c. tany=55 d. secx=2

2. Find the first three positive solutions of sin 8=0.3 using inverse trig functions. Hint: Graph
sin 6.

3. As in the first example, evaluate and check with a graph.

a. cos(arccos 2) b. arccos(cos )
4. Graph y=tan(arctan x) and y =arctan(tan x). Indicate domain and range of each.
5. State the full basic list of inverse cosine identities. Illustrate. State domains.
6. State the full basic list of inverse tangent identities. Illustrate. State domains.
7. Solve each.
8. a.sinf=.358. b. cosx=1 c. tany=55g. d. secx=2
9. a. sin(arcsin 2x) b. tan(arcsin 3x) ¢. sin(2arcsin x)
10. Graph and compare both sides of cos(arcsinx) = «/1 -x2.
Solutions
2.

T ?7\/HT

arcsin(0.3), 77- arcsin(0.3), 271+ arcsin(0.3)

3.aD b. 1T

9. (with domain restrictions)

a.sin(arcsin(2x)) b. tan (arcsin(3x) . . .
_ 3x = 2 sin(arcsinx) cos(arcsinx) double angle formula

=2 =
= 2xV1-x2

c. sin(2arcsin x)
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6.5 Calculus of the Inverse Trig Functions

Letusdo :—X(arcsin x) first.

1

\/ 1-x2

%(arcsin X)=

¢ alternate arcsin x

y =sinx
\" 1 ’\T 3\]1 I X
AR = T — 27
2 2 2
-1k
_217
Proof
y=arcsinx & x=siny
1=cosy %‘XL differentiating implicitly
dy _ _1
dx cosy

= —L—— Pythagorean Identity

+4/ 1-sin?y

1

\/ 1-sin?y

Since our arcsinx has a positive slope

For the alternate arcsin x we would have chosen the negative square root.

d _ 1
axlarctanx) = ——

Proof

y=arctanx < x=tany
1=sec’y %f differentiating implicitly
dy _ _1
dx sec?y

= Pythagorean Identity
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(;Lx(arcsec X)=

1
|X|1’x2—1

Proof

y=arcsecx < x=secy
l=secytany %i'— differentiating implicitly
dy _ 1

dx secytany

=—72L Pythagorean Identity

isecyx/ tan?y -1

1
ixﬁxz—l

1
r— See graph below
|X|.[X2—l
SecC X, arcsec x
3
/k,

K « The slope of this arcsecx isalways positive.

1 2 3

-3 -2 -1
1t

‘\ _2 ' f
-3L

%(arcsin X) =

d —
o (arccos x) =

1-x? 1-x2
d d
d—x(arctan X) = T d—x(arccot X) = T
i(arcsec X) = — i(arccsc x) = —1
dx Ix|ve-1 dx |xlvx2=1
dx °
= arcsin x + C
f\/ 1-x2
f"—" = arctan x + C
1+x2
dx
— +
[Xm arcsec |x| + C

Why don't we turn the other three inverse trig derivatives into integral formulas?
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Exercises 6.5

1. Do a full derivation of the derivative of arccos x. Show a relevant graph.

d Lo d . _ d . _
2. +-(arcsinx?) = = (sinxarcsinx) = (xarcsin (ax + b))
dt dx cosxdx
3. —_— = —_ = —_—== =
) 4+ f4+5|nzx
4. Theinverse trigonometric integrals are often written
. u
U - arcsin2+C
Jaz_uz a
di_ - LarctanL+C
u+ a? a a

1
jd—” = —arcsec%L+C.
U u?-a? a

Derive these.

5. A statue 5 meters high sits on a pedestal 4 meters high. Find the viewing angle 8 as a function of

the distance x. For what value of x is the viewing angle a maximum?
/|
Ve
Ve
e 5
Ve
Ve
Ve
e
Ve
Ve
Ve
7
Ve _ -
P -
Ve _ -
s -
R 4
e _ -
L~
X
Solutions
. _ 9 4
5. Hint: 0 = arctan ~-arctan ©
Maximize 0:

Differentiate
Simplify
Solve

X = 6 meters.
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6.6 Hyperbolic Functions

The hyperbolic functions are a set of functions that have many applications to
mathematics, physics, and engineering. Among many other applications, they
are used to describe the formation of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have application to the theory
of special relativity. This section defines the hyperbolic functions and describes
many of their properties, especially their usefulness to calculus.

These functions are sometimes referred to as the “hyperbolic trigonometric
functions” as there are many, many connections between them and the stan-
dard trigonometric functions. Figure 6.6.1 demonstrates one such connection.
Just as cosine and sine are used to define points on the circle defined by x> +y* =
1, the functions hyperbolic cosine and hyperbolic sine are used to define points
on the hyperbola x? — y? = 1.

We begin with their definitions.

Definition 6.6.1 Hyperbolic Functions

e X 1
1. coshx = il dCh 4, sechx =
2 cosh x
_ X 1
2. sinhx = e"ie 5. cschx = —
2 sinh x
i cosh
3. tanhx = sinhx 6. cothx = — X
cosh x sinh x

These hyperbolic functions are graphed in Figure 6.6.2. In the graphs of
cosh x and sinh x, graphs of €*/2 and e /2 are included with dashed lines. As
x gets “large,” cosh x and sinh x each act like €*/2; when x is a large negative
number, cosh x acts like e7*/2 whereas sinh x acts like —e™*/2.

Notice the domains of tanh x and sech x are (—oo, 00), whereas both coth x
and csch x have vertical asymptotes at x = 0. Also note the ranges of these
functions, especially tanh x: as x — oo, both sinh x and cosh x approach €*/2,
hence tanh x approaches 1.

The following example explores some of the properties of these functions
that bear remarkable resemblance to the properties of their trigonometric coun-
terparts.

(cos 6,sin )

(cosh 6,sinh 0)

Figure 6.6.1: Using trigonometric func-
tions to define points on a circle and hy-
perbolic functions to define points on a
hyperbola. The area of the shaded re-
gions are included in them.

Pronunciation Note:

“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch.”
"coth" rhymes with "crotch."

The connection between the trigonometric and hyperbolic functions shown in Figure 6.6.1 is correct
but not particularly enlightening. We would like to see the relationships between the ‘angles’ rather

than the areas.

In more advanced calculus that includes the imaginary number i=+/ -1, the relationships becomes

clearer. That calculus is called Functions of a Complex Variable.

eix+ e—ix

COsSX = 2

Al Y
x

X+ e~X

coshx =


Bill
Typewritten text
"coth" rhymes with "crotch."

Bill
Typewritten text
  

Bill
Typewritten text
  A = 
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f(x) = coshx
—10 |
y
2+ f(x) = cothx
1 A 1
-2 \ 2
f(x) = tanhx
2 |

—10 |

f(x) = sinhx

f(x) = cschx

Figure 6.6.2: Graphs of the hyperbolic functions.

Example 6.6.1

Exploring properties of hyperbolic functions
Use Definition 6.6.1 to rewrite the following expressions.

1. cosh? x — sinh? x

2. tanh?x + sech? x

3. 2coshxsinhx

SOLUTION

1. cosh? x — sinh? x = (

So cosh? x — sinh?x = 1.

. Z(coshx)
g (sinhx)

. 4 (tanhx)

e“—e

_X>2
er + Ze)(e—x _|_ e—2x eZX _ 2€X€_X + e—Zx
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sinh? x 1
tanh? x + sech? x =
cosh’x  cosh®x
sinh?x + 1 L
=—— Now use identity from #1.
cosh” x
_ cosh? x _
~ cosh’x
So tanh? x + sech?x = 1.
e“+e™* ef—e™*
2coshxsinhx =2 *
2 2
e2x e—2x
= 2 .
4
2X —2x
e*—e
= 5 = sinh(2x).

Thus 2 cosh x sinh x = sinh(2x).

d d [e¥+e™™
d—x(coshx) == (2 >

ef—e™*
2
= sinhx.

So 4 (coshx) = sinhx.

dx
d, . d [e¥—e™*
d—x(smhx) = (2 )
+
2

e“+e™*

= cosh x.

So 4 (sinhx) = coshx.

i(tanhx) _ 9 (sinhx
dx " dx \ coshx

cosh x cosh x — sinh x sinh x

cosh? x
1

cosh? x
= sech?x.

So £ (tanhx) = sech®x.
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The following Key Idea summarizes many of the important identities relat-
ing to hyperbolic functions. Each can be verified by referring back to Definition
6.6.1.

Key Idea 6.6.1 Useful Hyperbolic Function Properties. You actually should semi-memorize these!

Basic Identities Derivatives Integrals
1. cosh®x —sinh?x = 1 1. g (coshx) = sinhx 1. /coshxdx =sinhx+C
2. tanh?*x + sech’x =1 2. & (sinhx) = coshx
2. inh x dx = cosh C
3. coth’x — csch?x =1 3. Z(tanhx) = sech’x /sm s
_ 2 B 2 d
B el 22 = Gl S el 4. & (sechx) = —sechxtanhx 3. /tanhxdx = In(coshx) + C
5. sinh 2x = 2sinh x cosh x 5. Z(cschx) = —cschxcothx
X
cosh2x + 1 4. /cothxdx: In|sinhx |+ C
6. cosh’x = B 6. 4 (cothx) = —csch’x | |
cosh2x — 1
7. sinh?*x = —

We practice using Key Idea 6.6.1.

Example 6.6.2 Derivatives and integrals of hyperbolic functions
Evaluate the following derivatives and integrals.

d In2
1. de(COShZX) 3./0 cosh x dx

2. /sech2(7t —3)dt

SOLUTION

1. Using the Chain Rule directly, we have - (cosh 2x) = 2sinh 2x.

Just to demonstrate that it works, let’s also use the Basic Identity found in
Key Idea 6.6.1: cosh 2x = cosh® x 4 sinh® x.

d d
o (cosh 2x) = ™ ( cosh? x + sinh? x) = 2 cosh xsinh x + 2 sinh x cosh x

= 4 cosh xsinh x.
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Using another Basic Identity, we can see that 4 cosh xsinhx = 2 sinh 2x.
We get the same answer either way.

2. We employ substitution, with u = 7t — 3 and du = 7dt. Applying Key
Ideas 6.1.1 and 6.6.1 we have:

1
/sech2(7t —3)dt= 5 tanh(7t — 3) + C.

In2

= sinh(In2) — sinh 0 = sinh(In 2).

In2
/ cosh x dx = sinh x
0 0

We can simplify this last expression as sinh x is based on exponentials:

In2 —1In2
e —e 2—1/2 3
sinh(In2) = 5 - /2 _ 7




Exercises 6.6
Terms and Concepts

1. InKeyldea6.6.1, theequation/tanhxdx: In(coshx)+C

is given. Why is “In | cosh x|” not used —i.e., why are abso-
lute values not necessary?

2. The hyperbolic functions are used to define points on the
right hand portion of the hyperbola x* — y* = 1, as shown
in Figure 6.6.1. How can we use the hyperbolic functions to
define points on the left hand portion of the hyperbola?

Problems

In Exercises 3 — 10, verify the given identity using Definition

6.6.1, as done in Example 6.6.1.
3. coth®’x —csch®’x =1

4. cosh 2x = cosh? x + sinh? x

cosh2x + 1
2

5. cosh’x =

cosh2x — 1
2

6. sinh’x =

d
7. — [sechx| = —sech xtanh
I [ x] b's X

[cothx] = — csch” x

dx

9. /tanhxdx = In(coshx) + C

10. /cothxdx = In|sinhx| +C

In Exercises 11 — 22, find the derivative of the given function.

11. f(x) = sinh 2x

12. f(x) = cosh?x

13. f(x) = tanh(x%)
14. f(x) = In(sinhx)
15. f(x) = sinhxcoshx

16. f(x) = x sinh x — cosh x

In Exercises 23 — 28, find the equation of the line tangent to
the function at the given x-value.

23. f(x) =sinhxatx=0
24. f(x) = coshxatx =1In2
25. f(x) =tanhxatx= —1In3

26. f(x) = sech’xatx=1In3

In Exercises 29 — 44, evaluate the given indefinite integral.

29. /tanh(Zx) dx
30. /cosh(3x —7)dx

31. / sinh x cosh x dx

In Exercises 45 — 48, evaluate the given definite integral.

1
45, / sinh x dx
—1

In2
46. / cosh x dx

—1In2

47. sech rhymes with?

csch rhymes with?
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Solutions 6.6 o S feoms - 22

dx e —eX
(@ —e)(¢F—e) — (& fe (¢ +e )
N (e —e—x)2
_ er + efzx 2 (eZX + efzx + 2)
- (ex _ e—x)z
1. Because cosh x is always positive. _ 4
T (e —e)2
2. The points on the left hand side can be defined as )
(— cosh x, sinh x). = —csch®x
sinh x
9. tanhx dx = dx
B
3. coth? x — csch?x = te - L _ hx: d C,OSh?(h
X — e X X — e X et u = coshx; du = (sinh x)dx
1
(e 2+e7 ) — (4) =/Edu
- 2 _ —2x
€ 2te =Injul+C
er -2+ 6,72)(
= m = In(cosh X) + C.
_ h
=1 10. /cothxdx = / C?S X dx
sinh x
X +e\2 & —e—x\?2 Let u = sinhx; du = (cosh x)dx
4. cosh? x + sinh? x = ( ) ( ) 1
2 2 :/7du
er +2+ e—2x er -2+ e—2x u
- 4 4 =Inful+C
2e% 4 2= = In|sinhx| + C.
4 11. 2cosh 2x
er + e—2x
= 12. Taking the derivative of (cosh x)? directly, one gets 2 cosh x sinh x;
2 using the identity cosh? x = %(cosh 2x + 1) first, one gets
= cosh 2x. sinh 2x; by Key Idea 6.6.1, these are equal.
13. 2xsec?(x?
. (e +e” 2 ()
>. cosh”x = T 14. cothx
e 42 4 e 15. sinh? x + cosh? x
4 16. xcoshx
_1(e¥ e )42
2 2
1 2x —2x 23. y=x
_t (i n 1)
2 2 2. y=(x—In2)+;
cosh2x + 1 B
=5 25. y:é;(x+ln 3) ,_g
__7n 9
e\ 2 26. y=—i3(x—1In3) +5
6. sinh?x = (7>
2 29. 1/2In(cosh(2x)) + C
2 -2
e —2+e™ 30. 1/3sinh(3x — 7) +C
4
1(e+e2)—2 31. 1/2sinh?x+ Cor1/2cosh?x + C
2 2
_ 1 <62X+8_2X 3 1) 45, 0
2 2 46. 32
__cosh2x—1
2 ’ 47. screetch
go screetch
d d 2
7. — [sechx] = — {7}
dx dx |[eX+ e X
_ 2(ef—e™)
- (ex + e—x)z
_ 2(e¥—e™)
(@ te e +er)
2 e —e™*

eX + e—X e)( + e—X

= —sechxtanhx
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6.7 Inverse Hyperbolic Functions

Just as the inverse trigonometric functions are useful in certain
integrations, the inverse hyperbolic functions are useful with other related
ones. Figure 6.6.3 shows the restrictions on the domains to make each
function one-to-one and the resulting domains and ranges of their inverse
functions. Their graphs are shown in Figure 6.6.4.

Because the hyperbolic functions are defined in terms of exponential func-

tions, their inverses can be expressed in terms of logarithms as shown in Key Idea
6.6.2. It is often more convenient to refer to sinh~ x than to In (x + VX2 + 1),

especially when one is working on theory and does not need to compute actual
values. On the other hand, when computations are needed, technology is often
helpful but many hand-held calculators lack a convenient sinh™* x button. (Of-
ten it can be accessed under a menu system, but not conveniently.) In such a
situation, the logarithmic representation is useful. The reader is not
encouraged to memorize these, but rather know they exist and know how to
use them when needed, i.e., semi-memorize them.

Function Domain Range Function Domain Range
cosh x [0, 0) [1,00) cosh™'x [1, 00) [0, 00)
sinh x (—00,00) (—00,00) sinh~!x (—00, 0) (—00,00)
tanh x (—00,00) (-1,1) tanh™ ! x (—1,1) (=00, 00)
—sechx—— {000 —————————— {01} ———— sech™!x (0,1] [0, 00)
eschx  (—00,0)U(0,00) (—00,0) U (0,00) esch™'x  (—00,0)U(0,00)  (—00,0) U (0,00
cothx  (—00,0) U (0,00) (—o0,—1)U(1,00) coth™*x (—o00,—-1)U(1,00) (—00,0)U (0,00

Figure 6.7.3: Domains and ranges of the hyperbolic and inverse hyperbolic functions.

y = cosh x P 10 + ,
// y = sinhx — ,’/
. P
. 5 .
P .

’ y = cosh™'x —10 -5 — 5 ‘ 10

/// 5 y =sinh~1x
” —> X ///
5 10 7 10 +

Figure 6.6.4: Graphs of the hyperbolic functions and their inverses.



33

Note on Notation
The ‘-1 power’ notation is widely used by mathematicians. This seems to make sense:
y=f(x) & x=Ff"(y).
It looks like to go from the left equation to the right one is take ! Z % . But reciprocals are for

variables not functions. Many beginners make the mistake of writing sinh™(x) = Sinlhx. Bad. Bad.

Otherwise the notation sinh™ isjust fine.

Some authors write arcsinh, but arcsinh has nothing much to do with arcs or angles.

Others write argsinh because iny =sinh x, x is the argument of the sinh function. It is a good
notation but not widely used.

By Calculus Il you should be able to handle sinh=!

Key Idea 6.6.2 Logarithmic definitions of Inverse Hyperbolic Functions

1. cosh 'x=In(x+vx2—1);x>1 4. sinh™'x=In (x + /x> + 1)
1 14+ x 1 x+1

2. tanh~tx = = In [ Xl <1 5. coth 'x=Z1In + ;x> 1
2 1-—x 2 x—1

N Jit2
3. sech *x=In (%) ! ﬂ);X#O

;0<x<1 6. csch_lx:ln<—+
X x|
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6.6 Hyperbolic Functions

The following Key Ideas give the derivatives and integrals relating to the in-
verse hyperbolic functions. In Key Idea 6.6.4, both the inverse hyperbolic and
logarithmic function representations of the antiderivative are given, based on
Key Idea 6.6.2. Again, these latter functions are often more useful than the for-
mer. Note how inverse hyperbolic functions can be used to solve integrals we
will use Trigonometric Substitution to solve in Section 7.4.

Key Idea 6.6.3 Derivatives Involving Inverse Hyperbolic Functions
d 1 d -1
1. —(cosh™x) = ——; x> 1 4, —(sech™'x) = ———;0<x<1
dX( ) x2—1 dX( ) xvV/1—x2
d 1 d -1
2. —(sinh™1x) = —— 5. —(csch™ix) = ———: x#£0
dX( ) VX2 +1 dX( ) Ix|v/1+x2 7
— -1 — d -1 .
3. < (tanh X)_l— 5 Xl <1 6. E{(coth X) S5 x> 1
Key Idea 6.6.4 Integrals Involving Inverse Hyperbolic Functions
1 ;dx = cosh_l({)+C'0<a<x =In{x+vx2—a%|+C
RV Er a/ " -
1 X
2. ———dx = sinh™* (—) +C a>0 =In ’x \/ X2 02’ C
/ o a ; = = F
1 —1(x 2 2
1 = tanh (a)+C x-<a 1 o x
@ leoth™ (2)+C a2 <x a ja—x These
0 we
1 X 1 X .
4. ———dx = ——sech™?! (—)—i—C‘ 0<x<a =—1In (—) +C will
/X\/GZ—XZ a a ’ a a+ Va2 —x? use
1 1 X 1 X later
5. ——dx = ——csch_ll—‘—kC‘x 0,a>0 =-In|——|+C ’
/X\/xz—l—a2 a a 3 X7 0, a |a++va2+x2
We practice using a derivative formula in the following example.
Example 6.6.3 Derivative involving inverse hyperbolic functions
Evaluate.
d h-t 3x—2
ax €08 5
SOLUTION

Applying Key Idea 6.6.3 with the Chain Rule gives:

d 1 (3x—-2 1 3
— |cosh = S =
dx 5 (3,(,2)2 _1 5

5
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We practice using an integral formula in the following example.

1
/xz—ldx

SOLUTION

Multiplying the numerator and denominator by (—1) gives: / dx =

x2—1
" dx. The second integral can be solved with a direct application
of item #3 from Key Idea 6.6.4, with a = 1. Thus

1 1
/xz—ldx__/l—xzdx

—tanh ' (x)+C <1

—coth™'(x)+C 1<x

x+1
x—1

=—=1In
2

’JrC

x—1
x+1

==1In

e

This section covers a lot of ground. New functions were introduced, along
with some of their fundamental identities, their derivatives and antiderivatives,
their inverses, and the derivatives and antiderivatives of these inverses. Four
Key Ideas were presented, each including quite a bit of information.

Do not view this section as containing a source of information to be memo-
rized, but rather as a reference for future problem solving. Key ldea 6.6.4 con-
tains perhaps the most useful information we will use later



Exercises 6.7

In Exercises 11 — 22, find the derivative of the given function.
17. f(x) = sech™*(x*)

18. f(x) = sinh—1(3x)

19. f(x) = cosh~}(2x%)

20. f(x) = tanh~*(x + 5)

21. f(x) = tanh™*(cosx)

22. f(x) = cosh™*(secx)

In Exercises 23 — 28, find the equation of the line tangent to
the function at the given x-value.

27. f(x) =sinh *xatx=0
28. f(x) = cosh™'xatx = /2

In Exercises 29 — 44, evaluate the given indefinite integral.
1
34. — dx
/ Vxi 41

1
35. —dx
/ VX2 —9

36. / !
9

— x2

dx

36

Solutions 6.7

17.

18.

19.

20.

21.
22.

27.

28.

34.
35.

36.

y = (x — v2) + cosh™1(v/2) =~ (x — 1.414) 4+ 0.881

sinh~™*x+C=In(x+vx>+1)+C
cosh™x/34+C=1In(x+vx* —9) +C

%tanh_1 (%) +c x> <9
%coth*1 (3)+c 9 < x?

Tinx+1/—3mix—1/+¢C
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6.8 L'Hopital’s Rule

While this chapter is devoted to learning techniques of integration, this
section is not about integration. Rather, it is concerned with a technique of
evaluating certain limits that will be useful in the following section, where
integration is once more discussed.
Our treatment of limits exposed us to the notion of “0/0”, an indeterminate
form. If lim f(x) = 0 and lim g(x) = 0, we do not conclude that lim f(x) /g(x) is
X—C X—C X—C

0/0; rather, we use 0/0 as notation to describe the fact that both the numerator
and denominator approach 0. The expression 0/0 has no numeric value; other
work must be done to evaluate the limit.

Other indeterminate forms exist; they are: co/oc0, 0- 00, 00 — 00, 0°, 1% and
00?. Just as “0/0” does not mean “divide 0 by 0,” the expression “00/00” does
not mean “divide infinity by infinity.” Instead, it means “a quantity is growing
without bound and is being divided by another quantity that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 - 0co” does not mean “multiply zero by infinity.” Instead,
it means “one quantity is shrinking to zero, and is being multiplied by a quantity
that is growing without bound.” We cannot determine from such a description
what the result of such a limit will be.

This section introduces I’"Hopital’s Rule, a method of resolving limits that pro-
duce the indeterminate forms 0/0 and oo/oc. We'll also show how algebraic
manipulation can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

Theorem 6.8.1 L'Hopital’s Rule, Part 1
Let lim f(x) = 0 and lim g(x) = 0, where f and g are differentiable func-
X—C X—C

tions on an open interval | containing ¢, and g’(x) # 0 on I except possi-

bly at c. Then
) ()
lim —= = lim .
x=cg(x)  x—cg’(x)
Y
Proof Near x=c, x # ¢ by tan line approximations y=f(x) y=0(x)

f(x) = f(c) + f'(c)(x-c) = f'(c)(x-c)
g(x) = g(c) + g'(c)(x-c) =g '(c)(x-c)

So /y =/f'(c)(x-c)
f(x) ~ f'lc)(x-c r f'(c
g(x) g'(c)(x-c g'(c

or ) y=g(c)(x-c)
lim fx) =i f'x) ) ’
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We demonstrate the use of I'Hopital’s Rule in the following examples; we
will often use “LHR” as an abbreviation of “I’'Hépital’s Rule.”

Example 6.8.2 Using I’Hopital’s Rule
Evaluate the following limits, using I’'Hopital’s Rule as needed.

. sinx N
1. lim — 3. lim ————
x=0 X x—01 — cosx
o Wx+3-2 . X 4+x—6
2. lim ———— 4. lm —
=1 1—x x—=2 X2 —3x+2
SOLUTION

1. We proved this limit is 1 in Example 1.3.4 using the Squeeze Theorem.
Here we use I’'Hopital’s Rule to show its power.

_ sinx bYLHR - cogx
Iim— = |lim — =1.
x—0 X x—0 1

VX3 -2 BYWBR (x4 3)71/2 1

2. im——r- = lIm=—=——.
x—1 1—x x—1 -1 4
. X2 by LHR ) 2x
3. im — = |lim —.
x—0 1 — cosx x—0 Sin x

This latter limit also evaluates to the 0/0 indeterminate form. To evaluate
it, we apply I’"Hopital’s Rule again.

Iim— = — =2.
x—0 sin x cos X
2
. X
Thus lm —— =2
x—01 — cosx

4. We already know how to evaluate this limit; first factor the numerator and
denominator. We then have:

2 -6 -2 3 3
i X TX=6 . x=2)(x+3) . ox+3

= —_ —5~
x=2x2 —3x+2 =2 (x—2)(x—1) x-2x-—1

We now show how to solve this using I’'Hopital’s Rule.

x4 x—6 bYHR 9y q
Im —— = Ilim =5
x—2x2 —3x+2 x—22x —3

Note that at each step where I’'H6pital’s Rule was applied, it was needed: the
initial limit returned the indeterminate form of “0/0.” If the initial limit returns,
for example, 1/2, then I’'H6pital’s Rule does not apply.
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The following theorem extends our initial version of I’'Hopital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form oo/oo
and to limits where x approaches -oc.

Theorem 6.8.2 L'Hopital’s Rule, Part 2

1. Let lim f(x) = +o00 and lim g(x) = too, where fand g are differ-
X—a X—a
entiable on an open interval / containing a. Then
/
0 _ . F®)

lim —=% = .
x'_rf} g(x) x—=ag’(x)

2. Letfand g be differentiable functions on the open interval (a, co)
for some value a, where g’(x) # 0 on (a,00) and lim f(x)/g(x)
X—r 00

returns either “0/0” or “oo/oc0”. Then
/
0 _ 0

lim —= = .
x—l>oo g(x) X—500 g’(x)

A similar statement can be made for limits where x approaches
—0Q.

Example 6.8.2 Using I’Hopital’s Rule with limits involving oo
Evaluate the following limits.

. 3x*>—100x+2 e
1. Im ———— 2. lim —.
x—00 4x% + 5x — 1000 x—00 X3
SOLUTION

1. We can evaluate this limit already using Theorem 1.6.1; the answer is 3/4.
We apply I'Hopital’s Rule to demonstrate its applicability.

3x> —100x +2 DPYUHR - gx—100 PYUR 3
im ———— = lim —— = lim = = —.
x—o00 4x% + 5x — 1000 x—oo 8x+5 x—o00 8 4
e by LHR e by LHR e by LHR e
2. lim - = lim — = lim — = lim — = co.
X—00 X x—00 3x2 x—00 6X x—00 6

Recall that this means that the limit does not exist; as x approaches oo,
the expression €*/x* grows without bound. We can infer from this that
e* grows “faster” than x3; as x gets large, e* is far larger than x3. (This
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has important implications in computing when considering efficiency of
algorithms.)

Indeterminate Forms 0 - oo and co — oo

L'Hépital’s Rule can only be applied to ratios of functions. When faced with
anindeterminate form such as 0- 0o or co — 0o, we can sometimes apply algebra
to rewrite the limit so that I'Hopital’s Rule can be applied. We demonstrate the
general idea in the next example.

Example 6.8.3 Applying I’'Hopital’s Rule to other indeterminate forms
Evaluate the following limits.

1. lim x-e'/ 3. limIn(x+1)—Inx
x—0+ X—00
. 2 X
2. Xlﬂirgix-el/" 4, Xll)rrgox —_e
SOLUTION
1. Asx — 0", x — 0and e'/* — oco. Thus we have the indeterminate form

1/x

e
1/% 35 7 oW, asx — 01, we get
X

0 - co. We rewrite the expression x - e
the indeterminate form oo /oo to which I’'Hépital’s Rule can be applied.

1/x by LHR 2) pl/x

. . e . —1/x%)e .

lim x-eY* = lim = lim % = lim eY* = x.
x—0t x—0F 1/X x—0F *1/X x—0F

Interpretation: el/* grows “faster” than x shrinks to zero, meaning their

product grows without bound.

Asx — 0~,x — 0and e/* — e~ — 0. The the limit evaluates to 0 - 0
which is not an indeterminate form. We conclude then that

lim x-e'* =0.
x—0~

This limitinitially evaluates to the indeterminate form oo —oo. By applying
a logarithmic rule, we can rewrite the limit as

1
lim In(x+1) —Inx = lim In (X+ )

X—00 X—00 X

As x — o0, the argument of the In term approaches oo/oo, to which we
can apply I'Hopital’s Rule.

x+1 by LHR 1
lim = =

x—00 X 1

1.
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x+1
Since x — oo implies — 1, it follows that

x+1
X — oo implies In <+>%In10.
X

Thus

X—00 X— 00

1
lim In(x+1) —Inx = lim In (H> =0.
X

Interpretation: since this limit evaluates to 0, it means that for large x,
there is essentially no difference between In(x + 1) and In x; their differ-
ence is essentially 0.

4. Thelimit lim x* — e initially returns the indeterminate form co — co. We

X—r 00

eX
can rewrite the expression by factoring out x%; x> — & = x? (1 — 2> .
X

We need to evaluate how e*/x* behaves as x — oo:

eX by LHR e by LHR e
lim — = |lm — = Im — =o0.
x—00 X2 x—00 2X x—00 2

Thus limy_, o, X2(1 — €/x?) evaluates to oo - (—oc), which is not an inde-
terminate form; rather, co - (—o0) evaluates to —oco. We conclude that

lim x> — & = —o0.
X— 00

Interpretation: as x gets large, the difference between x? and e* grows
very large.

Indeterminate Forms 0°%, 1*° and oc°

When faced with an indeterminate form that involves a power, it often helps
to employ the natural logarithmic function. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

Key Idea 6.8.1 Evaluating Limits Involving Indeterminate Forms
0°, 1*° and oc®

. _ f T In(f(x)) _ oL
If lim In (f(x)) =L, then lim f(x) = lim e =el.

X—C X—C
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Example 6.8.4 Using I’'Hopital’s Rule with indeterminate forms involving

exponents
Evaluate the following limits.

1 X
1. lim (1+> 2. lim x*.
X—00 X x—0t
SOLUTION

1. This is equivalent to a special limit given in Theorem 1.3.5; these limits
have important applications within mathematics and finance. Note that
the exponent approaches oo while the base approaches 1, leading to the
indeterminate form 1°°. Let f(x) = (1 + 1/x)*; the problem asks to eval-
uate lim f(x). Let’s first evaluate lim In (f(x)).

X—00 X—00

X— 00 X— 00

1
= lim xIn <1+ )
X—»00 X

1
— lim In (1 + ;)
X—00 1/X

lim In (f(x)) = lim In <1 + )1(>X

This produces the indeterminate form 0/0, so we apply I'Hopital’s Rule.

1+11/x ’ (_1/X2)

e (—1/x)
_ 1
= lim
x—oo 1+ 1/X
=1

Thus lim In (f(x)) = 1. We return to the original limit and apply Key Idea

X—00

6.8.1.

1 X
lim <1+ x) = lim f(x) = lim &) — ¢l — ¢,

X—00 X— 00 X— 00

2. This limit leads to the indeterminate form 0°. Let f(x) = x* and consider
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first lim In (f(x)).

x—0t
i n 1) = i )

= lim xlnx
x—0t

. Inx
im —.
x—=0+ 1/x

This produces the indeterminate form —oo /oo so we apply I’Hopital’s Rule.

1 2
) 1/x
Figure 6.8.1: A graph of f(x) = x* = lim 5
; + x—=0+t —1/x
suppporting the fact thatas x — 07, f(x) —1.
= lim —x
x—07F
=0.

Thus lim In (f(x)) = 0. We return to the original limit and apply Key Idea

x—0t

6.8.1.
lim X = lim f(x) = lim ") = ¢0 =1

x—0t x—0t x—0t

This result is supported by the graph of f(x) = x* given in Figure 6.8.1.

Our brief revisit of limits will be rewarded in the next section where we con-
sider improper integration. So far, we have only considered definite integrals

where the bounds are finite numbers, such as [ f(x) dx. Improper integration

0
considers integrals where one, or both, of the bounds are “infinity.” Such inte-
grals have many uses and applications, in addition to generating ideas that are
enlightening.

Alternate one step approach if you are fluent with logs for exponential forms.

limy - o+ X {00}

= limX_)O‘* elnX

= limys o €M% x {0-c0}
In x

T T =

= [|mX_)O+ellx {oo}

1k
R limysy gr € Y7
= limy_or €7
=1
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Terms and Concepts

List the different indeterminate forms described in this sec-
tion.

T/F: ’Hopital’s Rule provides a faster method of computing
derivatives.

/
T/F: ’Hopital’s Rule states that LA {L(x) ] = f/(x) .
dx [gx)] g'(x)
Explain what the indeterminate form “1°°” means.

Fill in the blanks:

The Quotient Rule is applied to % when taking
X
A Al , ' fx) : .
I’'Hopital’s Rule is applied to m when taking certain
X

Create (but do not evaluate!) a limit that returns “c0®”.

Create a function f(x) such that Iimlf(x) returns “0%”.
X—r

Create a function f(x) such that lim f(x) returns “0 - co”.
X—r 00

Problems 6.8

In Exercises 9 — 54, evaluate the given limit.

9.

10.

11.

12.

13.

14.

15.

16. lim

17.

C4x—2
x—1

lim

x—1

i x2+x—6
lim ——
x—2 x2 — 7x+ 10

sinx

lim
x—=m X — T
sinx — cos x
im —  —>7%
x—=x/4  €0s(2x)
. sin(5x
lim SNGX)
x—0 X

_sin(2x)
lim ——=
x—=0 X+ 2

. sin(2x)
lim —
x—0 sin(3x)

sin(ax)
x—0 sin(bx)

e -1
lim 3
x—0+ X

18.

19.

20.

21.

22.

23.

24.

25.

lim
x—0t

lim
x—0t

lim
X—» 00

lim
X—» 00

lim
X— 00

lim
X—> 00

lim
X—» 00

lim
X—> 00

3

X —5x*+3x+9

26. lim

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

X+ 4x* + 4x

x—3 x3 — 7x% 4+ 15x — 9

lim
x—=—2x3 +7x2 + 16x + 12

.~ Inx
lim —
x—oo X

lim x-Inx
x—0+

lim +/x-Inx

x—01

. 1
lim xe*/*
x—01

. 3 2
lim x° — x
X—» 00

lim vx — Inx

X—r 00

lim xe*
X——00

o1
lim —e /x
x—0t X

lim (1 + x)*/~

x—07F
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40.

41.

42.

43,

44,

45.

46.

lim (2x)*

x—0Tt

lim (2/x)

x—0+t

lim (sinx)"
x—>0+( )

lim (1 —x)**
x—>1+( )

lim (x)*/
X—r 00

lim (1/x)*

X—r 00

lim (Inx)*™
x—>1+( )

lim (1 + x)"*

X— 00

Solutions 6.8

1. 0/0,00/00,0 - 00,00 — 00,0°,1%°, o0
2.
3.
4.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.

O ® N O W

F
F

The base of an expression is approaching 1 while its power is

growing without bound.

. derivatives; limits
. Answers will vary.
. Answers will vary.

. Answers will vary.

3

—5/3
-1
,ﬁ/z
5

0

2/3
a/b

1/2

o o o

45

47.

48.

49.

50.

51.

52.

53.

54.

55.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54,
55.

lim (1 + x*)*/*

X—00

lim tanxcosx
x—m/2

lim tanxsin(2x)
x—m/2

. 1 1
lim — —
x—1+Inx  x—1

. X
=3+t x2—9 x—3

lim xtan(1/x)

X—r 00

| 3
lim (Inx)
X—00 X

X 4+x=2
lim ——
x—1 Inx

. _ X
lim u

x—0"

g 8 8 @ °

o o

S N T = T e e e

+00
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Chapter 7 Techniques of Integration

7.1A Method of Substitution Review

In applications, simple integrals like fcosx dx are rare. Itis more likely you will encounter integrals
like fcos(z 7TXx) dx or fcos(2.34 X +7.49) dx. Fortunately these can often be worked with a slightly
modified table of integrals. The idea of u is it can be any differentiable change of variable. Live math!

Integral Table (Change of variable Form)
fJdu=u+cC e

firds =2
fe”du:e”+C fa”du:l::+c
du
f—u = Inju|+C
fcosudu:sinu+C fsinudu =—cosu + C
[sectudu=tanu+C fesc?udu ==cotu + C
fsecu tanudu=secu +C fcscucotudu =-cscu+C

f du_ —arcsinu+C j du_ - arctanu+C
,1—u2 1+u
Method of Substitution

I flgk) g’ p)dx  “Z  [fu)du

du=g' (x)dx Proof: the integral is live mathematics.
Examples
[ sin® x cos x dx [iV2x+1 dx
u=sinx u=2x+1
du=cos xdx du:2dx=>dx:%
= [v*du x=0 = u=20+1=1
=Lic X=4 = U=24+1=9
:isin4x+C. =jlgﬁ%
_ %Ls; A
-1
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It is rare for an integral we are trying to evaluate to be exactly one on our Memory Integral List,
really our only way so far of evaluating integrals other than making the list longer. The Method of
Substitution is by far the most common and important way to transform an integral into one on the list.

This method of evaluating integrals is so important we will spend two lectures on getting fluent at it.

The previous chapter we completed the basic calculus of most of the
functions a well educated calculus user should know.

Most combinations of these functions are easy to differentiate. However,
many are difficult to integrate. This chapter is devoted to exploring techniques
of antidifferentiation. While not every function has an antiderivative in terms
of elementary functions we can still find antiderivatives of a wide variety of
functions. Nevertheless, many remain impossible to integrate. For these we
will learn approximate integration; howeuver, realistically this job is best done
by computer.

7.1 A Substitution Readings

We motivate this section with an example. Let f(x) = (x? + 3x — 5)1°.
We can compute f'(x) using the Chain Rule. It is:
f'(x) =10(x* + 3x — 5)°- (2x 4 3) = (20x + 30)(x* + 3x — 5)°.

Now consider this: What is [(20x 4 30)(x*> + 3x — 5)° dx? We have the answer
in front of us;

/(20x +30)(x* +3x—5)9 dx = (x* +3x — 5)° - C.

How would we have evaluated this indefinite integral without starting with f(x)
as we did?

This section explores integration by substitution. It allows us to “undo the
Chain Rule.” Substitution allows us to evaluate the above integral without know-
ing the original function first.

The underlying principle is to rewrite a “complicated” integral of the form
J f(x) dx as a not—so—complicated integral [ h(u) du. We’ll formally establish
later how this is done. First, consider again our introductory indefinite integral,
J(20x + 30)(x* + 3x — 5)° dx. Arguably the most “complicated” part of the
integrand is (x> + 3x — 5)°. We wish to make this simpler; we do so through a
substitution. Let u = x> 4+ 3x — 5. Thus

(x* +3x—5)° =u°.


Bill
Typewritten text
 Readings
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We have established u as a function of x, so now consider the differential of u:
du = (2x + 3)dx.

Keep in mind that (2x+3) and dx are multiplied; the dx is not “just sitting there.”
Return to the original integral and do some substitutions through algebra:

/(20x +30)(x* +3x —5)? dx = / 10(2x + 3)(x* + 3x — 5)° dx

:/1O(x2+3x—5)9 (2x+3) dx
— ~—

u du

= / 10u° du

= U10 + C  (replace u with x* + 3x — 5)

= +3x-5%+cC
One might well look at this and think “I (sort of) followed how that worked,
but | could never come up with that on my own,” but the process is learnable.
This section contains numerous examples through which the reader will gain
understanding and mathematical maturity enabling them to regard substitution
as a natural tool when evaluating integrals.

We stated before that integration by substitution “undoes” the Chain Rule.

Specifically, let F(x) and g(x) be differentiable functions and consider the deriva-
tive of their composition:

Thus

/ F(g(x)g’ (x) dx = F(g(x)) + C.

Integration by substitution works by recognizing the “inside” function g(x) and
replacing it with a variable. By setting u = g(x), we can rewrite the derivative

dix (F(u)) =F'(u)u'.

Since du = g’(x)dx, we can rewrite the above integral as

/ F(g()g" (x) dx = / F'(u)du = F(u) + C = F(g(x)) + C

This concept is important so we restate it in the context of a theorem.
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Theorem 7.1.1 Integration by Substitution

Let Fand g be differentiable functions, where the range of g is an interval
I contained in the domain of F. Then

If u = g(x), then du = g’(x)dx and

/F’(g(x))g’(x) dx = /F'(u) du = F(u) + C = F(g(x)) + C.

The point of substitution is to make the integration step easy. Indeed, the
step [ F'(u) du = F(u)+ Clooks easy, as the antiderivative of the derivative of F
is just F, plus a constant. The “work” involved is making the proper substitution.
There is not a step—by—step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

Example 7.1.1 Integrating by substitution
Evaluate /xsin(x2 +5) dx.
SOLUTION Knowing that substitution is related to the Chain Rule, we

choose to let u be the “inside” function of sin(x* + 5)*. (This is not always a
good choice, but it is often the best place to start.)

Let u = x> + 5, hence du = 2xdx. The integrand has an xdx term, but
not a 2x dx term. (Recall that multiplication is commutative, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

1
du=2xdx = Edu = xdx.

We can now substitute.

£

X

{

/sin(x2 +5)

:/u

/xsin(x2 +5) dx

du

Nl

sinudu

N|

*
alternate way of thinking that is productive and insightful:

The Method

Choose a u for which there is

The Method
Choose a u for which there is

(up to a constant) a du in the correct position.

Weseea u
and except fora 2,a du.

Eventually you can do these in your head with
perhaps a little 'massaging' of the integrand.

/Xsin(x2 +5) dx.
Thinking u=x -5

= %/sin(x2+ 5) (2xdx)

-3 cos(x*+5) +C

After a while, you will be able to do
easy ones completely in your head and
immediately write down the answer.

(up to a constant) a du in the correct position

SIK y2iKhy3 {STIISY Hylyg.
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= —E cosuU + C  (now replace u with x* + 5)
1 2
= cos(x” +5) +C.

Thus [ xsin(x? + 5) dx = —1 cos(x* + 5) -+ C. We can check our work by eval-
uating the derivative of the right hand side.

Example 7.1.2 Integrating by substitution
Evaluate /cos(Sx) dx.

SOLUTION Again let u replace the “inside” function. Letting u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equation by 5 to obtain %du = dx. We can now substitute.

/cos(Sx) dx = /cos( 5x ) _dx Weseea u

and except fora 5,a du.

u 1
sdu

1
:/fcosudu
5

Ly +C
—sinu
5

1
= —sin(5x) + C.
5
We can again check our work through differentiation.

The previous example exhibited a common, and simple, type of substitution.
The “inside” function was a linear function (in this case, y = 5x). When the
inside function is linear, the resulting integration is very predictable, outlined
here.

Key Idea 7.1.1 Substitution With A Linear Function

Consider [ F’(ax + b) dx, where a # 0 and b are constants. Letting
u = ax + b gives du = a - dx, leading to the result

1
/F’(ax+ b) dx = EF(ax—i— b) +C.

Thus [ sin(7x — 4) dx = —2 cos(7x — 4) + C. Our next example can use Key
Idea 6.1.1, but we will only employ it after going through all of the steps.
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Example 7.1.3 Integrating by substituting a linear function
7
Evaluate /7 dx.
—3x+1
SOLUTION View the integrand as the composition of functions f(g(x)),

where f(x) = 7/x and g(x) = —3x + 1. Employing our understanding of substi-
tution, we let u = —3x+ 1, the inside function. Thus du = —3dx. The integrand
lacks a —3; hence divide the previous equation by —3 to obtain —du/3 = dx.
We can now evaluate the integral through substitution.

/ 7 /7du
——dx= | ——
—3x+1 u-—-3

=7 [du

"3 ) u

:_—7In|u\+C
3

7
—3In|-3x+1+cC

Using Key Idea 6.1.1 is faster, recognizing that u is linear and a = —3. One may
want to continue writing out all the steps until they are comfortable with this
particular shortcut.

Not all integrals that benefit from substitution have a clear “inside” function.
Several of the following examples will demonstrate ways in which this occurs.

Example 7.1.4 Integrating by substitution
Evaluate /sin X cos x dx.

SOLUTION There is not a composition of function here to exploit; rather,
just a product of functions. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is often beneficial to think “If | let u be this, then du must be
that ...” and see if this helps simplify the integral at all.

In this example, let’s set u = sinx. Then du = cos x dx, which we have as
part of the integrand! The substitution becomes very straightforward:

. Weseea u
/smxcosx dx = /U du and exactly, a du.
1,
=—-u Cc
> +

= 1sin2x+c
= :
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One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral letting u = cos x and discover why the answer is the same,
vet looks different.

Our examples so far have required “basic substitution.” The next example
demonstrates how substitutions can be made that often strike the new learner
as being “nonstandard.”

Example 7.1.5 Integrating by substitution variation

Evaluate /x\/x + 3 dx.

SOLUTION Recognizing the composition of functions, set u = x + 3.
Then du = dx, giving what seems initially to be a simple substitution. But at this
stage, we have:

/X\/mm:/xﬁdu.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+ 3, we can also state that u — 3 = x. Thus we can replace
x in the integrand with u — 3. It will also be helpful to rewrite \/u as uz.

/xﬁdx:/(u—.%)u% du
= / (u% —3u%) du

= Zu% 2u%+C
5
2
=—-(x+3
S(x+3)

5
2

—2(x+3)? +C

Checking your work is always a good idea. In this particular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem.

Example 7.1.6 Integrating by substitution
1
Evaluate /— dx.
xInx
SOLUTION This is another example where there does not seem to be

an obvious composition of functions. The line of thinking used in Example 6.1.5
is useful here: choose something for u and consider what this implies du must
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be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/x makes du = —1/x? dx; that does not seem helpful. How-
ever, setting u = Inx makes du = 1/x dx, which is part of the integrand. Thus:

a5k
xInx Inx x
:/fdu
u

=Inlul+C
=In|Inx| + C.

The final answer is interesting; the natural log of the natural log. Take the
derivative to confirm this answer is indeed correct.

Integrals Involving Trigonometric Functions Section 7.3 delves deeper
into integrals of a variety of trigonometric func-tions; here we use substitution to
establish a foundation that we will build upon.

The next three examples will help fill in some missing pieces of our
antideriva-tive knowledge. We know the antiderivatives of the sine and cosine
functions; what about the other standard functions tangent, cotangent, secant
and cosecant? We discover these next.

Example 7.1.7 Integration by substitution: antiderivatives of tan x
Evaluate /tanx dx.

SOLUTION The previous paragraph established that we did not know
the antiderivatives of tangent, hence we must assume that we have learned
something in this section that can help us evaluate this indefinite integral.

Rewrite tan x as sinx/ cosx. While the presence of a composition of func-
tions may not be immediately obvious, recognize that cosx is “inside” the 1/x
function. Therefore, we see if setting u = cos x returns usable results. We have
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that du = — sin x dx, hence —du = sin x dx. We can integrate:

sinx
/tanxdx: / dx
. J cosx

1
= sin x dx
COS X ~——
S~~~ —du

u
-1
/—du
u
=—Injul+C

—In]|cosx| + C.

Some texts prefer to bring the —1 inside the logarithm as a power of cos x, as in:

—In|cosx| +C=In|(cosx)"'|+C

=In +C

Cos X

=In|secx| + C.

Thus the result they give is [tanx dx = In|secx| + C. These two answers are
equivalent.

Example 7.1.8 Integrating by substitution: antiderivatives of sec x

Evaluate /secx dx.

SOLUTION This example employs a wonderful trick: multiply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
lllll as
secx + tanx
secx +tanx’

This may seem like it came out of left* field, but it works beautifully. Consider:

secx + tanx
secxdx = | secx- ——  dx
secx + tanx
sec? x + secxtanx
dx
secx + tanx

*No disparaging of left handed persons intended.
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Now let u = secx + tanx; this means du = (secxtanx + sec? x) dx, which is
our numerator. Thus:

du

u

=Inlul+C
=In|secx + tanx| + C.

We can use similar techniques to those used in Examples 7.1.7 and 7.1.8 to
find antiderivatives of cot x and csc x (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 7.1.2 Antiderivatives of Trigonometric Functions
1. /sinxdx = —cosx+C 4. /cscxdx = —In]|cscx + cotx| + C
2. /cosxdx:sinx+C 5. /secxdx:ln|secx+tanx|+C

3. /tanxdx:—ln|cosx|+C 6. /cotxdx:ln|sinx|—|—C

We explore one more common trigonometric integral.

Example 7.1.9 Integration by substitution: powers of cos x and sin x

Evaluate / cos? x dx.

. . 2
SOLUTION We have a composition of functions as cos? x = (cosx) .

However, setting u = cos x means du = — sin x dx, which we do not have in the
integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos? x
(perhaps consult the back of this text for this formula), which states
1 + cos(2x)
5 .
The right hand side of this equation is not difficult to integrate. We have:

1 2
/coszxdx:/%s(x)dx

= / (;—f— ;cos(2x)> dx.

cos’x =



Yes, you should have learned long

division of polynomials in high school. 1,
If you were tought synthetic division, =X+ X+ G+ / -

feel free to forget it.
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Now use Key Idea 7.1.1:

1 1sin(2x)
2 2 2

1 sin(2x)
=X

2 + 4

+C.

We’ll make significant use of this power—reducing technique in future sections.
Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integration is tenuous and one may think that working with
the integrand will improperly change the results. Integration by substitution
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integration
easier to perform.

Example 7.1.10 Integration by substitution: simplifying first

3 2
/x +4x" 4+ 8x+5
d
Evaluate 2+ ox+ 1 X

SOLUTION One may try to start by setting u equal to either the numer-
ator or denominator; in each instance, the result is not workable.

When dealing with rational functions (i.e., quotients made up of polynomial
functions), it is an almost universal rule that everything works better when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x* + 2x + 1 is divided
into x3 + 4x* 4 8x + 5, it goes in x + 2 times with a remainder of 3x + 3. Thus

X +4x2+8 5 3 3
+AC 8 HS o X+3
X2+ 2x+1 X2+ 2x+1

Integrating x + 2 is simple. The fraction can be integrated by setting u = x* +
2x+ 1, giving du = (2x + 2) dx. This is very similar to the numerator. Note that

du/2 = (x + 1) dx and then consider the following:
P+ 4x% +8x+5 3x+3
/x+x+x+ dx:/ x+2+L dx
X+ 2x+1 x>+ 2x+1

3(x+1)
= 2)d ——d
/(x+ ) X+/X2—1—2X+1 X

3du

u?2

1, 3
:Ex +ZX+C1+E|nIUI+Cz

12 3 2
=X +2x+5|n\x +2x+1]+C

In some ways, we “lucked out” in that after dividing, substitution was able to be
done. In later sections we’ll develop techniques for handling rational functions
where substitution is not directly feasible.
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Example 7.1.11 Integration by alternate methods
x4+ 2x+3
VX

SOLUTION

Evaluate dx with, and without, substitution.

We already know how to integrate this particular example.
1
Rewrite \/x as x2 and simplify the fraction:

xX*+2x+3 3 1 _1
———————— = X2 +2x2 4+ 3x" 2.
X172

We can now integrate using the Power Rule:

2 2 3 1 1
/X7+1X+3dx:/(x5+2x5+3x_f) dx
x1/2

2+ 2xd exd 4 C
= —X =X X
5 3
This is a perfectly fine approach. We demonstrate how this can also be solved
using substitution as its implementation is rather clever.
letu=+/x = x2; therefore

1 1 1
du=x"tdx=-——dx = 2du=——dx.
2 2y/x VX
x*+2x+3
This gives us % dx = /(x2 +2x+3) - 2 du. What are we to do
X

with the other x terms? Since u = x2, u*> = x, etc. We can then replace x* and

x with appropriate powers of u. We thus have

x> +2x+3

de:/(x2+2x+3)-2du

= /2(u4+2u2+3) du

25 454
=-Ww+su +6u+C

5 3
—Zd i Idtedtc
5 3 ’

which is obviously the same answer we obtained before. In this situation,
substitution is arguably more work than our other method. The fantastic
thing is that it works. It demonstrates how flexible integration is.
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Exercises 7.1 A
Terms and Concepts

1. Substitution “undoes” what derivative rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems

In Exercises 3 — 14, evaluate the indefinite integral to develop
an understanding of Substitution.

3. /3x2 (x* —5) dx
a. /(2x75)(x275x+7)3dx
5. /x(xz—i—l)gdx

6. /(12x +18) (3¢ +7x — 1)° dx

1
7. / dx
2x+7

1
8. —dx
/ V2x+3

9. /\/%dx
10. X3kxdx
11. /e\\/édx
12. /\/%dx

1
241
13./"t dx
X

14. /@dx

In Exercises 15 — 24, use Substitution to evaluate the indefi-
nite integral involving trigonometric functions.

15. /sinz(x) cos(x)dx
16. /cosg(x)sin(x)dx

35. /@dx

Solutions 7.1 A

10.

11.

12.

13.

. Chain Rule.
T
%(x3 -5%+¢C

10 —5sx+7)*+C

SRR

132 +7x—1)54C

Tin|ax+7]+¢C

V2X+3+4C
2(x+3)%2—6(x+3)/2+C=2(x—6)VxF+3+C
Zx3/2 (32 —7) + ¢

2eV¥ 4 C

14, —=

15.

16.

35.

sin® (x)
oW 4c

* ()
_CDSAX +C

3nx)?+c
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7.1B Advanced Methods of Substitution. Definite Integrals

Integral Table*

fdu =u+C n o
fe'du=e"+C {Zu:z;”}l_‘_;
N Ina
f—u = Inju|+C
Jcosudu=sinu+C [sinudu ==-cosu + C
[sectudu=tanu+C fesc?udu ==cotu + C
fsecu tanudu=secu+C fcscucotudu =-cscu+C

f%=arcsinu+c I%=arctanu+c
1-u

Method of Substitution

b ' u=g(x) (b)
[ flabng' (dx “= Sy flu)du Definite Integral form

du=g'()dx 290

*¥ This is the basic integral list everyone should memorize and remember forever!

First, for review, a few more indefinite integrals.

Substitution and Inverse Trigonometric Functions
When studying derivatives of inverse functions, we learned that

1

d 1)
—(tan'x) = 5

dx

Applying the Chain Rule to this is not difficult; for instance,

5

d e
—(tan~*5x) = Tro5e"

dx

We now explore how Substitution can be used to “undo” certain derivatives that
are the result of the Chain Rule applied to Inverse Trigonometric functions. We
begin with an example.

Example 6 7.1.12 Integrating by substitution: inverse trigonometric functions
Evaluate

SOLUTION 1 1

gent function. Note: 25 +x2 25(1 + %)

1
25(1+(5))
11
B ()
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Thus
1 1 1
/7dx:— —— dx.
25 + x2 25 1+(§)

This can be integrated using Substitution. Set u = x/5, hence du = dx/5 or

dx = 5du. Thus
1 1 1
/25+x2dx:£/ oz
1+ (%)

Example 7.1.12 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric functions. The results are
summarized here.

Theorem 7.1.3 Integrals Involving Inverse Trigonometric Functions

Leta > 0.
1 1
L [ e b () e
a2 + x?2 a a

2 /#dx—sin_l({)—kc
") Vet =X

Let’s practice using Theorem 7.1.3.

Example 7.1.13 Integrating by substitution: inverse trigonometric functions
Evaluate the given indefinite integrals.

1 1
Ll gre® 2|
X Xz—m

dx 3.

1
— dx.
/ V5 —x2

If you are going to be a big
time user of calculus, it is
worth memorizing these.
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SOLUTION Each can be answered using a straightforward application of
Theorem 7.1.3.

1 1 4 x
1. ———dx=—tan " - +C,asa = 3.
9 4 x2 3 3

dx =10sec " 10x+ G asa = .

/ 1

2. _—
/ 1

X XZ—W

Most applications of Theorem 7.1.3 are not as straightforward. The next
examples show some common integrals that can still be approached with this
theorem.

Example 7.1.14 Integrating by substitution: completing the square
Evaluate / —— dx
x2 —4x+13

SOLUTION Initially, this integral seems to have nothing in common with
the integrals in Theorem 7.1.3. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. Itis, however, related to the arctangent function.

We see this by completing the square in the denominator. We give a brief
reminder of the process here.

Start with a quadratic with a leading coefficient of 1. It will have the form of
x%+bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
l.e.,

2 bZ
x2+bx+c:x2+bx+7—z+c

(x+b/2)?

= x+9 2—|—c—b—2
o 2 4

In our example, we take half of —4 and square it, getting 4. We add/subtract it
into the denominator as follows:

1 1
X2 —4x+13  xX* —4x+4—4+13
N———
(x—2)2
_ 1
C (x—2)2+9

Yes, any serious calculus consumer is
likely to do completing the square often.
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We can now integrate this using the arctangent rule. Technically, we need to
substitute first with u = x — 2, but we can employ Key Idea 7.1.1 instead. Thus
we have

1 1 1. x—2
——dx= | —————dx=-tanT —— +C.
x2 —4x+13 (x—2)2+9 3 3

Example 7.1.15 Integrals requiring multiple methods
4 —x
Evaluate / —dx.

V16 — x2

SOLUTION This integral requires two different methods to evaluate it.
We get to those methods by splitting up the integral:

4 —x 4 X
7dx:/7dx—/7dx.
V16 — x2 V16 — x? V16 — x?
The first integral is handled using a straightforward application of Theorem 7.1.3;
the second integral is handled by substitution, with u = 16—x2. We handle each

separately.
4 X
—— dx=4sin"'Z+C
V16 — x2 4
X
———dx: Setu = 16 — x%, so du = —2xdx and xdx = —du/2. We
/ V16 — x? /
have

/ X dx — —du/2
Ve Vi
:j/idu
2] Vi
=—Vu+cC
=—V16—-x +C

Combining these together, we have

4—x X o
\/ﬁdlelsin_lz-l- 16_X2+C
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Substitution and Definite Integration

This section has focused on evaluating indefinite integrals as
we are learning a new technique for finding antiderivatives.
However, much of the time integration is used in the context of
a definite integral. Definite integrals that require substitution
can readily be calculated.

[ f(g(x)) g (x) dx

y
1 y = cos(3x — 1)
O.Sﬂ
t t t 1 f X
| 2 5
(a)

7.1.1: Graphing the areas defined by the
definite integrals of Example 7.1.16.

x=a = u=g(a)
x=b = u=g(b)

g-;’c(,;’) f(u) du The integral is live mathematics.

Theorem 7.1.4 Substitution with Definite Integrals

Let Fand g be differentiable functions, where the range of g is an interval
I that is contained in the domain of F. Then

b 9(b)
/ F'(g(x))g’(x) dx = / F'(u) du.
a 9(a)

In effect, Theorem 7.1.4 states that once you convert to integrating with
re-spect to u, you do not need to switch back to evaluating with respect to x. A
few examples will help one understand.

Example 7.1.16 Definite integrals and substitution: changing the bounds
2
Evaluate/cos(Sx — 1) dx using Theorem 7.1.4.
0

SOLUTION Observing the composition of functions, let u = 3x — 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the latter
equation by 3 to get du/3 = dx.

By setting u = 3x — 1, we are implicitly stating that g(x) = 3x — 1. Theorem

7.1.4 states that the new lower bound is g(0) = —1; the new upper bound is
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g(2) = 5. We now evaluate the definite integral:

2 5
d
/ cos(3x — 1) dx = / cosu™
0 —1 3
1 5

= —sin u’

-1

%(sinS —sin(—1)) = —0.039.
Notice how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 7.1.1 tell more of the story. In (a) the area defined by
the original integrand is shaded, whereas in (b) the area defined by the new in-
tegrand is shaded. In this particular situation, the areas look very similar; the
new region is “shorter” but “wider,” giving the same area.

Example 7.1.17 Definite integrals and substitution: changing the bounds

7 /2
Evaluate / sin x cos x dx using Theorem 7.1.4.
0

SOLUTION We saw the corresponding indefinite integral in Example 7.1.4.

In that example we set u = sin x but stated that we could have let u = cosx.
For variety, we do the latter here.

Let u = g(x) = cosx, giving du = — sin x dx and hence sinx dx = —du. The
new upper bound is g(w/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have

/2 0
/ sinxcosx dx = / —udu (switch bounds & change sign)
0 1

1
:/udu
0

1
=1/2.
=Y

1

2
In Figure 7.1.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 7.1.4 guarantees that they have the same area.

Integration by substitution is a powerful and useful integration technique.
The next section introduces another technique, called Integration by Parts. As
substitution “undoes” the Chain Rule, integration by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundation on which most
other integration techniques are based.

Expert Method

Example God’s Method of Substitution:
f(1+2x)2e"zdx Let u=xe*’
du = (1-e""+ x-e°-2x)dx
= (1+2x%) e¥dx

fdu

u+C

xe< +C

y = cos(3x — 1)

0.5 + y = 3 cos(u)
:/ : : : : T u
_1 1 \\3/ 5
—05 |

(b)

Figure 7.1.1: Graphing the areas defined
by the definite integrals of Example 6.1.16.

y

1 £+
y = sinxcos x
0.5 +
} X
1 ;\
—0.5 +
(a)
y
1] y=u
0.5 +
1 b
—0.5 +

(b)

Figure 7.1.2: Graphing the areas de-fined
by the definite integrals of Example

6.1.17.



Exercises 7.1 B

17. /cos(S — 6x)dx
18. [ sec’(4 — x)dx
19. [ sec(2x)dx
20. [ tan®(x)sec’(x)dx
21. | xcos (x*) dx
22.

tan’ (x)dx

23. cotx dx. Do not just refer to Theorem 6.1.2 for the an-

—_— — Y — — —

S

£

er; justify it through Substitution.

24, /cscx dx. Do not just refer to Theorem 6.1.2 for the an-
swer; justify it through Substitution.

14
45, /7dx
V5 —x2
2
46. ———dx
/x\/m
47

5
. —_—dx
/ Vx4 — 16x2

In Exercises 79 — 86, evaluate the definite integral.

3
1
79./ dx
Ji x—=5

6
80. / xvx — 2dx
2

/2
81. / sin® x cos x dx
—7/2

1
82. / 2x(1 — x*)* dx
0

—1
83. / (x+ 1)ex2+2x+1 dx

2

v
84./ — dx
14
4
1
85./27dx
, X*—6x+10

86

V3 1
s
1 \/4—X2
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Solutions 7.1 B

17.
18.
19.

20.

21.
22.
23.
24.

79.
80.
81.
82.
83.
84.
85.
86.

—Isin(3—6x)+C

—tan(4 —x)+C

% In|sec(2x) + tan(2x)| + C

tan® (x)

— - +cC

sin(xz)

—— +C

tan(x) —x+C

The key is to rewrite cot x as cos x/ sin x, and let u = sin x.

The key is to multiply csc x by 1 in the form
(cscx + cotx)/(cscx + cotx).

—In2
352/15
2/3

1/5
(1-e)/2
/2

/2

/6



7.2 Integration by Parts

Here’s a simple integral that we can’t yet evaluate:

/xcosxdx.
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It’s a simple matter to take the derivative of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this section introduces
Integration by Parts, a method of integration that is based on the Product Rule

for derivatives. It will enable us to evaluate this integral.

The Product Rule says that if u and vare functions of x, then (uv)’ = u’v+uv’.
For simplicity, we’ve written u for u(x) and v for v(x). Suppose we integrate both

sides with respect to x. This gives

/(uv)’ dx = /(u’v + uv’) dx.

By the Fundamental Theorem of Calculus, the left side integrates to uv. The right

side can be broken up into two integrals, and we have

uv = /u’vdx—|—/uv’dx.

Solving for the second integral we have

/uv’dx:uv—/u’vdx.

Using differential notation, we can write du = u’(x)dx and dv = v/(x)dx and

the expression above can be written as follows:

/udv:uvf/vdu.

This is the Integration by Parts formula. For reference purposes, we state this in

a theorem.

Theorem 7.2.1

Integration by Parts

Let u and v be differentiable functions of x on an interval | containing a

and b. Then

/udv:uv—/vdu,
X=b b
/ udv=uv —/
x=a a X=

and

Alternate Notation Derivaton

4 - du dv,
dx(uv) - de +udx

d(uv) = vdu+udv
fd(uv) :fvdu+fudv
uv = fvdu+fudv
fudv = uv—fvdu

Product Rule
Differential Form

Integrating

Rearranging

Useful for:
1. 'unlikely products'
2. inverse functions
3. all else fails.

uz

uq

Proof by picture

A4 V2


Bill
Typewritten text
7.2
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Let’s try an example to understand our new technique.

Example 7.2.1 Integrating using Integration by Parts
Evaluate /xcosx dx.

The following rule almost always works:

1. Let dv = hardest part you can integrate
2. Let u=remaining part of the integral

dv = cosx dx vV =sinx

u=x du = dx

Figure 7.2.1: Setting up Integration by Parts.

Now substitute all of this into the Integration by Parts formula, giving

/xcosxdx:xsinx—/sinxdx.

We can then integrate sin x to get — cos x + C and overall our answer is
/xcosxdx = Xxsinx 4+ cosx + C.

Note how the antiderivative contains a product, xsinx. This product is what
makes Integration by Parts necessary.

The example above demonstrates how Integration by Parts works in general.
We try to identify u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the

In the example above, we chose u = xand dv = cos xdx. Then du = dx was
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integrating x cos x dx, we could integrate sin x dx, which we knew how to do.

right side of the Integration by Parts formula, vdu will be simpler to integrate
than the original integral f udv.
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We now consider another example.

Example 7.2.2 Integrating using Integration by Parts

Evaluate / xe* dx.

SOLUTION The integrand contains an Algebraic term (x) and an Exponential
term (e*). Our mnemonic suggests letting u be the algebraic term, so we choose
u = xand dv = e*dx. Thendu = dxand v = e* asindicated by the tables below.

dv =e*dx v=2¢"
=
u=x du = dx

Figure 7.2.2: Setting up Integration by Parts.

We see du is simpler than u, while there is no change in going from dv to v.
This is good. The Integration by Parts formula gives

/xe*dx:xe"—/e*dx.

The integral on the right is simple; our final answer is
/xe"dx:xe"—e"—i—c.
Note again how the antiderivatives contain a product term.

Example 7.2.3 Integrating using Integration by Parts
Evaluate /x2 cos X dx.

SOLUTION The mnemonic suggests letting u = x? instead of the trigono-
metric function, hence dv = cosxdx. Then du = 2xdx and v = sin x as shown
below.

dv = cos x dx vV =sinx
5 =
u=x du = 2x dx

Figure 7.2.3: Setting up Integration by Parts.
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The Integration by Parts formula gives
/x2 cosxdx = x*sinx — /2xsinxdx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do Integration by Parts again. Here we
choose u = 2x and dv = sin x and fill in the rest below.

dv = sinx dx V= — co¥
u=2x = du=2dx

Figure 7.2.4: Setting up Integration by Parts (again).

/x2 cosxdx = x*sinx — <—2xcosx— /—Zcosxdx).

The integral all the way on the right is now something we can evaluate. It eval-
uates to —2sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is

/chosxdx:xzsinx+2xcosx— 2sinx + C.

Example 7.2.4 Integrating using Integration by Parts
Evaluate /e" cos x dx.

Sowution This is a classic problem. In this particular example, one can let
dv be either cos x dx or e* dx.

dv = cos x dx v =sinx
X :> X
u=e du = e* dx

Figure 7.2.5: Setting up Integration by Parts.

Notice that du is no simpler than u, going against our general rule (but bear
with us). The Integration by Parts formula yields

/e"cosxdx:e"sinx—/e"sinxdx.
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The integral on the right is not much different than the one we started with, so
it seems like we have gotten nowhere. Let’s keep working and apply Integration
by Parts to the new integral, using u = e* and dv = sin x dx. This leads us to the
following:

dv = sinx dx V= —CosXx
u=-¢e" du = e dx

Figure 7.2.6: Setting up Integration by Parts (again).

The Integration by Parts formula then gives:

/e"cosxdx: eXsinx — (excosx/excosxdx>

1 1
= e*sinx + e cosx — /e" cos x dx. Oh, shoot

It seems we are back right where we started, as the right hand side contains
f e* cos x dx. But this is actually a good thing.

Add /e" cos x dx to both sides. This gives

2/ € cosx dx = e”sinx + €* cos x 'Boot strapping!' In cowboy lore, boot

strapping was the idea that you could

Now divide both sides by 2: lift yourself up into the air by pulling
up on the straps at the top back of
/ eXcosxdx =

your cowboy boots.
(e*sinx + e* cosx).
Simplifying a little and adding the constant of integration, our answer is thus

N =

1
/e" cosx dx = Ee" (sinx + cos x) + C.

Example7.2.5 Integrating using Integration by Parts: antiderivative of In x

Evaluate  Inxdx.

SOLUTION One may have noticed that we have rules for integrating the
familiar trigonometric functions and e*, but we have not yet given a rule for
integrating Inx. That is because In x can’t easily be integrated with any of the
rules we have learned up to this point. But we can find its antiderivative by a
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clever application of Integration by Parts. Set u = Inx and dv = dx. Thisis a
good, sneaky trick to learn as it can help in other situations. This determines
du = (1/x) dx and v = x as shown below.

dv = dx V=X
=
u=lnx du = 1/xdx

Figure 7.2.7: Setting up Integration by Parts.

Putting this all together in the Integration by Parts formula, things work out

very nicely:
1
/Inxdx:xlnx—/xfdx.
X

The new integral simplifies to f 1 dx, which is about as simple as things get. Its
integral is x + C and our answer is

/Inxdx:xlnx—x+C.

Example 7.2.6 Integrating using Int. by Parts: antiderivative of arctan x

Evaluate /arctanxdx.

SOLUTION The same sneaky trick we used above works here. Let
dv = dx and u = arctanx. Thenv =xand du = 1/(1 + x?) dx.
The Integration by Parts formula gives

X
arctanxdx = xarctanx — | —— dx.
1+ x2

The integral on the right can be solved by substitution. Taking u = 1 + x%, we
get du = 2x dx. The integral then becomes

1 1
/arctanxdx:xarctanx— E/fdu.
u

The integral on the right evaluates to In |u| + C, which becomes In(1 + x?) + C
(we can drop the absolute values as 1 + x? is always postive). Therefore, the
answer is

1
/arctanxdx = xarctanx — > In(1+x*) +C.
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Substitution Before Integration

When taking derivatives, it was common to employ multiple rules (such as
using both the Quotient and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integration techniques. In
particular, here we illustrate making an “unusual” substitution first before using
Integration by Parts.

Example 7.2.7 Integration by Parts after substitution

Evaluate /cos(ln X) dx.

SOLUTION The integrand contains a composition of functions, leading
us to think Substitution would be beneficial. Letting u = Inx, we have du =
1/x dx. This seems problematic, as we do not have a 1/x in the integrand. But
consider:

du:%dx:w(-du:dx.

Since u = In x, we can use inverse functions and conclude that x = eY. Therefore
we have that

dx =x-du
=e'du.

We can thus replace In x with u and dx with e¥ du. Thus we rewrite our integral

as
/cos(lnx) dx = /e“ cos u du.

We evaluated this integral in Example 6.2.4. Using the result there, we have:
/cos(ln x) dx = /e“ cosu du
1, .
= e (sinu+cosu) +C
1
= Ee'”x(sin(ln x) + cos(Inx)) + C

= %x(sin(lnx) + cos(Inx)) + C.

Definite Integrals and Integration By Parts

So far we have focused only on evaluating indefinite integrals. Of course, we
can use Integration by Parts to evaluate definite integrals as well, as Theorem
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7.2.1 states. We do so in the next example.
Example 7.2.8 Definite integration using Integration by Parts

2
Evaluate / X% In x dx.
1

SOLUTION Our mnemonic suggests letting u = Inx, hence dv = x? d¥x.
We then get du = (1/x) dx and v = x3/3 as shown below.

dv = x* dx N v=x/3

u=Inx du=1/xdx

Figure 6.2.8: Setting up Integration by Parts.

The Integration by Parts formula then gives

2 3 2 2 .3
1
/lenxdx:x—lnx — X—fdx
1 3 1 1 3 x
3 2 2 2
X X
= —lInx —/ — dx
3 1 1 3
x3 2 32
=—Inx| ——
3 1 90
(Fme5)],
= =Ihx——
3 9/,
8 8 1 1
=(zh2—=)—-({zIhl—-—
3 9 3 9
8 7
=-In2— -
3 9
~ 1.07.

In general, Integration by Parts is useful for integrating certain products of
functions, like [xe*dx or [x®sinxdx. Itis also useful for integrals involving
logarithms and inverse trigonometric functions.

As stated before, integration is generally more difficult than derivation. We
are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar—looking integrals

/ xe* dx, / xe* dx and / xe* dx.
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While the firstis calculated easily with Integration by Parts, the second is best
approached with Substitution. Taking things one step further, the third integral
has no answer in terms of elementary functions, so none of the methods we
learn in calculus will get us the exact answer.

Integration by Parts is a very useful method, second only to Substitution. In
the following sections of this chapter, we continue to learn other integration
techniques. The next section focuses on handling integrals containing trigono-
metric functions.

Let
dv be the hardest part you can integrate
u = rest of the integrand

This rule seems always to work if integration by parts works.

Exercise Attempts at graphic illustrations of Integration by Parts. Note how they try to work.
Can you suggest improvements?
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Exercises 7.2
Terms and Concepts 18.

tan™"(2x) dx

1. T/F: Integration by Parts is useful in evaluating integrands

that contain products of functions. 19. xtan™ "t x dx

2. T/F:Integration by Parts can be thought of as the “opposite

of the Chain Rule.” 20. -1

sin” "~ xdx

21. xInx dx

—_— — — —

4. T/F:If the integral that results from Integration by Parts ap-

pears to also need Integration by Parts, then a mistake was
“ 22, [ (x—2)Inxdx
made in the orginal choice of
23. [ xIn(x — 1) dx
Problems
In Exercises 5 — 34, evaluate the given indefinite integral. 24. [ xIn(x*) dx
5. /xsinx dx
25. X% Inx dx

26. [ (Inx)” dx

X~ sin x dx

27. [ (In(x+ 1)) dx

X~ sin x dx

28. xsec? x dx

\\\\\\

xe" dx 29. /xcsczxdx

10. xe' dx 30. /X\/X —2dx

11.

e

¥

¥

e

/¥

[ xe ax 3. [ vt =20
2. [ sinxan 2. [ secxtanxax

/¢

J

/¢

/

fon

13. [ e™cosxdx 33. /xsecxtanxdx

14. [ e™sin(3x) dx 34, /xcscxcotx dx

In Exercises 35 — 40, evaluate the indefinite integral after first
making a substitution.

15. [ e™ cos(5x) dx

16. [ sinxcosx dx 35. /sin(lnx) dx

17.

sin” 36. /ezx cos (€*) dx
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37. /sin(ﬁ) dx

38. /In(\/)?) dx

39. /eﬁdx
40. /e'"xdx

In Exercises 41 — 49, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 5 — 13.

41. / xsin x dx
0

1
42. /
-1

Solutions 7.2

xe ™ dx

10. x3eX — 3x%e* + 6xe¥ — 6 + C

—2x
11. —Lixe=x _ ¢

2 7 +¢C
12. 1/2€*(sinx — cosx) + C
13. 1/5e¥(sinx +2cosx) + C
14. 1/13e?(2sin(3x) — 3cos(3x)) + C
15. 1/10e>(sin(5x) + cos(5x)) + C
16. —1/2cos’x+C
17. V1—xZ +xsin~1(x) +C

xtan~}(2x) — FIn|a? + 1] +C

18.
19. 3tan1(x) — £ + Ltan~l(x) + C

V1—x2+xsin"tx+C

2
Ixin|x — £ 4+ ¢

20.

21.

22. f% + 2x2In|x| 4+ 2x — 2xIn |x| + C

2
2 4+ 1xmx—1-%—1mx—1]+c

23. 27 2
%xz In (xz) —

24, 2 4c

3
25. 23In|x - %5 +C

26. 2x+ x(Inx)?2 — 2xInx + C

2+ 1) 4+ (x+1) (In(x + 1))* = 2(x + 1) In(x + 1) + C
28. xtan(x) + In|cos(x)| 4+ C

29. In|sin(x)| — xcot(x) + C

30 2(x—2)%24+4(x—232+cC

27.

Wl »

31 Y@ —2)3/24 ¢
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43.

44,

45.

46.

47.

48.

49.

32.
33.
34.
35.
36.
37.
38.

39.
40.
41.
42.
43.
44,
45.
46.
47.

48.

49.

secx + C

xsecx — In|secx + tanx| 4+ C
—xcscx — In|cscx 4 cotx| + C
1/2x(sin(Inx) — cos(Inx)) + C
cos (&¥) + e sin (&) + C

2sin (v/x) — 2y/xcos (v/x) + C
%xln x| —3+C

2/xeVX —2eVX 4 C

1/22 +C

7T

—2/e

0

3m?
2

1/2
6 — 2e

—12

3 _ 5
4e2 4e4

1, e
2t 3

1/5(e" +e™")
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7.3 Trigonometric Integrals

Functions involving trigonometric functions are useful as they are good at de-
scribing periodic behavior. This section describes several techniques for finding
antiderivatives of certain combinations of trigonometric functions.

Integrals of the form / sin™ x cos” x dx

In learning the technique of Substitution, we saw the integral f sinx cos x dx
in Example 6.1.4. The integration was not difficult, and one could easily evaluate
the indefinite integral by letting u = sin x or by letting u = cos x. This integral is
easy since the power of both sine and cosine is 1.

We generalize this integral and consider integrals of the form [ sin x cos” x dx,
where m, n are nonnegative integers. Our strategy for evaluating these inte-
grals is to use the identity cos?x + sin?x = 1 to convert high powers of one
trigonometric function into the other, leaving a single sine or cosine term in the
integrand. We summarize the general technique in the following Key Idea.

Key Idea 7.3.1 Integrals Involving Powers of Sine and Cosine

Consider / sin™ x cos” x dx, where m, n are nonnegative integers.

1. If mis odd, then m = 2k + 1 for some integer k. Rewrite

sin” x = sin” ™ x = sin* xsinx = (sin’ x)* sinx = (1 — cos” x)* sin x.
Then
.om n 2 Nk _: n 2\k n
/sm xcos" xdx = /(l—cos x)"sinxcos” x dx = —/(l—u )u" du,
where u = cosx and du = — sin x dx.

. If niis odd, then using substitutions similar to that outlined above we have

/sin'"xcos"xdx:/um(l—uz)kdu,

where u = sinx and du = cos x dx.

. If both m and n are even, use the power—reducing identities

1+ c;)s(Zx) and  sin’x — 1-— c;s(Zx)

cos’ x =

to reduce the degree of the integrand. Expand the result and apply the principles
of this Key Idea again.

* means you should be aware these methods exist in case you need them later.
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We practice applying Key Idea 7.3.1 in the next examples.

Example 7.3.1 Integrating powers of sine and cosine

Evaluate /sin5 x cos® x dx.

SOLUTION The power of the sine term is odd, so we rewrite sin® x as

sin® x = sin® xsinx = (sin?x)? sinx = (1 — cos® x) sin x.

Our integral is now /(1 — cos? x)% cos® xsin x dx. Let u = cos x, hence du =

— sin x dx. Making the substitution and expanding the integrand gives
/(1—cosz)2 cos® xsinxdx = — /(1—u2)2u8 du = —/ (1-2v*+u*)uP du = —/ (u®—2u"+u"?) du.

This final integral is not difficult to evaluate, giving

1 2 1
8 10 12 9 11 13
- 2+ u?)du= -+ —utt - —uB 4
/(U u u ) u 9U llu 13U

1 9 2 11 1 13
= ——C0S"X+ —CcoS X — —cos~ x—+ C.
9 + 11 13 *

Example 7.3.2 Integrating powers of sine and cosine

Evaluate /sin5 x cos® x dx.

SOLUTION The powers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea 7.3.1 to either power. We choose
to work with the power of the cosine term since the previous example used the
sine term’s power.

We rewrite cos® x as

cos® x = cos® x cos x
= (cos® x)* cos x
= (1 —sin’x)*cos x

= (1 — 4sin®x + 6sin* x — 45sin® x + sin® x) cos x.

We rewrite the integral as

/sinsxc059xdx: /sinsx(1—4sin2x+ 6sin®x — 4sin® x + sin® x) cos x dx.



0.004 -

0.002 +

—0.002 - F(%)

Figure 7.3.1: A plot of f(x) and g(x) from
Example 7.3.2 and the Technology Note.
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Now substitute and integrate, using u = sinx and du = cos x dx.

sin® x(1 — 4sin” x + 6sin®x — 4sin® x + sin® x) cos x dx =
/u5(1—4u2+6u4—4u6+u8) du:/(u5—4u7+6u9—4u11+u13) du
lg 15

3
=-u —cu +u

0 195
6 2 5 3

1 1
u —u C
+ 12 +

1 5 1 3 .10
= >sinx— —sin"x+ —sin" x4+ ...
6 2 +5 +

1 1
3 sin* x + 1 sin* x + C.
Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipulation, etc.) are important.

Nowadays problems of this sort are often solved using a computer algebra sys-
tem. The powerful program Mathematica® integrates f sin® x cos® x dx as

) = — 45cos(2x) 5cos(4x) | 19cos(6x)  cos(8x) cos(10x) cos(12x) cos(14x)
B 16384 8192 49152 4096 81920 24576 114688 ’
which clearly has a different form than our answer in Example 6.3.2, which is

1.6 1% 3 10 1.1 1 .14
X) = =sin°x — zsinx+ —sin™ x — =sin™" x+ — sin™" x.
9(x) 6 2 Jr5 3 Jr14

Figure 7.3.1 shows a graph of fand g; they are clearly not equal, but they differ
only by a constant. That is g(x) = f(x) + C for some constant C. So we have
two different antiderivatives of the same function, meaning both answers are
correct.

Example 7.3.3 Integrating powers of sine and cosine
Evaluate /cos4 xsin® x dx.

SOLUTION The powers of sine and cosine are both even, so we employ
the power-reducing formulas and algebra as follows.

Jcoststran= [ (1o (1=etza

/ 1+ 2cos(2x) + cos?(2x) 1 — cos(2x) J
_ , "
4 2

— / %(1 + cos(2x) — cos?(2x) — cos’(2x)) dx

The cos(2x) term is easy to integrate, especially with Key Idea 7.1.1. The cos?(2x)
term is another trigonometric integral with an even power, requiring the power—
reducing formula again. The cos®(2x) term is a cosine function with an odd
power, requiring a substitution as done before. We integrate each in turn below.
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1
/cos(Zx) dx = > sin(2x) + C.

1 4 1 1
/cosz(Zx) dx = /%S(X) dx = E(X—i— 2 sin(4x)) + C.

Finally, we rewrite cos3(2x) as
cos®(2x) = cos?(2x) cos(2x) = (1 — sin®(2x)) cos(2x).

Letting u = sin(2x), we have du = 2 cos(2x) dx, hence

/cos3(2x) dx = / (1 — sin®(2x)) cos(2x) dx

1
= [ Z1-u))d
[y
_1 (u 1u3) +C
) 3
1 1
= E(sin(Zx) -3 sin3(2x)> +C
Putting all the pieces together, we have
1
/cos4xsin2xdx = / §(1 + cos(2x) — cos’(2x) — cos(2x)) dx
1 1 1 1 1 1
=3 [x+ > sin(2x) — E(X+ 2 sin(4x)) — E(sin(Zx) -3 sin3(2x))} +C
1r1 1 1
s [Ex — g sin(4x) + ¢ sin3(2x)} +C

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

Integrals of the form/sin(mx) sin(nx) dx,/cos(mx) cos(nx) dx,
and [ sin(mx) cos(nx) dx.

Functions that contain products of sines and cosines of differing periods are
important in many applications including the analysis of sound waves. Integrals
of the form

/sin(mx) sin(nx) dx, /cos(mx) cos(nx) dx and /sin(mx) cos(nx) dx
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are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) = [cos ((m —n)x) — cos ((m + n)x)}

Be aware of these

cos(mx) cos(nx) = {cos ((m — n)x) + cos ((m + n)x)}

sin(mx) cos(nx) =

NIRPNIRFRPN|RP

{sin ((m — n)x) +sin ((m + n)x)}

Example 7.3.4
P Integrating products of sin(mx) and cos(nx)

Evaluate/sin(Sx) cos(2x) dx.

SOLUTION The application of the formula and subsequent integration
are straightforward:

/sin(Sx) cos(2x) dx = /%{sin(3x) + sin(7x)} dx

L osax) — L cos(7x) + €
= ——= COS(>X) — — COS( /X
6 14

Integrals of the form / tan™ x sec” x dx.

When evaluating integrals of the form fsin’”xcos”x dx, the Pythagorean
Theorem allowed us to convert even powers of sine into even powers of cosine,
and vise—versa. If, for instance, the power of sine was odd, we pulled out one
sin x and converted the remaining even power of sin x into a function using pow-
ers of cos x, leading to an easy substitution.

The same basic strategy applies to integrals of the form ftan'”xsec”x dx,
albeit a bit more nuanced. The following three facts will prove useful:

 Z(tanx) = sec’x,
s 4 (secx) = secxtanx, and
e 1+ tan? x = sec? x (the Pythagorean Identity).

If the integrand can be manipulated to separate a sec? x term with the re-
maining secant power even, or if a secxtan x term can be separated with the
remaining tan x power even, the Pythagorean Theorem can be employed, lead-
ing to a simple substitution. This strategy is outlined in the following Key Idea.
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Key Idea 7.3.2 Integrals Involving Powers of Tangent and Secant

Consider /tan’" xsec” x dx, where m, n are nonnegative integers.

1. If nis even, then n = 2k for some integer k. Rewrite sec” x as

k

sec” x = sec* x = sec?* 2 xsec? x = (1 + tan® x)* ! sec? x.

Then
/tan'"xsec”xdx: /tan”’x(l—ktanzx)k—1 sec’ x dx = /u"’(l—i—uz)k—1 du,

where u = tanx and du = sec? x dx.

2. If mis odd, then m = 2k + 1 for some integer k. Rewrite tan” x sec” x as

2k+1

tan™ xsec” x = tan? ™ xsec” x = tan* xsec" ! xsecxtan x = (sec’ x — 1)K sec” ! xsecxtanx.

Then
/tanmxsec”x dx = /(seczx — 1)¥sec" ! xsecxtan x dx = /(u2 — k" du,

where u = secx and du = sec xtan x dx.

3. Ifnis odd and m is even, then m = 2k for some integer k. Convert tan™ x to (sec? x — 1). Expand
the new integrand and use Integration By Parts, with dv = sec? x dXx.

4. If mis even and n = 0, rewrite tan™ x as

tan™ x = tan™ % xtan® x = tan™ % x(sec’ x — 1) = tan™ ?sec’ x — tan” 2 x.

So
/tan’"xdx:/tan’"’zseczxdx = /tan’"’zxdx )
| S ——
apply rule #1 apply rule #4 again

Semi-memorize these methods

The techniques described in items 1 and 2 of Key Idea 7.3.2 are relatively
straightforward, but the techniques in items 3 and 4 can be rather tedious. A
few examples will help with these methods.
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Example 7.3.5 Integrating powers of tangent and secant

Evaluate /tan2 xsec® x dx.

SOLUTION Since the power of secant is even, we use rule #1 from Key
Idea 7.3.2 and pull out a sec? x in the integrand. We convert the remaining pow-
ers of secant into powers of tangent.

/tan2 xsec® x dx = /tan2 xsec* xsec? x dx
2
= /tan2 x(1 + tan®x)” sec® x dx
Now substitute, with u = tan x, with du = sec? x dx.

= /u2(1+u2)2 du

We leave the integration and subsequent substitution to the reader. The final
answer is

1t3+2t5+1t7+c
= —lan  x —tfan™ x —tan X .
3 5 7

Example 7.3.6 Integrating powers of tangent and secant
Evaluate /sec3 X dx.

SOLUTION We apply rule #3 from Key Idea 7.3.2 as the power of secant
is odd and the power of tangent is even (0 is an even number). We use Integra-
tion by Parts; the rule suggests letting dv = sec? x dx, meaning that u = secx.

dv = sec? x dx v =tanx
=

U =secx du = secxtanx dx

Figure 7.3.2: Setting up Integration by Parts.

Employing Integration by Parts, we have
secdxdx = [ secx-sec’xdx

. N~ ——

u dv

= secxtanx—/secxtanzxdx.
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This new integral also requires applying rule #3 of Key Idea 7.3.2:
= secxtanx — /secx(seczx —1) dx
:secxtanx—/sec3xdx+/secxdx
= secxtanx — /sec3xdx+ In|secx -+ tan x|

In previous applications of Integration by Parts, we have seen where the original
integral has reappeared in our work. We resolve this by adding fsec3x dx to
both sides, giving:

2/sec3xdx:secxtanx+|n|secx+tanx|

1
/secsxdx: E(secxtanx—k In\secx+tanx\) +C

We give one more example.

Example 7.3.7 Integrating powers of tangent and secant

Evaluate /tan6 X dx.

SOLUTION We employ rule #4 of Key Idea 7.3.2.

/tansxdx: /tan4xtan2xdx
= /tan4x(sec2x— 1) dx

:/tan4xsec2xdx—/tan4xdx

Integrate the first integral with substitution, u = tan x; integrate the second by
employing rule #4 again.

1
= gtansx—/tanzxtanzxdx
1
= gtansx— /tanzx(seczx— 1) dx

1
= gtansx—/tanzxseczxdx+/tan2xdx
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Again, use substitution for the first integral and rule #4 for the second.

1 1
= gtansx—gtansx—k/(seczx—l) dx

1 5 1 3
= gtan x—gtan X+ tanx —x+ C.

These latter examples were admittedly long, with repeated applications of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this solution method is. A trigonometric function of
a high power can be systematically reduced to trigonometric functions of lower
powers until all antiderivatives can be computed.

The next section introduces an integration technique known as Trigonomet-
ric Substitution, a clever combination of Substitution and the Pythagorean The-
orem.

Integral Table (Change of variable Form)

fdu =u+C
fe”du =e'+ C

udu = L= 4 C
S

Ja'du=2+cC
[ = nlul+c
Jcosudu=sinu+C [sinudu=-cosu+C
[sectudu=tanu+C Jesc?udu=—cotu+C
fsecu tanudu=secu+C fCSCUCOtUdU=—CSCU+C
ftan u du =In(secu) + C Jeotu du=1In(cosu) + C

fsecudu=ln|secu+tanu|+C Jescudu=In|cscu-cotu| +C

du . du
j4_2=arc5|nu+c f - arctanu + C
1-u 1+ u?

Method of Substitution
u=g(x)
f fg(x)g' () dx 4. ;“’ e J )y

b , u=g(x) g(b)
f(g(x)) g' (x) dx = f(u)du
‘I; JNI du=g"' (x) dx fg(a)

Proof: the integrals are live mathematics.



Exercises 7.3

Terms and Concepts

. T/F: / sin® x cos® x dx cannot be evaluated using the tech-

niques described in this section since both powers of sin x
and cos x are even.

. T/F: / sin® x cos® x dx cannot be evaluated using the tech-

niques described in this section since both powers of sin x
and cos x are odd.

. T/F: This section addresses how to evaluate indefinite inte-

.5 3
grals such as/sm xtan” x dx.

. T/F: Sometimes computer programs evaluate integrals in-

volving trigonometric functions differently than one would
using the techniques of this section. When this is the case,
the techniques of this section have failed and one should
only trust the answer given by the computer.

Problems

In Exercises 5 — 28, evaluate the indefinite integral.

5.

10.

11.

12.

13.

14.

15.

16.

/ sinxcos” x dx

/sm X €os x dx
/sm xcos’ x dx
/sm xcos® x dx
/sm xcos® x dx
/sm xcos’ x dx
/sm xcos’ x dx
/smxcosxdx
/sm (5x) cos(3x) dx
/sm cos(2x) dx
/sm (3x) sin(7x) dx
/

sin(7x) sin(2mx) dx

17. [ cos(x) cos(2x) dx

18. [ cos (gx) cos(mx) dx
19. tan” xsec? x dx
20. tan® x sec” x dx
21. tan® xsec” x dx
22. tan> x sec? x dx
23. tan® xsec® x dx
24, tan® xsec’ x dx
25. tan” x dx
sec® x dx

26.

27. tan’ x secx dx

— Y S S S Y Y Y S S~

28. / tan’ x sec® x dx

In Exercises 29 — 35, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in the previous set.

s
. 4
29. / sinxcos” x dx
0

30. / sin® x cos x dx
)
31. / sin? x cos” x dx
/2
32. / sin(5x) cos(3x) dx
0
T/2
33. / cos(x) cos(2x) dx
t/4
34. / tan® xsec® x dx
0

/4
35. / tan’ x sec® x dx


Bill
Typewritten text
7.3


87

Solutions 7.3

1. F
2. F
3. F
4. F
5. —%cos®(x) +C
6. Zsin*(x)+C
7. tcos®x— Tcos?x+C
8. Lcos®x—1costx+C
9. sinttx— Zsin®x+ Lsin”x+C
10. 7% sin®(x) + 3sin77(x) _ 3sin55(x) n sini(x) e
11. £ — & sin(4x) + C
12. % sinx 4+ Cor —% cos? x + C, depending on the choice of
substitution
13. 1 (=3 cos(8x) — 3 cos(2x)) + C
14. % (—% cos(3x) + cos(—x)) + C
15. 1 (£sin(4x) — X sin(10x)) + €
16. I (Zsin —-4—sm(3ﬂx» +c
17. 1 (sin(x) + $sin(3x)) + C
18. % sin($x) + E sin(mx) + C
19. B 4 ¢
20. ltan®x+ Ftan®x+C
21. tanﬁ% + tan"% +C
22. tarf‘% +C
23, ) _ =oW ¢
24, secz(x) -~ 25ec77(x) 4 secss(x) tc
25. ltan®x —tanx+x+4C
26. Ltanxsecd x + 3 (secxtanx+ In|secx +tanx|) + C
27. % (secxtanx — In|secx + tanx|) + C
28. %tanxsec3x — % (secxtanx + In|secx + tanx|) + C
29. 2
30. 0
31. 32/315
32. 1/2
33. 2/3
34. 1/5
35. 16/15
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7.4 Trigonometric Substitution

In Section 5.2 we defined the definite integral as the “signed area under the
curve.” In that section we had not yet learned the Fundamental Theorem of
Calculus, so we only evaluated special definite integrals which described nice,
geometric shapes. For instance, we were able to evaluate

3 9
9_ xX2dx =27 (7.1)
[ 5 2

as we recognized that f(x) = v/9 — x? described the upper half of a circle with
radius 3.

We have since learned a number of integration techniques, including Sub-
stitution and Integration by Parts, yet we are still unable to evaluate the above
integral without resorting to a geometric interpretation. This section introduces
Trigonometric Substitution, a method of integration that fills this gap in our inte-
gration skill. This technique works on the same principle as Substitution as found
in Section 6.1, though it can feel “backward.” In Section 6.1, we set u = f(x), for
some function f, and replaced f(x) with u. In this section, we will set x = f(6),
where fis a trigonometric function, then replace x with f(6).

We start by demonstrating this method in evaluating the integral in Equation
(7.1). After the example, we will generalize the method and give more examples.

Example 7.4.1 Using Trigonometric Substitution

3
Evaluate / V9 — x2 dx.
-3

SOLUTION We begin by noting that 9sin? 6 + 9cos®># = 9, and hence
9cos2f =9—9sin? 0. Ifweletx = 3sinf, then9—x2 = 9—9sin?§ = 9 cos? h.

Setting x = 3 sin 6 gives dx = 3 cos § df. We are almost ready to substitute.
We also wish to change our bounds of integration. The bound x = —3 corre-
sponds to § = —x/2 (for when § = —7/2, x = 3sind = —3). Likewise, the
bound of x = 3 is replaced by the bound 6 = 7/2. Thus

3 /2
/ V9 — x2 dx / V9 — 9sin* (3 cos 6) df
-3 —m/2

/2
/ 3v9cos26cos b db

—7/2

/2
:/ 3|3 cos 0| cos 6 db.
—7/2

On [—m/2,7/2], cos 8 is always positive, so we can drop the absolute value bars,
then employ a power-reducing formula:
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9 cos® 0 db
w/2

-/,
/m

1+ cos(26)) db

/2

N\LD

0+ = S|n(29))

—m/2

This matches our answer from before.

We now describe in detail Trigonometric Substitution. This method excels

when dealing with integrands that contain v/a? — x2, vx2 — a2 and v/x2 + a2.
The following Key Idea outlines the procedure for each case, followed by more
examples. Each right triangle acts as a reference to help us understand the re-

lationships between x and 6.

Key Idea 7.4.1 Trigonometric Substitution

(a) Forintegrands containing v/a? — x2:
Letx = asind, dx = acos 8 df
Thus § = sin~*(x/a), for —7/2 < 6 < /2.

On this interval, cos @ > 0, so

va? —x%=acosf

(b) For integrands containing v/x2 + a2:
Let x = atan 6, dx = asec? 6 df
Y(x/a), for —m/2 < 6 < 7/2.

On this interval, secf > 0, so

Thus 8 = tan™

VX2 +a* =asecl
(c) Forintegrands containing v/x2 — a2:

Let x = asecf, dx = asecOtand df

Thus § = sec™*(x/a). If x/a > 1, then0 < 0 < 7/2;
ifx/a < —1,then7/2 < 0 < .

X2 — g2

We restrict our work to where x > a, so x/a > 1, and
0 < 6 < /2. On this interval, tan 6 > 0, so

VX2 —a?> =atanf

Be fluent with these diagrams.

Be able to construct them
as needed.
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Example 7.4.2 Using Trigonometric Substitution

Evaluate /7 dx.

V5 4 x?

SOLUTION Using Key Idea 6.4.1(b), we recognize @ = /5 and set x =
\/5tan . This makes dx = /5 sec? 0 df. We will use the fact that v/5 + x2 =
V5 +5tan20 = v/5sec? 6 = /5 sec f. Substituting, we have:

1 " 1
—dx = 7\/556@29(19
/\/5+x2 /\/5+5tan2
/ﬁsec 9

\V/5secf

= /sec9d9

=In|secf + tanf| + C.

While the integration steps are over, we are not yet done. The original problem
was stated in terms of x, whereas our answer is given in terms of 6. We must
convert back to x.

The reference triangle given in Key Idea 6.4.1(b) helps. With x = v/5tan6,
we have

X x> +5
tand = — and secd=——.
NG V5
This gives
/ﬁdx:ln‘seceﬁ-tanﬂ—kc

+C.
5

R

We can leave this answer as is, or we can use a logarithmic identity to simplify
it. Note:

Ay As | ox )

N e

C=1In

%( x> +5+x)

=In \% +In|Vx+54x+C
=In|Vx +5+x|+C

where the In (1/1/5) term is absorbed into the constant C. (In Section 6.6 we
will learn another way of approaching this problem.)
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Example 7.4.3 Using Trigonometric Substitution

Evaluate / \V4x2 — 1 dx.

SOLUTION We start by rewriting the integrand so that it looks like vx2 — a?
for some value of a:

So we have a = 1/2, and following Key Idea 7.4.1(c), we set x :%sec 0, and
hence dx = % secftan 6 df. We now rewrite the integral with these substitu-

tions:
1 2
/\/4X2—1dX=/2 xz—(2> dx

:/Zw/lseCZQ—1 <1sec0tan0> do

4 4 \ 2

1
_ T lcoc2 ) —
—/1/4(sec 0 1)(sec9tan9> do
:/q/ltanze(secﬂtanﬂ) do

4

1

= /Etanzﬂsecﬁdé

%/(seczé)—l)secﬁdﬁ
1 sec® 0 — sec ) do.
2

We integrated sec3 6§ in Example 7.3.6, finding its antiderivatives to be

1
/sec30d0 = 5<sec0tan0+In\sec0+tan0|) +C.

Thus

/. Vax2 —ldx = 1/(sec?’é—sec@) do

2

1/1
=5 (z(secetanH-i-lnsec9+tan9|) - In|sec9+tan9> +C

1
=2 (secftand — In|sech + tand|) + C.
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We are not yet done. Our original integral is given in terms of x, whereas our
final answer, as given, is in terms of . We need to rewrite our answer in terms
of x. Witha = 1/2,and x = %sec 0, the reference triangle in Key Idea 6.4.1(c)
shows that

tand = \/x2—1/4/(1/2):2 x> —1/4 and secd = 2x.
Thus
1 1
Z(sec@tan@— |n|sec9+tan0|) +C= Z(ZX-Z x*—1/4—1In ]2x+ 24/x2 — 1/4|> +C
= %<4x\/x2 —1/4—In|2x+2y/x* — 1/4|> +C.

The final answer is given in the last line above, repeated here:

/\/4x2 —1ldx= E(4)(\/)(2 —1/4—1In|2x+2y/x* — 1/4\) +C.

4

Example 7.4.4 Using Trigonometric Substitution

Vi — x?
Evaluate / — dx.
X
SOLUTION We use Key Idea 7.4.1(a) witha =2, x =2sin 6, dx=

2 cos f and hence v4 — x2 = 2 cos 6. This gives

Va4 — x2 2cosf
/de:/

asinZ0 (2cos8) do

= /cot2 0 do

:/(csc29—1) do
= —cotf — 0+ C.

We need to rewrite our answer in terms of x. Using the reference triangle found
in Key Idea 6.4.1(a), we have cot§ = /4 — x2/xand 6 = sin~*(x/2). Thus

4 — x? 4 —x2
[V e Y (B e

Trigonometric Substitution can be applied in many situations, even those not
of the form Va2 — x2, V/x2 — a? or v/x? + a2. In the following example, we ap-
ply it to an integral we already know how to handle.
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Example7.4.5 Using Trigonometric Substitution
Evaluate —— dx
x24+1

SOLUTION We know the answer already astan—! x-+C. We apply Trigono-
metric Substitution here to show that we get the same answer without inher-
ently relying on knowledge of the derivative of the arctangent function.

Using Key Idea 7.4.1(b), let x = tan 0, dx = sec®6 df and note that x>+ 1 =
tan?# 4+ 1 = sec? §. Thus

1 1
———dx= 20 do
/x2+1 x /sec29sec
:/1d9

=0+C

1
21 dx = tan"1x+C.

Since x = tan 6, 8 = tan—! x, and we conclude that / e

The next example is similar to the previous one in that it does not involve a
square—root. It shows how several techniques and identities can be combined
to obtain a solution.

Example 7.4.6 Using Trigonometric Substitution
1

-4
/(xz Fext+ 1012 X

SOLUTION We start by completing the square, then make the substitu-
tion u = x + 3, followed by the trigonometric substitution of u = tan 6:

Evaluate

1 1 1
———dx= | ———————=dx= [ ——— du.
/ (¢ + 6x + 10)2 / (x+3) +1) / (2 +1)2
Now make the substitution u = tan 6, du = sec? 6 d6:

1 2
—/msec 0 do

1 2
:/msec 0 do

= /cos2 0 de.
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Applying a power reducing formula, we have

1 1
/ (2 +5 cos(ZG)) do
- %9 + %sin(Z@) +C. (6.2)

We need to return to the variable x. Asu = tan6, § = tan~!u. Using the
identity sin(20) = 2sinfcos§ and using the reference triangle found in Key
Idea 6.4.1(b), we have

Lgn(2ey= LY 1 1 u
= sin == . == .
4 2 +1 Vur+1 202 +1

Finally, we return to x with the substitution u = x4 3. We start with the expres-
sion in Equation (6.2):

1.1 1 1 u
59+Zsin(29)+C: Etarr1u+ +C

20241
1 1 x+3

=t lx+3)+ o4
)t S e 10y T

Stating our final result in one line,

/ ! dx— “x+3)+ x+3 +C
TS - 5 ax = —1an X VA TN
(x* + 6x + 10)2 2 2(x* 4+ 6x + 10)

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric Substitution,
we could first evaluate the corresponding indefinite integral (by changing from
anintegral in terms of x to one in terms of #, then converting back to x) and then
evaluate using the original bounds. It is much more straightforward, though, to
change the bounds as we substitute.

Example 7.4.7 Definite integration and Trigonometric Substitution

5 X2
Evaluate / — dx.
0o Vx*4+25

soLuTion Using Key Idea 7.4.1(b), we set x =5 tan 6, dx =5 sec?0 df, and

note that V/x24 25 = 5 sec f. As we substitute, we can also change the bounds.

The lower bound of the original integral is x = 0. As x = 5 tan 6, we solve for 6
and find § = tan=%(x/5). Thus the new lower bound is § = tan~%(0) = 0. The
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original upper bound is x = 5, thus the new upper bound is § = tan=1(5/5) =
/4.
Thus we have

5 2 /4
/0 \/x2X+ 25 / 22 Zn 99 sec’ 0o
= 25/ tan® @ sec df.
0
We encountered this indefinite integral in Example 6.4.3 where we found
/tan2 O sec df = %(sec&tan& —In|sec + tan6)|).

So
w/4 25 /4
25/ tanzﬁsec9d9:7(sec9tan9—In\sec9+tan9|)
0
0

= 275(\67 In(v2 + 1))
~ 6.661.

The following equalities are very useful when evaluating integrals using Trigono-
metric Substitution.

Key Idea 7.4.2 Useful Equalities with Trigonometric Substitution

1. sin(20) = 2sin 0 cos 0

2. cos(20) = cos? @ —sin?f = 2cos?*H —1 =1 — 2sin* 0

3. /sec 0 do = 2(5ec9tan9+ln]sec9+tan9|) +C

4. /c0520d0=/%(1+cos(2«9)) d0:%(0+sin0cos€)+c

The next section introduces Partial Fraction Decomposition, which is an alge-
braic technique that turns “complicated” fractions into sums of “simpler” frac-
tions, making integration easier.

If you are fluent with the trig substitution method, consider yourself a calculus master.



Exercises 7.4

Terms and Concepts

1. Trigonometric Substitution works on the same principles as
Integration by Substitution, though it can feel “

2. If one uses Trigonometric Substitution on an integrand con-
taining v/25 — x2, then one should set x =

3. Consider the Pythagorean Identity sin* § + cos® 6 = 1.

(a) What identity is obtained when both sides are di-
vided by cos? 6?

(b) Use the new identity to simplify 9tan? 6 + 9.

4. Why does Key Idea 7.4.1(a) state that /a2 — x2=a cos 6,
and not acos| 6P

Problems

In Exercises 5 — 16, apply Trigonometric Substitution to eval-
uate the indefinite integrals.

5. /\/x2 + 1dx

6. /\/x2 + 4 dx

~N

./de

o]

./ﬂdx
9./\/mdx
10./de
11./\/de
12. /'mdx
13./mdx
14. /\/%?dx
15. /;dx
V7 —x2

16

5d

In Exercises 17 — 26, evaluate the indefinite integrals. Some
may be evaluated without Trigonometric Substitution.

/ Vx2—11 dx
’ X

17

18 / .
: (X2+1)2
19

/ X
' vVxt -3
20. /xzx/l — x2 dx

X
21. / 7(x2+9)3/2 dx

5%
22. ——dx
/ Vvx% —10

1
23. ——d
/ ¢ +ax+132 ¥
24, /x2(1 —x*) 7 dx

25

/ V5 —x?
. —— " dx
7x2

X2
26. / —— dx
Vx2+3
In Exercises 27 — 32, evaluate the definite integrals by mak-
ing the proper trigonometric substitution and changing the
bounds of integration. (Note: each of the corresponding

indefinite integrals has appeared previously in this Exercise
set.)

1
27. / V1 —x%dx
-1
8
28. / Vx% — 16 dx
4
2
29. / VX% + 4 dx
0
1
1
30. —d,
/,1 b+ 12 &
1
31. / V9 — x2 dx
—1

1
32. / V1 — x2 dx
-1
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Solutions 7.4

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24,

25.

26.

27.
28.
29.
30.
31.

32.

. backwards

. 5sind

(a) tan?6 + 1 = sec?
(b) 9sec? 4.

. Because we are considering a > 0 and x = asin #, which means

6 = sin~1(x/a). The arcsine function has a domain of
—7/2 < 6 < 7/2; on this domain, cos # > 0, so a cos f is always
non-negative, allowing us to drop the absolute value signs.

. % (x\/x2+1+ln|\/x2+1+x|> +C

) (gx/xz Fa4in| Y §|) +c
. %(sin*1x+xx/1—x2>+C

. (9sin*1(x/3) +xv/9 —x2> +C

. %xmf%ln|x+m\+c

2 —
+ x4 16 +cC

%X\/x2 —16—8In|}
XK +1/4+ 2in|2y/x2 +1/4+ 2|+ C=

VA + 14 2In|[Vax2 + 14 2x| + C

Tsin T (3x)+21/1/9 — X +C = gsin1(3x) + 31— 9 +C

4 (%x\/xz —1/16 — 35 Injax 4+ 4,/x* — 1/16|) +C=

IxvV16xX —1— LInjax+ V16X — 1|+ C

VX242 4+ X
V2 V2

answer as 8sinh~%(x/+/2) + C.

81In + C; with Section 6.6, we can state the

3sin— ! (%) -+ C (Trig. Subst. is not needed)

NG V8

VX2 =11 — /11sec™(x/v/11) + C

1 —1 X
5 (tan X+ m) +C

5In

+C

v/x2 — 3 + C(Trig. Subst. is not needed)
Tsin7ix— Ixv1—x(1-22)+C
-1 +¢ (Trig. Subst. is not needed)

VX249
5 /xZ — x_ o, V/¥-10
ZXVX 10+ 251In T + T

1 x+2 1 —1 (x+2
18 x2+4x+13 + 54 tan ( 2 ) +C

77"7)(2 —sin~ix+cC
: (_L*z - sin_l(x/\/g)) +c

%X\/xz+3—%ln“ +

+C

X243 x
73 +ﬁ +C

/2

16v/3 — 8In(2 + v/3)

2v2 +2In(1+v2)

/4 +1/2)

9sin~1(1/3) + v/8 Note: the new lower bound is

6 = sin—1(—1/3) and the new upper bound is 8 = sin=1(1/3).
The final answer comes with recognizing that

sin~1(=1/3) = —sin—1(1/3) and that

cos (sin71(1/3)) = cos (sin1(—1/3)) = v/8/3.

/8
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7.5 Partial Fraction Decomposition

In this section we investigate the antiderivatives of rational functions. Recall that
rational functions are functions of the form f(x) = %, where p(x) and g(x) are
polynomials and g(x) # 0. Such functions arise in many contexts, one of which

is the solving of certain fundamental differential equations.

We begin with an example that demonstrates the motivation behind this

section. Consider the integral / dx. We do not have a simple formula

x2—1
for this (if the denominator were x? + 1, we would recognize the antiderivative
as being the arctangent function). It can be solved using Trigonometric Substi-
tution, but note how the integral is easy to evaluate once we realize:

1 1/2 1/2
-1 x—1 x+1

Thus

1
[t [ Lo [ V2
x> —1 x—1 x+1

U —1) = Sinjx+ 1]+
=_Inlx—1]—>Inx .
2 2

This section teaches how to decompose

1/2 1/2
into / — / .
x2—1 x—1 x+1
We start with a rational function f(x) = %, where p and g do not have any

common factors and the degree of p is less than the degree of g. It can be shown
that any polynomial, and hence g, can be factored into a product of linear and
irreducible quadratic terms. The following Key Idea states how to decompose a
rational function into a sum of rational functions whose denominators are all of
lower degree than g.

Note If the degree of the numerator is greater than or equal to that of the
denominator, divide.

Example
X4
X+ 1
=(F-1+3) polynomial division
So
X4
Ix2+l dx
— 1
B J—(X?’_ 1+ x2+1)dX

-x+arctanx+C

e

Understand this material and be
able to work simple examples.
It is important to understand
that now, in theory, you can
integrate about any rational
function.

Big people use a CAS for these
problems.
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Key Idea 7.5.1 Partial Fraction Decomposition

X
Let @ be a rational function, where the degree of p is less than the

q(x)

degree of g.

1. Linear Terms: Let (x — a) divide g(x), where (x —a)" is the highest

power of (x— a) that divides g(x). Then the decomposition of %

will contain the sum
Ay A, A,

x—a) " x—ap T T x—ap

2. Quadratic Terms: Let x*> + bx + ¢ divide g(x), where (x> + bx + c)"
is the highest power of x> + bx + c that divides g(x). Then the
decomposition of % will contain the sum

Bix + Cy Byx + G, Box + C,
x2+bx+c (X2+ bx+c)? (2 +bx+c)"”

To find the coefficients A;, B; and C;:

1. Multiply all fractions by g(x), clearing the denominators. Collect
like terms.

2. Equate the resulting coefficients of the powers of x and solve the
resulting system of linear equations.

x*

X2+1

dx
By polynomial division X;%= Z-1+
-1+ ) dx

X2+1

Example |

X3
?—x+arctanx+C

The following examples will demonstrate how to put this Key Idea into
prac-tice. Example 7.5.1 stresses the decomposition aspect of the Key Idea.

Example 7.5.1 Decomposing into partial fractions

Decompose f(x) without solving

_ 1
T X+ =23 x+2) X2+ x+7)?
for the resulting coefficients.

SOLUTION The denominator is already factored, as both x? + x + 2 and
x? + x + 7 cannot be factored further. We need to decompose f(x) properly.
Since (x + 5) is a linear term that divides the denominator, there will be a

A
x+5
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term in the decomposition.
As (x — 2)3 divides the denominator, we will have the following terms in the
decomposition:

B Cc d D
, and — .
x—2 (x—2)? (x—2)3
Ex+F
The x*> + x + 2 term in the denominator results in a 27—1_ term.
x> +x+2
Finally, the (x> + x + 7)? term results in the terms
Gx +H an Ix+J
X2+ x+7 02 +x+7)%
All together, we have
1 __A B C _ D
(X+5)(x =23 +x+2)x+x+7)2  x+5 x—-2 (x—2)2 (x—2)3
Ex+F Gx+H Ix+J

X2 +x+2 +x2+x+7 + (o +x+7)?

Solving for the coefficients A, B...J would be a bit tedious but not “hard.”

Example 7.5.2 Decomposing into partial fractions
Perform the partial fraction decomposition of —
X —
SOLUTION The denominator factors into two linear terms: x> — 1 =

(x —1)(x+ 1). Thus
1 A B

-1 x-1 x+1
To solve for A and B, first multiply through by x* — 1 = (x — 1)(x + 1):

Ax—1)(x+1) B(x—1)(x+1)
x—1 x+1

=Ax+1)+B(x—1)

=Ax+A+Bx—B

1=

Now collect like terms.

= (A+B)x+ (A—B).
The next step is key. Note the equality we have:

1=(A+B)x+(A—B).



Techniques of Antidifferentiation

Note: Equation7.3 offers a direct route to
finding the values of A, B and C. Since the
equation holds for all values of x, it holds
in particular when x = 1. However, when
x = 1, the right hand side simplifies to
A(1 + 2)* = 9A. Since the left hand side
is still 1, we have 1 = 9A. Hence A = 1/9.
Likewise, the equality holds when x =
—2; this leads to the equation 1 = —3C.
Thus € = —1/3.

Knowing A and C, we can find the value of
B by choosing yet another value of x, such
as x = 0, and solving for B.

101

For clarity’s sake, rewrite the left hand side as
Ox+1=(A+B)x+ (A—B).

On the left, the coefficient of the x term is 0; on the right, it is (A + B). Since
both sides are equal, we must have that 0 = A + B.

Likewise, on the left, we have a constant term of 1; on the right, the constant
termis (A — B). Therefore we have 1 = A — B.

We have two linear equations with two unknowns. This one is easy to solve
by hand, leading to

A+B=0 A=1/2
A—-B=1 B=-1/2"
Thus
1 12 1)2

-1 x—1 x+1

Example 7.5.3 Integrating using partial fractions

1
Use partial fraction decomposition to integrate [ ————— dx.
P P g /(x_l)(x+z)2
SOLUTION We decompose the integrand as follows, as described by Key
Idea 7.5.1:

1 _ A B, <
(x—1)(x+22 x—-1 x+2 (x+2)¥

To solve for A, B and C, we multiply both sides by (x — 1)(x + 2)? and collect like
terms:

1=A(x+2)>+B(x—1)(x+2) +C(x — 1) (7.3)
= AxX* + 4Ax +4A +BX* +Bx — 2B+ Cx — C
=(A+B)X + (4A+ B+ CO)x+ (4A— 2B - C)

We have
0% +0x+1=(A+B)x*+ (4A+ B+ C)x + (4A — 2B —C)
leading to the equations
A+B=0, 4A+B+C=0 and 4A—-2B—-C=1.
These three equations of three unknowns lead to a unique solution:

A=1/9, B=-1/9 and C=-1/3.
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Thus

[z o= i [ o [ oo

Each can be integrated with a simple substitution withu = x—1oru = x+2
(or by directly applying Key Idea 6.1.1 as the denominators are linear functions).
The end result is

1 1 1 1
. dx= =1 - hx+2/+-——tC
/(xfl)(erZ)z =gk = =ginx+2l+ oy +

Example 7.5.4 Integrating using partial fractions
3
X
Use partial fraction decomposition to integrate / ———— dx.
(x —=5)(x+3)

SOLUTION Key Idea 7.5.1 presumes that the degree of the numerator
is less than the degree of the denominator. Since this is not the case here, we
begin by using polynomial division to reduce the degree of the numerator. We
omit the steps, but encourage the reader to verify that

X =x+24+ 19x +30 ] Note: The values of A and B can be quickly
(x —5)(x+3) (x—=5)(x+3) found using the technique described in

. X . . the margin of Example 7.5.3.
Using Key Idea 6.5.1, we can rewrite the new rational function as:

19x + 30 A B

(x—5)(x+3) x—5  x+3

for appropriate values of A and B. Clearing denominators, we have
19x+30 =A(x+3)+B(x —5)
= (A+B)x+ (3A—15B).
This implies that:

19=A+8B
30 =3A - 58B.

Solving this system of linear equations gives

125/8 = A
27/8 =B.
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We can now integrate.

/%dx/<x+z+%+ﬁ> dx

—X2+2x+125In|x 5|+27In\x+3|+C
2 8 8 '
Example 7.5.5 Integrating using partial fractions

7x%* 4+ 31x + 54
(x+1)(x® 4+ 6x + 11)

Use partial fraction decomposition to evaluate /
SOLUTION The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 6.5.1. We have:

7X* +31x+54 A L Bx+cC
(x+1)(x>+6x+11) x+1 x2+6x+11

Now clear the denominators.

7% +31x+ 54 = A(X* + 6x + 11) + (Bx + C)(x + 1)
=(A+B)x* + (6A+ B+ CO)x+ (11A+ C).

This implies that:

7=A+8B
31=6A+B+C
54 =11A4C.

Solving this system of linear equations gives the nice result of A =5, B = 2 and
C= —1.Thus

7x* + 31x + 54 5 2x—1
dx = + dx.
(x+1)(x* + 6x+11) x+1 x2+4+6x+11

The first term of this new integrand is easy to evaluate; itleadstoa 5 In [x+1|
term. The second term is not hard, but takes several steps and uses substitution
techniques.

2x —
————— has a quadratic in the denominator and a linear
x2 4+ 6x+ 11
term in the numerator. This leads us to try substitution. Let u = x? + 6x+ 11, so
du = (2x + 6) dx. The numerator is 2x — 1, not 2x + 6, but we can get a 2x + 6

The integrand
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term in the numerator by adding 0 in the form of “7 — 7.

-1  x—1+47-7
X +6x+11 x24+6x+11
2x+6 7

T X f6x+11 X2 tfex+11°

We can now integrate the first term with substitution, leading to a In [x*+6x+11|
term. The final term can be integrated using arctangent. First, complete the
square in the denominator:

7 7
X2 +6x+11  (x+3)2+2°

An antiderivative of the latter term can be found using Theorem 6.1.3 and sub-

stitution:
7 7 x+3
- dx=—tan} | —= C.
/x2+6x+11 X V2 (ﬁ)+

Let’s start at the beginning and put all of the steps together.

7% + 31x + 54 5 2x—1
dx = + dx
(x+1)(x* + 6x + 11) x+1 x*+6x+11
= 5 dx 4 _ x+6 dx — - dx
x+1 x2+6x+11 x2 4+ 6x+11
7 _ 3
=5In|x+ 1|+ In|x* +6x+11] — ——tan~" (X+ ) +C.
V2 V2
As with many other problems in calculus, it is important to remember that one
is not expected to “see” the final answer immediately after seeing the problem.
Rather, given the initial problem, we break it down into smaller problems that
are easier to solve. The final answer is a combination of the answers of the
smaller problems.

Partial Fraction Decomposition is an important tool when dealing with ratio-
nal functions. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewriting a fraction in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.
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Exercises 7.5
Terms and Concepts Is.

94x* — 10x
7x+3)(5x —1)(3x — 1)

1. Fillinthe blank: Partial Fraction Decomposition is a method
of rewriting functions. 16. X +x+ 1
+x — 2

2. T/F: It is sometimes necessary to use polynomial division

before using Partial Fraction Decomposition. dx

3. Decompose without solving for the coefficients, as

2% —4x+6

dx
X2 —2x+3

done in Example 6.5.1. 18.

7—x
4. Decompose 29 without solving for the coefficients, as 1o, d
- X

done in Example 6.5.1. X3+ sz + 3x

X +x+5
x2 +4x+ 10

/q
Ihgese
[ s
| #aees
[e5as

x—3 . _
5. Decompose a7 without solving for the coefficients, as 20.

done in Example 6.5.1.

2x+5 . . -
6. Decompose S5 without solving for the coefficients, as . .
+ 7x Do the remaining problems using a CAS or Wolfram Alpha.

done in Example 7.5.1.
12x* 4+ 21x +3
21.
(x+1)(3x2 +5x — 1)

Problems
- 6x° +8x—4
In Exercises 7 — 26, evaluate the indefinite integral. : (x —3)(x2 + 6x + 10)
7. /%dx 23 / 2+ x+1
x> +3x—10 . 7(x+1)(x2+9)
7x —2
8./ e / X — 20x — 69
x°+x 24,
(x—=7)0 + 2x + 17)
—4
% [ a1 ¥ s / 9 — 60x + 33
' (x —9)(x* —2x 4+ 11)
10 6x + 4
)+ ™ 26 / 6x° + 45x + 121
") (x+2)(x + 10x + 27)
11 i dx
' (x+5)2 In Exercises 27 — 30, evaluate the definite integral.
— — 2
12. / 20 27. / Bl g,
(x+8) 1 (x+2)(x+3)
2 5
13, / 9x° 4+ 11x + 7 dx )8, / 14x + 6 dx
x(x+1)? o Bx+2)(x+4)
—12x%% — 1 2
14, / 12x* — x + 33 dx 2. / X +5x—=5 dx
(x—1)(x+3)(3—2x) _1 (x—10)(x* +4x +5)

1
X
30. dx
/0 x+ 1)+ 2x+ 1)
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Solutions 7.5

10.
11.

12.
13.
14.

15.
16.

17.
18.

19.

20.

27.
28.

29.

30.

rational

x> —

8
=
A B
-3 T x43

A 8
X—\ﬁ+X+\ﬁ
A | BxtC
;+x2+7
3In|x —2|+4In|x+5|+C
9In|x+ 1| —2In|x|+C
(nlx+2/—Injx=2])+C
Injx+ 1] +In[3x+1]+C

In|x+5 — 2 +¢C

x+5
—xts —3Inix+8[+C
a1 F7Inix +2inx+ 1+ ¢

—In|2x—=3|+5In|x =1+ 2In|x+ 3|+ C
—tin|sx—1/+2In3x— 1|+ 2In|7x+3[+C
x+Injx—1 —Injx+2|+C

2
Chx+Bhnx—5/+&%mnx+4 -2 +cC
2x+C

s (‘In [ +2x+ 3] +2In|x| — v2tan (iﬁl» e

—1( x+2
—2In|x® +4x+ 10| + x + wj%

. In|3x* +5x — 1| + 2In|x + 1| + C
. 2Injx—=3|+2In|x? +6x+ 10| —4tan~(x +3) + C

160+ 9+ 5 inlx+ 1 — gptant (5) +¢

(3In |x2 4+ 2x + 17| —4In|x — 7| +tan 1 (x+1))

" c

+

1
2

201 ((x=1
3(In|x2_2x-|—11|—&—In|x—9|)+3\/gtaln 1()\(/E) Ty
1 —

Z1n |x2+10x + 27| + 5In x4+ 2| — 6v/2tan ~* X7+25> +c

In(2000/243) = 2.108
5In(9/4) — In(17/2) = 3.3413

—7/44tan"13 —In(11/9) = 0.263

1/8
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b
7.6 Improper Integrals In the definition of definite integral,f f(x)dx, it was assumed
a

that the integrand was bounded (not infinite) on the interval of integration. Also it was assumed
that the limits of integration a and b were real numbers, not the extended reals, -co or +oo.

Y

y=f(x)

a b

In applications, these restrictions are unnecessary and undesirable. With one caution®, these
new type of integrals can be evaluated in the usual way.

=1
Y e
5,
O,
*Caution: If f(x) is infinite at an interior point x sl
of the interval, a < x < b, break up the interval so 10t
that the infinity occurs at endpoints. 5¢
—1‘.5 —1‘.0 —6.5 0.0 015 110 115 X
Example Evaluate fld—x
_1x%°
= L| 1
X1-1
1 1
=-1-(-=1)
= -2.

Wrong! The answer should be positive since f(x) >0 on theinterval -1<x<1.

Normally do not integrate
across a point where the

integrand is infinite.

Correct:

J‘ld_xzje_d_x-l-Jl%
1 x? 1 x? ot x2

_ 1|0 11
= x| +‘x|0+

hyperreal arithmetic
= (+oo0-1)+ (-1 +00)

= 2(+o0) -2

= +00,

Note: We allow +co as an answer because in all applications this answer is meaningful. If thisis a
‘find the area under the curve’ problem, it would cost infinite many $'s to buy the paint to coat it.
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Type |l Improper Integrals: infinite limits of integration
Type Il Improper Integrals: infinite integrands With hyperreal methods, these categories

Mixed Type I, Type Il Integrals are not very relevant.

Possible Outcomes:
* An extended real number
* Does not exist

Note in your Apex readings that the author uses limit methods. The limit method is more prone
toward making errors. Hyperreal methods also seem more natural; you work these just like
you did for 'proper integrals'.

e—X
1
Example Typel
. X
0 1 2 3 4
e Xdx = -e ™
J 0 _| 0 . Use the more natural hyperreal
=-e-(-€) notation when doing improper
= 0+1 integrals:
=1
0t=dx, dx>0
2 0 =-dx, dx>0
at=a+ 0% etc.
Example Typel
: : : . . L X
-3 -2 -1 0 1 2 3
+o dx _ + oo
J_m <7 = arctan x| .
= arctan(+oo) - arctan(-oo)
= 2.(B)
=77
1ix Inx
5 3r
4t 2t
| i /
Example Mixed Type 0 X
ot T2 3 4 5 6
—1F
1t -2
X -3

+ oo

Jm dTX =Inx| ,
= In(+o0) - In(0*)

+o0 (-o0)

= {oo + oo}

= 400

+00 y dX
Exercise Show that J_w x2+ 1 does not exists because it is the indeterminate form {oo - oo},

Answer: See the front cover or the next page
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Improper Integration Readings

We begin this section by considering the following definite integrals:

100 1
L] —_— -
/0 T Ox = 1.5608,

1000
* /0 m dx = 1.5698,

10,000 4
[ ] —_— -
/0 T2 = 15707,

Notice how the integrand is 1/(1 + x?) in each integral (which is sketched
in Figure 7.8.1). As the upper bound gets larger, one would expect the “area
under the curve” would also grow. While the definite integrals do increase in
value as the upper bound grows, they are not increasing by much. In fact,
consider:

1 b
/ﬁdx:tan_lx‘ =tan"'bh—tan'0=tan"1bh.
o 1+x 0

Asb — oo, tan"1h — 7 /2. Therefore it seems that as the upper bound b grows,

b
1
the value of the definite integral / 150 dx approaches 7/2 = 1.5708. This
0

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

b
Whenwedeﬁnedthedeﬁniteintegral/ f(x) dx, we made two stipulations:
a

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The function f(x) was continuous on [a, b] (ensuring that the range of f
was finite).

0.5

Figure 7.6.1: Graphing f(x)

In this section we consider integrals where one or both of the above conditions do not hold.

Such integrals are called improper integrals.

Note: when using hyperreal methods, the only time you should break up the interval of
integration is when the the integrand has an infinite value in the interior of the interval

of integration.

NOTE In a previous example we saw that

+oo  x dx

-0 1+x2

One might think that, by symmetry about the origin,
the answer should be 0. But we always agree that this
integral does not exist. In applications this agreement
also often makes sense. Think about why this is true.

= {0 - oo} ,indeterminate. The integral does not exist.

Nevertheless, in some advanced applications, thereis a ~10 T s
variation called the Cauchy Principal Value of the integral
which in this case is 0. In this course we will not allow it.

1
T 1+x2


Bill
Typewritten text
Readings
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Improper Integrals with Infinite Bounds

Definition 7.6.1 Improper Integrals with Infinite Bounds; Converge,
Diverge

1. Let f be a continuous function on [a, 00). Define

0o b
/a f(x) dx tobe bIer;O /a f(x) dx

2. Let fbe a continuous function on (—oo, b]. Define

3. Letfbe a continuous function on (— ). Let c be any real num-

ber; define

o c b
/ f(x) dx tobe aﬂrp /f(x) dx+blim /f(x) dx

An improper integral is said to converge if its corresponding limit exists
otherwise, it diverges. The improper integral in part 3 converges if and

only if both of its limits exist.
We prefer not to use the

Example 7.6.1 Evaluating improper integrals . .
Evaluate the following improper integrals term ‘improper .

y
1 1
-t > 1 0
f % 1. / fde 3. / X dx
1 X oo
0.5 | o 4
oo
2. / - dX 4. ; dX
1 X Coo 1+ X2
‘ ‘ —> X SOLUTION
1 5 10
1 —1b
Figure 7.6.2: A graph of f(x) = ;1; in Ex- 1. / —dx = lim / —dx = lim —
1 b—oo b—oo X I1
= lim — +1
b—oco b +

ample 7.6.1.
=1.

A graph of the area defined by this integral is given in Figure 7.6.2

Example F sin x dx does not exist because the answer depends on the positive infinite number X

< N U .~

)
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<1 b1
/ fdx:lim/fdx
1 X b—oo J; X

b
lim In |x|‘
b—00 1

Jim (s
= +00.
oo

1
The limit does not exist, hence the improper integral ; dx diverges.

1
Compare the graphs in Figures 7.6.2 and 7.6.3; notice how the graph of
f(x) = 1/xis noticeably larger. This difference is enough to cause the
improper integral to diverge.

0 0
/ &dx= I|lim / X dx
— oo a——0o0 a

0
= lim ¢€*
a——0o0

a

= lim e’ —e°
a——0o0

=1.
A graph of the area defined by this integral is given in Figure 7.6.4.

4. We will need to break this into two improper integrals and choose a value
of c as in part 3 of Definition 7.6.1. Any value of c is fine; we choose c = 0.

> 1 °© 1 b
S dX = Iim S dX + Iim S — dX
oo 12 a——o0 J, 14 x? b—oo Jg 14 x?

0 b

= lim tan"'x| + lim tan_lx'
a——o0 a b—oo 0

= lim (tan"'0—tan"'a) + lim (tan~'b —tan~'0)
a——o0 b— o0

—(0o- 2T+ (W 0)
N 2 2 '
Each limit exists, hence the original integral converges and has value:

= T.

A graph of the area defined by this integral is given in Figure 7.6.5.

Hyperreally
]—_!ooxgil = arctanx|*2 = arctan(+oo) - arctan(-co) = % . (f) -

0.5 +

Figure 7.6.3: Agraph of f(x) = %
in Example 7.6.1.

fx)=e

Figure 7.6.4: A graph of f(x) = €*
in Ex-ample 7.6.1.

<

—10 -5 5 10
Figure 7.6.5: A graph of f(x) = IJ%XZ in
Example 7.6.1.

arctan x

pis
2

-20 -10 10 20 X



0.4 +

0.2 +

f f X

1 5 10

Figure 7.6.6: A graph of f(x) = % in Ex-
ample 7.6.2.
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The previous section introduced I’'Hopital’s Rule, a method of evaluating lim-
its that return indeterminate forms. It is not uncommon for the limits resulting
from improper integrals to need this rule as demonstrated next.
Be aware of this

Example 7.6.2 Improper integration and I’'Hépital’s Rule

. . nx
Evaluate the improper |ntegral/ — dx.
1 X

SOLUTION This integral will require the use of Integration by Parts. Let
u=Inxanddv = 1/x*dx. Then

I
U:
e
/T\
|2
|
X |~
N————

Inb
The 1/b and In 1 terms go to 0, leaving blim e + 1. We need to evaluate
— 00

. Imb
lim —— with I’"Hopital’s Rule. We have:
—oco b

. Inp bYWR - 1/p
lim — = lim —
b—oo b b—oo 1

=0.

Thus the improper integral evaluates as:
*“Inx
/ —dx=1.
1 X

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integration
was infinite. We now consider another type of improper integration, where the
range of the integrand is infinite.
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Definition 7.6.2 Improper Integration with Infinite Range

Let f(x) be a continuous function on [a, b] except at ¢, a < ¢ < b, where
Xx = cis a vertical asymptote of f. Define

/abf(x) dx = lim /atf(x) Py /tbf(x) "

t—c— t—ct

Example 7.6.3 Improper integration of functions with infinite range
Evaluate the following improper integrals:

1 1
1 1
1. — dx 2. — dx.

SOLUTION

1. A graph of f(x) = 1/y/xis given in Figure 7.6.7. Notice that f has a vertical
asymptote at x = 0; in some sense, we are trying to compute the area of

a region that has no “top.” Could this have a finite value?

1 1
—dx=li —d
/0\&* aL’B‘+/0ﬁX
1
= lim 2/x
a

a—0t
lim 2 (ﬁ _ \/5)
ag—0+

=2.

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathematics when considering
the infinite).

2. The function f(x) = 1/x* has a vertical asymptote at x = 0, as shown
in Figure 7.6.8, so this integral is an improper integral. Let's eschew
using limits for a moment and proceed without recognizing the improper
nature of the integral. This leads to:

1
1 12

[ Lot

_q X2 xl-1

=-1-—(1)
=-2.(1)
Clearly the area in question is above the x-axis, yet the area is supposedly

negative! Why does our answer not match our intuition? To answer this,
evaluate the integral using Definition 7.6.2.

1 t 1
1 1 1
/ —de: lim / —de+ lim —zdx
1 X t—0- J_1 X t—0t+ J; X
1

. 1t . 1

= lim ——| 4+ lim ——
t—0— XI-1 t—=0t Xt

= lim —— —1+ lim -1+ —
t—»o0— t t—0+

é(oofl) + (71+oo).

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical*.

Note: In Definition 7.6.2, ¢ can be one of
the endpoints (a or b). In that case, there
is only one limit to consider as part of the
definition.

Figure 7.6.7: A graph of f(x) = % in Ex-
ample 7.6.3.
y
10
5 N
‘ : : > X
-1 —0.5 0.5 1

Figure 7.6.8: A graph of f(x) = —5in Ex-
ample 7.6.3.

*Actually, the answer, +oo, is completely
sensical.

If this is an area problem, you would not
be able to afford to buy enough paint to
cover it.

If this was a work problem, you could not
afford to purchase enough energy to do
the project.
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It is good practice not to integrate across an infinite discontinuity. However, this can be done if the
antiderivative is continuous at the discontinuity of the integrand.

Example 1 F(x)
p f(X) = an antiderivative

3 2 1 o 1 2 3 -4
NOTE The details of finding F(x) are somewhat complicated

and are omitted.
Try it with a CAS or Wolfram Alpha.

Figure 7.6.9: Plotting functions of

-1 |X|2/3
Understanding Convergence and Divergence
Be aware of this topic. Read carefully, but don't memorize.
Oftentimes, but not often, we are interested in knowing simply whether or
not an improper integral converges, and not necessarily the value of a
convergent integral. We provide here several tools that help determine the
convergence or divergence of improper integrals without integrating.
1
Our first tool is to understand the behavior of functions of the form L
X
Example 6.8.4 Improper integration of 1/x”
o0
1
) Determine the values of p for which / = dx converges.
X
= 1
SOLUTION We begin by integrating and then evaluating the limit.
p<1<g < 1 b 1
/ —dx = lim — dx
1 XxP b—oo 1 XP
b
— = lim / x P dx (assume p # 1)
=== b—oo Jq
t X
1 b
! = lim ————xP*!
b— o0 —p + 1 1
the form 1/x” in Example 7.6.4. — lim 1 (blfp _ 11*9)_
b—ool—p

When does this limit converge — i.e., when is this limit not co? This limit con-
verges precisely when the power of b is less than 0: when1 —p < 0= 1 < p.

lf p<1,theintegralis +o°.
If p>1,theintegralis a real number.
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o0

1
Our analysis shows that if p > 1, then / = dx converges. Whenp < 1
X

1
the improper integral diverges; we showed in Example 7.8.1 that whenp = 1
the integral also diverges.

Figure 7.6.9 graphs y = 1/x with a dashed line, along with graphs of y

=1/x", p < 1,and y = 1/x9, g > 1. Somehow the dashed line forms a
dividing line between convergence and divergence.

The result of Example 7.6.4 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

1
1
improper integrals of the form / 3 dx. These results are summarized in the
0

following Key Idea.

> 1 a
Key Idea 7.6.1 Convergence of Improper Integrals / 5 dx and / 0 dx.
1 0

o0
1. The improper integral / — dx converges when p > 1 and diverges when p < 1. We do not use the
1 X ¥ diverge/converge
1 1 terminology.
2. The improper integral / v dx converges when p < 1 and diverges when p > 1.
0 X
A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose Note: We used the upper and
convergence is known. We often use integrands of the form 1/x” to compare lower bound of “1” in Key Idea 7.6.1
to as their convergence on certain intervals is known. This is described in the for convenience. It can be replaced by
following theorem. any a where a > 0.

Theorem 7.6.1 Direct Comparison Test for Improper Integrals

Let f and g be continuous on [a, co) where 0 < f(x) < g(x).

1. If/ g(x) dx converges, then/ f(x) dx converges.
a a

2. If/ f(x) dx diverges, then/ g(x) dx diverges.
a a



116

Example 7.6.5 Determining convergence of improper integrals
Deterrime the convergence ofthe following improper integrals.
oo

A 1 /OO g 2 / ! d

. e X . ——dx
I 1 3 VX2 —x
SOLUTION

1. The function f(x) = e does not have an antiderivative expressible in

terms of elementary functions, so we cannot integrate directly. It is com-
2
parable to g(x) =1/x%, and as demonstrated in Figure 7.6.10, e < 1/x2

oo
1
X on [1, 00). We know from Key Idea 7.6.1 / 2 dx converges,
1

XZ

o0
2
—X
Flgure 7 6.10; Graphs of f(x hence /1 e ™ dxalso converges.
and f(x) = 1/x“in Example 8 5

1
2. Note that for large values of x, —— 1 1 . We know from Key
Ve x N

1

Idea 7.6.1 and the subsequent note that to/ ; dx diverges, so we seek
3

compare the original integrand to 1/x.

It is easy to see that when x > 0, we have x = \/x2 > /x2 — x.[000100

f
0.4 | ®= reciprocals reverses the inequality, giving
1 1
- <
0.2 ¢ flx) = X X2 —x
1 e 1
: : > X Using Theorem 7.8.1, we conclude that sinc ~ dxdiverges, / ——dx
2 4 6 J3 X 3 X2 —x

diverges as well. Figure 7.8.11 illustrates this.
Figure 7.6.11: Graphs of f(x) = 1/v/x2 — x

and f(x) = 1/x in Example 7.8.5.
Being able to compare “unknown” integrals to “known” integrals is very use-

ful in determining convergence. However, some of our examples were a little

1 1
“too nice.” For instance, it was convenient that — < = but what if the
X X2 —x

“—x" were replaced with a “+2x + 5”? That is, what can we say about the con-
o0

/ 1 1
vergence of _—
3 VXx24+2x+5

1
dx? We have — > ———, so we cannot
X
use Theorem 7.8.1.

Vx2+2x+5

In cases like this (and many more) it is useful to employ the following theo-
rem.
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Theorem 7.6.2 Limit Comparison Test for Improper Integrals

Let fand g be continuous functions on [a, o) where f(x) > 0and g(x) >
0 for all x. If
fx)

lim —= =1L, 0 <L < o0,
X—>00 g(X)

/aoof(x) dx and /aoo g(x) dx

either both converge or both diverge.

then

Example 7.6.6 Determining convergence of improper integrals
o]
1
Determine the convergence of/ —— dx.
3 Vx2+2x+5
SOLUTION As x gets large, the denominator of the integrand will begin
1 1
to behave much like y = x. So we compare ————— to - with the Limit
y P Vx24+2x+5 X
Comparison Test:
.1/ +2x+5 . X
im —— = M ——.
X—>00 1/X x—=00 \/x2 +2x+5

The immediate evaluation of this limit returns co /oo, an indeterminate form.
Using I’'Hopital’s Rule seems appropriate, but in this situation, it does not lead
to useful results. (We encourage the reader to employ I’Hépital’s Rule at least
once to verify this.)

The trouble is the square root function. To get rid of it, we employ the fol-
lowing fact: If lim f(x) = L, then )I(i_ngcf(x)z = 2. (This is true when either c or L
is 00.) So we consider now the limit

2
lim —.
x—00 X2+ 2x+5

This converges to 1, meaning the original limit also converged to 1. As x gets

very large, the function B looks very much like E. Since we know that
X2 +2x+5 X
o 1 o 1
= dxdiverges, by the Limit Comparison Test we knowthat/ —_—dx
/3 X & Y P 3 VX2+2x+5

also diverges. Figure 7.6.12 graphs f(x) = 1/v/x2+ 2x + 5 and f(x) = 1/x,
il-lustrating that as x gets large, the f unctions become indistinguishable.

0.2 |
: : : S x
5 10 15 20
Figure7.6.12: Graphing f(x) = —L
8 phing f(x) o

and f(x) = < in Example 7.6.6.
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Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a little more difficult to employ,
they are omitted from this text.

This chapter has explored many integration techniques. We learned Substi-
tution, which “undoes” the Chain Rule of differentiation, as well as Integration
by Parts, which “undoes” the Product Rule. We learned specialized techniques
for handling trigonometric functions and introduced the hyperbolic functions,
which are closely related to the trigonometric functions. All techniques effec-
tively have this goal in common: rewrite the integrand in a new way so that the
integration step is easier to see and implement.

As stated before, integration is, in general, hard. It is easy to write a function
whose antiderivative is impossible to write in terms of elementary functions,
and even when a function does have an antiderivative expressible by elementary
functions, it may be really hard to discover what it is. The powerful computer
algebra system Mathematica® has approximately 1,000 pages of code dedicated
to integration.

Do not let this difficulty discourage you. There is great value in learning in-
tegration techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximat-
ing the value of integration.

The next chapter stresses the uses of integration. We generally do not find
antiderivatives for antiderivative’s sake, but rather because they provide the so-
lution to some type of problem. The following chapter introduces us to a number
of different problems whose solution is provided by integration.

Note: The Apex author and most mathematicians use the terminology
converge or diverge. We prefer the terms exists (as an extended real
number) or does not exist because of concreteness and applications. In
applications an infinite answer is always meaningful.

Note: Work a few assigned problem both by the hyperreal method and
the limit method. See if there are any for which the hyperreal method
does not apply, but for which the limit method works.
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Terms and Concepts

1. The definite integral was defined with what two stipula-
tions?
b oo
2. If blim / f(x) dx exists, then the integral / f(x) dx is
— 00 0 0
said to
3. If/ f(x) dx =10, and 0 < g(x) < f(x) for all x, then we
! oo
know that/ g(x) dx
1
. >1
4. For what values of p will / - dx converge?
. X
. 1
5. For what values of p will / — dx converge?
10 X
i
6. For what values of p will / - dx converge?
0 X
Problems

In Exercises 7 — 34, evaluate the given improper integral.

7.

o

©

10.

11.

12.

13.

14.

15.

16.

0o
/ eS—Zx dx
0

oo
/ g
Lo X219

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

> 1
/ dx
, x—1

2
1
/ dx
, x—1
1
1
/fdx
it
3
1
/ dx
, x—=2
/seczxdx
0

1

/z |x\
/

[eS)
xe~
0

oo

xe

oo

oo

7dx
ex +ex

o]

xInxdx

/
[
/
|

/xlnxdx
0

|

/ InX 4
1 X

oo
/ e “sinxdx
0
oo
/ e " cosx dx
0



In Exercises 35 — 44, use the Direct Comparison Test or the
Limit Comparison Test to determine whether the given def-
inite integral converges or diverges. Clearly state what test
is being used and what function the integrand is being com-
pared to.

35.

o 3
/ SN SN
10 \/3X2+2X*5

o 4
36. — dx
/2 VX3 —x

T Vx+3
0o VX —x2+x+1

38. / e “Inxdx
1

37.

Solutions 7.7

1. 0/0,00/00,0 - 00,00 — 00,0°,1%°, cc®

2. F

3. F

4. The base of an expression is approaching 1 while its power is

growing without bound.
derivatives; limits
Answers will vary.
Answers will vary.
Answers will vary.

3

10. —5/3

11. -1

12. —/2/2

13. 5

L ® N o W

14. 0
15. 2/3
16. a/b
17. oo
18. 1/2
19. 0
20. 0
21. 0
22. o©
23. o©
24. oo
25. 0
26. 2
27. -2
28. 0
29. 0
30. 0
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39.

40

41.

42.

43.

44

s
e
s
s
s
e

31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
41.
42,
43,
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.

)
e X“43x+1 dX

ﬁ dx
eX

1

zi.d)(

x4+ sinx
X

— dx
X2 + cos x

1
X+ e~

1
eXx —x

dx

8 o o

8

8

o o

N B R R R O R Rk R R Rk o®



—0.5 +

(b)

0.5 +

Figure 7.7.1: Graphically representing
three definite integrals that cannot be
evaluated using antiderivatives.
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7.7 Numerical Integration

The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on computing an-
tiderivatives. Despite the power of this theorem, there are still situations where
we must approximate the value of the definite integral instead of finding its ex-
act value. The first situation we explore is where we cannot compute the an-
tiderivative of the integrand. The second case is when we actually do not know
the function in the integrand, but only its value when evaluated at certain points.

An elementary function is any function that is a combination of polynomial,
n™ root, rational, exponential, logarithmic and trigonometric functions. We can
compute the derivative of any elementary function, but there are many elemen-
tary functions of which we cannot compute an antiderivative. For example, the
following functions do not have antiderivatives that we can express with ele-
mentary functions:

e™, sin(x*) and

sinx

The simplest way to refer to the antiderivatives of e~ is to simply write
[ e dx.

This section outlines three common methods of approximating the value of
definite integrals. We describe each as a systematic method of approximating
area under a curve. By approximating this area accurately, we find an accurate
approximation of the corresponding definite integral.

We will apply the methods we learn in this section to the following definite

integrals:
1 3 Ar .
/ e dx, / sin(x*) dx, and / sin(x) dx,
0 — 05 X

5

as pictured in Figure 7.7.1.

The Left and Right Hand Rule Methods Earlier we addressed the
problem of evaluating definite integrals by approximating the area under the
curve using rectangles. We revisit those ideas here before introducing other
methods of approximating definite integrals.

We start with a review of notation. Let f be a continuous function on the

b
interval [a, b]. We wish to approximate / f(x) dx. We partition [a, b] into n
a

b—a
equally spaced subintervals, each of length Ax = 7 The endpoints of these
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subintervals are labeled as
x1=0a,% =0+ x3=a+2A4x, ..., x;=a+ (i—1)Ax, ..., X,11 = b.

Key Idea 5.3.1 states that to use the Left Hand Rule we use the summation

n n
Zf(x,-)Ax and to use the Right Hand Rule we use Zf(x,+1)Ax. We review
=1 =1
the use of these rules in the context of examples.

Example 7.7.1 Approximating definite integrals with rectangles
1

Approximate / e dx using the Left and Right Hand Rules with 5 equally
0
spaced subintervals.

SOLUTION We begin by partitioning the interval [0, 1] into 5 equally
spaced intervals. We have Ax = 2% = 1/5 = 0.2, so

X1 = O, Xy = 027 X3 = 04-7 X4 = 06, X5 = 087 and Xg = 1.

Using the Left Hand Rule, we have:

Zf(XI)AX = (f(x1) + f(x2) + f(x3) + f(xa) + f(x5)) Ax

= (f(0) + £(0.2) + £(0.4) + £(0.6) + £(0.8)) Ax
- (1 +0.961 + 0.852 + 0.698 4 0.527)(0.2)
= 0.808.

Using the Right Hand Rule, we have:

Zf(x,-H)Ax = (f(x2) + f(x3) + f(xa) + fxs) + f(x)) Ax

= (f(0.2) + f(0.4) + £(0.6) + f(0.8) + (1)) Ax
(0.961 + 0.852 + 0.698 -+ 0.527 + 0.368)(0.2)

= 0.681.

Figure 7.7.2 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this particular case, the Left Hand
Rule is an over approximation and the Right Hand Rule is an
under approximation. To get a better approximation, we could use more
rectangles, as we did

0.5 |

02 04 06 0.8 1

0.5 |

0.2 04 06 0.8 1

(b)

Figure 7.7.2: Approximating fol e_"2 dxin
Example 7.7.1.
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Xi Exact Approx.  sin(x?)
x1 —n/4  —0.785 —0.466
X2 —77r/40 —0.550 —0.165
X3 —7T/10 —0.314 —0.031
Xs —m/40  —0.0785 0

Xs 7T/20 0.157 0.004
X6 7r/8 0.393 0.061
X7 7r/5 0.628 0.246
Xg 117T/40 0.864 0.601
Xog 77r/20 1.10 0.971
X1  177/40 1.34 0.690
X11 7r/2 1.57 —0.670

Figure 7.7.3: Table of values used to

approximate [ %% sin(x®) dx.

0.5

(a)

y = sin(x*)

FigL_Jre 7.7.4 Approximating

(b)

f %, sin(x?) dx in Example 7.7.2.

s
1
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earlier. We could also average the Left and Right Hand Rule results together,
giving
0.808 + 0.681
2

= 0.7445.

SOLUTION We begin by finding Ax:

b—a _ /2 — (—7/8) _ 3m . 0.236.

n 10 40
It is useful to write out the endpoints of the subintervals in a table; in Figure
7.7.3, we give the exact values of the endpoints, their decimal approximations,
and decimal approximations of sin(x3) evaluated at these points.

Once this table is created, it is straightforward to approximate the definite
integral using the Left and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The
last two columns are all that are needed.) The Left Hand Rule sums the first 10

values of sin3x ) and multiplies the sum by Ax; the Right Hand Rule sums the
last 10.

Nl

Left Hand Rule: sin(x®) dx = (1.91)(0.236) = 0.451.

=

»|

Right Hand Rule: / sin(x®) dx = (1.71)(0.236) = 0.404.

Average of the Left algd Right Hand Rules: 0.4275.

The actual answer, accurate to 3 places after the decimal, is 0.460. Our ap-
proximations were once again fairly good. The rectangles used in each approx-
imation are shown in Figure 7.7.4. It is clear from the graphs that using more
rectangles (and hence, narrower rectangles) should result in a more accurate
approximation.

The Trapezoidal Rule

1

In Example 7.7.1 we approximated the value of e dxwith5 rectangles

0
of equal width. Figure 7.7.2 shows the rectangles used in the Left and Right
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Hand Rules. These graphs clearly show that rectangles do not match the shape
of the graph all that well, and that accurate approximations will only come by
using lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.5.5, we show the region under f(x) = e~ on [0, 1]
approximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a better
approximation of fol e dx. (In fact, these trapezoids seem to give a great ap-
proximation of the areal!)

The formula for the area of a trapezoid is given in Figure 5.5.6. We approxi-
mate fol e~ dx with these trapezoids in the following example.

Example 7.7.3 Approximating definite integrals using trapezoids
1

Use 5 trapezoids of equal width to approximate / e dx.
0

SOLUTION To compute the areas of the 5 trapezoids in Figure 5.5.5, it
will again be useful to create a table of values as shown in Figure 5.5.7.

The leftmost trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the leftmost trapezoid is:

1+0.961

>~ (0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height
of 0.2. Thus its area is:
0.961 + 0.852

> (0.2) = 0.1813.

The sum of the areas of all 5 trapezoids is:

1+0.961 0.961 4 0.852 0.852 + 0.698

o (0.2) + T (02) + o (02)+
0.698 -+ 0.527 0.527 + 0.368
%(0.2) + %(0.2) = 0.7445.

1
We approximate / e*"zdx = 0.7445.
0

There are many things to observe in this example. Note how each term in
the final summation was multiplied by both 1/2 and by Ax = 0.2. We can factor
these coefficients out, leaving a more concise summation as:

%(o.z) [(1+0.961)+(0.961+0.852)+(0.852+04698)+(0.698+0.527)+(0.527+0.368)] .

0.5

02 04 06 0.8 1

Figure 7.7.5: Approximating fol e”‘2 dx
using 5 trapezoids of equal widths.

b Area=%tth

h

Figure 7.7.6: The area of a trapezoid.

Xi e
0 1
0.2 0.961
0.4 0.852
0.6 0.698
0.8 0.527
1 0.368

v

Figure 7.77: A table of values of e ™ .
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Now notice that all numbers except for the first and the last are added twice.
Therefore we can write the summation even more concisely as

0.2
= [1 +2(0.961 + 0.852 + 0.698 + 0.527) + 0.368} .

b
This is the heart of the Trapezoidal Rule, wherein a definite integral / f(x) dx
a

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints x;,

. —a
X2, - - - Xpt+1, We again have Ax = ——. Thus:
n

n

/ f(x) dx ~ Zfi(x') +flxis )Ax

i=1 2
— % ' (f(xi) + f(xi+1))
= S [f) + 23 00) + fresn)]

Example 7.7.4 Using the Trapezoidal Rule

2
Revisit Example 7.7.2 and approximate / sin(x3) dx using the Trapezoidal Rule

&

and 10 equally spaced subintervals.

SOLUTION We refer back to Figure 7.7.3 for the table of values of sin(x3).
Recall that Ax = 37/40 = 0.236. Thus we have:

s

2
/—E cin(x4) o = 0.2236 [ —0.466 + 2( ~0.165 + (—0.031) + ... + 0.69) + (—0.67)]
= 0.4275.

Notice how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this section;
the real work is creating a table of x; and f(x;) values. Once this is completed, ap-
proximating the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computations and make using lots
of subintervals easy.

Also notice the approximations the Trapezoidal Rule gives. It is the average
of the approximations given by the Left and Right Hand Rules! This effectively
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renders the Left and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximation is needed, one is gener-
ally better off using the Trapezoidal Rule instead of either the Left or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The Left Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a function f with constant functions
on small subintervals and then computes the definite integral of these constant
functions. The Trapezoidal Rule is really approximating a function f with a linear
function on a small subinterval, then computes the definite integral of this linear
function. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximating f with a constant func-
tion and then with a linear function. What is next? A quadratic function. By
approximating the curve of a function with lots of parabolas, we generally get
an even better approximation of the definite integral. We call this process Simp-
son’s Rule, named after Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

Simpson’s Rule

Given one point, we can create a constant function that goes through that
point. Given two points, we can create a linear function that goes through those
points. Given three points, we can create a quadratic function that goes through
those three points (given that no two have the same x—value).

Consider three points (x1, y1), (X2, ¥2) and (x3, y3) whose x—values are equally
spacedand x; < x, < x3. Let fbe the quadratic function that goes through these

three points. It is not hard to show that 1 ) 3
X3
X3 — X1
/ f(x) dx = 6 (yl + 4y, + yg). (7.4) Figure 7.7.8: A graph of a function f and
X1 a parabola that approximates it well on
Consider Figure 5.5.8. A function f goes through the 3 points shown and the [1,3].

parabola g that also goes through those points is graphed with a dashed line.
Using our equation from above, we know exactly that

3—-1

/Bg(X) dx = T(3+4(1)+2) =3.

Since g is a good approximation for f on [1, 3], we can state that

/13f(x) dx = 3.



0.25
0.5
0.75

0.939
0.779
0.570
0.368

(a)

0.25

(b) Figure 7.7.9: A table of values

0.5 0.75

Xi sin(x7)
—0.785 —0.466
—0.550 —0.165
—0.314 —0.031
—0.0785 0

0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601
1.10 0.971
1.34 0.690
1.57 —0.670

Figure 5.5.10: Table of values used to
approximate [ 2, sin(x’) dx in Example
1

5.5.6.
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Notice how the interval [1, 3] was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

b

In general, to approximate / f(x) dx using Simpson’s Rule, subdivide [a, b]

a
into n subintervals, where n is even and each subinterval has width Ax = (b —
a)/n. We approximate f with n/2 parabolic curves, using Equation (5.4) to com-
pute the area under these parabolas. Adding up these areas gives the formula:

b
/a £x) dx = ’Af [f(xl)+4f(xz)+2f(x3)+4f(x4)+. : .+2f(xn,1)+4f(xn)+f(xn+1)]-

Note how the coefficients of the terms in the summation have the pattern 1, 4,
2,4,2,4,...,2,4,1.
Let’s demonstrate Simpson’s Rule with a concrete example.

Example 7.7.5 Using Simpson’s Rule

1
Approximate/ e dx using Simpson’s Rule and 4 equally spaced subintervals.
0

SOLUTION We begin by making a table of values as we have in the past,
as shown in Figure 5.5.9(a). Simpson’s Rule states that

oy 0.25 -
e d = 7 [1 +4(0.939) + 2(0.779) + 4(0.570) + 0.368} = 0.74683.
0

Recall in Example 7.7.1 we stated that the correct answer, accurate to 4
places after the decimal, was 0.7468. Our approximation with Simpson’s Rule,
with 4 subintervals, is better than our approximation with the Trapezoidal Rule
using 5!

Figure 7.7.9(b) shows f(x) = e along with its approximating parabolas,
demonstrating how good our approximation is. The approximating curves are
nearly indistinguishable from the actual function.

Example 7.7.6 Using Simpson’s Rule

2
Approximate / sin(x®) dx using Simpson’s Rule and 10 equally spaced inter-

s
iy

vals.

SOLUTION Figure 5.5.10 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, Ax = (7/2 +
m/4)/10 = 0.236.
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Simpson’s Rule states that

| y = sin(x®)

2
/ _ sin(x*) dx = Oéi [(—0.466) +4(—0.165) + 2(—0.031) + . ..
4 : 0.5 +

..+ 2(0.971) + 4(0.69) + (—0.67)]
= 0.4701

f + X
—1 1
Recall that the actual value, accurate to 3 decimal places, is 0.460. Our ap- V V
705 4

proximation is within one 1/100%" of the correct value. The graph in Figure 7.7.11
shows how closely the parabolas match the shape of the graph.

Figure 5.5.11: Approximating
Summary [2.sin(x*) dx in Example 5.5.6 with
4
Simpson’s Rule and 10 equally spaced
We summarize the key concepts of this section thus far in the following Key intervals.
Idea.
Key Idea 7.7.1 Numerical Integration
Let f be a continuous function on [a, b], let n be a positive integer, and let Ax = o= a'
Setx; =a,x, =a+ Ax,...,xi=a+ (i— 1)Ax, x,01 = b. n
b
Consider / f(x) dx
! b
Left Hand Rule: / f(x) dx = Ax[f(xl) +fx) + ... +f(x,,)].
a
b
Right Hand Rule: / f(x) dx = Ax[f(xz) + f(x3) + .. + f(Xnt1) .
a
b Ax
Trapezoidal Rule: / f(x) dx 7 [f x1) + 2f(x2) + 2f(x3) + ... + 2f(xp) +f(xn+1)].
a
° | Ax
Simpson’s Rule: / f(x) dx 3 [f x1) + 4f(x2) + 2f(x3) + ... + 4f(xp) +f(Xn+1)] (n even).
a

You probably 00I00NO000DOIOOMDO0OIONOC O00IDOMO00O0CMOOENO0O000000000I00I0I00 C1000000
I0000000DODOI0oCODo0DO0IC 0NOi00000oD 00100 0n0 0O0OmiDo0 a0 C0N00oma) Wolfram Alpha,
for example, which will do numerical integration. Also, any professional CAS will do these.

For programmable calculators or computers - simply sum each term below from 1 to n for every rectangle.
The formulas above are for hand calculations. Hopefully you do this more than once.

LH Rule AA; = AX Yiq
Y
— 7 y=f) RH Rule AA; = Axy;
A TrapezoidalRule AAi = é}(yi_wy,-)

: A
Simpson'sRule AA; = S (Yit+4y,+ V)

AXx AXx Ax X
Xo Xq Xi-1  Xj XN-1 Xn
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Exercises 7.7

Terms and Concepts

1. T/F: Simpson’s Rule is a method of approximating an-
tiderivatives.

2. What are the two basic situations where approximating the
value of a definite integral is necessary?

3. Why are the Left and Right Hand Rules rarely used?

4. Simpson’s Rule is based on approximating portions of a
function with what type of function?

Problems

In Exercises 5 — 12, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
andn = 4.

(c) Find the exact value of the integral.

1
/xzdx
-1
10
6./ 5x dx
0
7. / sin x dx
0
4
./ﬁdx
0
3
9./(X3+2x275x+7)dx
0
1
10. / x*dx
0

27
11. / cos x dx
0

3
12./ V9 — x2dx
-3

v

(o]

In Exercises 13 — 20, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = 6.

: 2. BN
13. / cos (xz) dx /

0

1 2
14./ e dx

-1

4.5
6.6
5.6

5
15. / Vx%+ 1dx
0

16. / xsinx dx
0

/2
17. / \/cos x dx
0

4
18. / Inx dx
1
1
19./ ;dx
_ySinx+42

° 1
o Sinx—+2

In Exercises 25 — 26, a region is given. Find the area of the
region using both the Trapezoid's and Simpson’s Rule:

(a) where the measurements are in centimeters, taken in
1 cm increments, and

(b) where the measurements are in hundreds of yards,
taken in 100 yd increments.

— T
_— \

25.

4.7
6.3
6.9
6.6

N

NOTE #25 and #26 are especially good questions
if you are going to build a free form swimming pool.

\h
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Solutions 7.7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F

When the antiderivative cannot be computed and when the
integrand is unknown.

They are superseded by the Trapezoidal Rule; it takes an equal
amount of work and is generally more accurate.

A quadratic function (i.e., parabola)

(a) 3/4

(b) 2/3

(c) 2/3

(a) 250

(b) 250

(c) 250

(@) 3(1+v2)r=1.89%

(b) £(1+2v2)r=2.005

(c) 2

(@ 24+ Vv2+V3=5.15

(b) 2/3(3 4 v/2 +24/3)=5.25

(c) 16/3=5.33

(a) 38.5781

(b) 147/4 =36.75

(c) 147/4 =36.75

(a) 0.2207

(b) 0.2005

(c) 1/5

(@) 0

(b) O

(c) O

(a) 9/2(1++/3) =12.294

(b) 3+6v3=13.392

(c) 97/2 =14.137
Trapezoidal Rule: 0.9006
Simpson’s Rule: 0.90452
Trapezoidal Rule: 3.0241
Simpson’s Rule: 2.9315
Trapezoidal Rule: 13.9604
Simpson’s Rule: 13.9066
Trapezoidal Rule: 3.0695
Simpson’s Rule: 3.14295
Trapezoidal Rule: 1.1703
Simpson’s Rule: 1.1873
Trapezoidal Rule: 2.52971
Simpson’s Rule: 2.5447
Trapezoidal Rule: 1.0803
Simpson’s Rule: 1.077

Trapezoidal Rule: 3.5472
Simpson’s Rule: 3.6133
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Chapter 8 Applications of Integration

Preview Differentials are important in discovering the fundamental law governing a quantity Q; over
a short interval its behavior may be quite simple. If you want to know its growth rate, you divide by dt
or perhaps dx depending on whether the quantity changes in time or space. In the applications of
this chapter, the total amount or the change in the amount Q is desired,; it is the integral of dQ
obtained by summing the differentials of Q obtaining J’ttfdQ or j)’(‘f dq.

In this chapter we examine the process of first determining the differential law and then obtaining
its integral, the total amount. We will call this the Five Step Procedure. The steps are:

I. Draw a picture illustrating the quantity. Label all quantities used in the problem.
Il. Show a typical differential region. Label.

[ll. Find a simple formula for the differential element which is asymptotically equal its
exact amount.

IV. Integrate.
V. Evaluate.

This procedure should be used on all relevant exercises in this chapter. Using end integral formulas
often lead to mistakes. Also you want to be fluent with this procedure so that you can readily use it in
your area of application. In the the sections from Apex Calculus, five steps are also required. In exams
each step is worth 20% of the total points awarded the problem.

Note that we will assume that the bounding functions are continuous so that dx an infinitesimal
implies dy is an infinitesimal. We will begin with an example from Chapter 5, finding the area under a
curve.

Example Find the area under the curve y=sinx,0<x< g )

Y Y
1+ y =sinx 1 y =sinx
I /T
(X, Y] : (%, y) :
| |
L ! ‘
dA : dA :
| |
| |
dx l X .o dx l X
X r X r
2 2
Method 1 Method 2
Sinx is continuous. So dx an infinitesimal Properly magnified, sin x
i implies dy aninfinitesimal. appears constant, so
dA = sin(x)dx dA = sin(x)dx
Here, because the curve is continuous, Here, because the element looks exact,
ij.af.1 infinitesin”!al imP“?S dyis an implies an = is justified. In applications
infinitesimal which implies an = is such intuitive reasoning is often justified.
justified.

_rma .
v A—IO sin x dx
i)
\'} = -COSX |O

= 1
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Q)

g(x)

¢

(a)

<

f(x)

g(x)

N
\\

(b)

S

f(x)

g(x)

&

(c)

Figure 8.1.1: Subdividing a region into
vertical slices and approximating the areas
with rectangles.

Note again from the above graphs that
clearly

dA = [top - bottom]dx
= [f(x) - g(x)]dx.

Integrating from a to b gives the
area. The text argument is complicated,
hard to remember and no more
rigorous.

(But still, sometimes a detailed
discussion is useful.)
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8.1 Area Between Curves

We are often interested in knowing the area of a region. Forget momentarily
that we addressed this already in Section 5.4 and approach it instead using
the technique described in Key Idea 8.0.1.

Let Q be the area of a region bounded by continuous functions fand g. If we
break the region into many subregions, we have an obvious equation:

Total Area = sum of the areas of the subregions.

The issue to address next is how to systematically break a region into subregions.
A graph will help. Consider Figure 8.1.1 (a) where a region between two curves is
shaded. While there are many ways to break this into subregions, one particularly
efficient way is to “slice” it vertically, as shown in Figure 8.1.1 (b), into n equally
spaced slices.
We now approximate the area of a slice. Again, we have many options, but
using a rectangle seems simplest. Picking any x-value c; in the i-th slice, we set

the height of the rectangle to be f(c;) - g(c;), the difference of the corresponding
y-values. The width of the rectangle is a small difference in x-values, which we
represent with Ax. Figure 8.1.1(c) shows sample points c; chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles
represents a differental element.) Each slice has an area approximately equal to

[f(c;) — g(ci)] Ax; hence, the total area is approximately the Riemann Sum
n
Q=Y (flc) — g(c))) Ax.
i=1

Taking the limit as n — oo gives the exact area as fab (f(x) — g(x)) dx.

Theorem 8.1.1 Area Between Curves

(restatement of Theorem 5.4.3)

Let f(x) and g(x) be continuous functions defined on [a, b] where f(x) >
g(x) for all x in [a,b]. The area of the region bounded by the curves

b
/ (F0) — g(x)) dix.

bh¢9 Usually only one
typical differential
element 13 &K26y SIK E
0K2aSn {2 65 I iKS ST
KI-yR 8IRS 27 (KS StSY Sy
¢KS RIFFSISYlI-E SESY Sy

* b x width dx should also be
shown.

y = f(x)

¥ =gx)

n dA = [f(x) - g(x)]dx
b In exercises and exams
v A= fa [f(x) = g(x)] dx always use the full

b Five Step Procedure.
v = F(x) - G(x)}

a
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Example 7.1.1 Finding area enclosed by curves
Find the area of the region bounded by f(x) =sinx + 2, g(x) = é cos(2x) — 1
x =0and x = 47, as shown in Figure 8.1.2.

SOLUTION The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the region is
the value of the integral

/047T (f(x) — g(x)) dx = /OM (sinx+ 2— (% cos(2x) — 1)) dx

1 am
=—cosx— o sin(2x) + 3x

0
= 127 = 37.7 units?.

Example 8.1.2 Finding total area enclosed by curves
Find the total area of the region enclosed by the functions f(x) = —2x + 5 and
g(x) = x> — 7x* + 12x — 3 as shown in Figure 8.1.3.

SOLUTION A quick calculation shows that f = g at x = 1,2 and 4. One
4
can proceed thoughtlessly by computing/ (f(x) — g(x)) dx, but this ignores

the fact that on [1, 2], g(x) > f(x). (In fact,lthe thoughtless integration returns
—9/4, hardly the expected value of an area.) Thus we compute the total area by
breaking the interval [1, 4] into two subintervals, [1, 2] and [2, 4] and using the
proper integrand in each.

Total Area = /1 (9(x) — f(x)) dx—&—/2 (f(x) — g(x)) dx

2 4
:/ (x3—7x2+14x—8)dx+/ (=% +7x* — 14x + 8) dx
1 2

=5/12+8/3
= 37/12 = 3.083 units’.

The previous example makes note that we are expecting area to be positive.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negative area.” That doesn’t apply here; area is
to be positive.

The previous example also demonstrates that we often have to break a given
region into subregions before applying Theorem 8.1.1. The following example
shows another situation where this is applicable, along with an alternate view
of applying the Theorem.

Example 8.1.3 Finding area: integrating with respect to y

Find the area of the region enclosed by the functionsy = v/x + 2,y = —(x — 1)2
+ 3 and y =2, as shown in Figure 8.1.4.

2 fx)

-2 L

Figure 8.1.2: Graphing an enclosed region
in Example 8.1.1.

Figure 8.1.3: Graphing a region enclosed
by two functions in Example 7.1.2.

s ly=vrta _y=-(-1"+3

1 2

Figure 8.1.4: Graphing a region for
Example 8.1.3.
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SoruTion We give two approaches to this problem. In the first approach,

we notice that the region’s “right - left” is defined by two different curves.
3”)(:(}/_2)2 xX=4+3—-y+1 g g y
On [0, 1], the top function is y = v/x + 2; on [1, 2], the top function is
y = —(x — 1)>+ 3. Thus we compute the area as the sum of two integrals:
2 AN 1 2
Total Area — / ((vx+2)-2) dx+/ ((-x=1)2+3)-2) o
0 1
1 €1
=2/3+4+2/3
} . =4/3.
2
The second approach is clever and very useful in certain situations. We are
Figure 8.1.5: The region used in Example used to viewing curves as functions of x; we input an x-value and a y-value is re-
8.1.3 with boundaries relabeled as turned. Some curves can also be described as functions of y: input a y-value and

func-tions of y.

an x-value is returned. We can rewrite the equations describing the boundary
by solving for x:

y:\/)_(+2:>x:(y—2)2, y=—(x—1)2+3=x=3—/y+1 .

Figure 8.1.5 shows the région with the boundaries relabeled. A differential
element, a horizontal rectangle, is also pictured. The width of the rectangle is a
small change in'y: Ay. The height of the rectangle is a difference in x-values.
The “top” x-value is the largest value, i.e., the rightmost. The “bottom” x-value
is the smaller, i.e., the leftmost. Therefore the height of the rectangle is

(V3-y+1)—(y—2)>~

The area is found by integrating the above function with respect to y with
the appropriate bounds. We determine these by considering the y-values the
region occupies. It is bounded below by y = 2, and bounded above by y = 3.
That is, both the “top” and “bottom” functions exist on the y interval [2, 3]. Thus

3
Total Area = / (V3-y+1—-(y—2)%)dy
2

= (*%(3*y)3/2+y*%(y72)3)‘
= 4/3.

3

2

This calculus—based technique of finding area can be useful even with shapes
that we normally think of as “easy.” Example 8.1.4 computes the area of a trian-

gle. While the formula ”% X base x height” is well known, in arbitrary triangles it

can be nontrivial to compute the height. Calculus makes the problem simple.
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Example 8.1.4 Finding the area of a triangle
Compute the area of the regions bounded by the lines
y=x+1y=—-2x+7andy = —1x+ 3, as shown in Figure 8.1.6.

SOLUTION Recognize that there are two “top” functions to this region,
causing us to use two definite integrals.

fotal Area = /2 (b0 1) = (g0 ) et /3 (~2x4+7) = (= x4 2)) o
=3/4+3/4
—3/2.

We can also approach this by converting each function into a function of y. This
also requires 2 integrals, so there isn’t really any advantage to doing so. We do
it here for demonstration purposes.

The “top” function is always x = % while there are two “bottom” func-
tions. Being mindful of the proper integration bounds, we have

Total Area = /12 (% —(5-2y)) dy+/23 (% —(y=1))dy
—3/4+3/4
=3/2.

Of course, the final answer is the same. (It is interesting to note that the area
of all 4 subregions used is 3/4. This is coincidental.)

While we have focused on producing exact answers, we are also able to
make approximations using the principle of Theorem 8.1.1. The integrand in
the theo-rem is a distance (“top minus bottom”); integrating this distance
function gives an area. By taking discrete measurements of distance, we can
approximate an area using numerical integration techniques developed in
Section 5.5. The fol-lowing example demonstrates this.

Example 8.1.5 Numerically approximating area

To approximate the area of a lake, shown in Figure 8.1.7 (a), the “length” of the
lake is measured at 200-foot increments as shown in Figure 8.1.7 (b), where the
lengths are given in hundreds of feet. Approximate the area of the lake.

SOLUTION The measurements of length can be viewed as measuring
“tgp minus botbm” of two functions. The exact answer is found by integrating

/ (f(X) - g(X)) dx, but of course we don’t know the functions f and g. Our
0

discrete measurements instead allow us to approximate.

Figure 8.1.6: Graphing a triangular region
in Example 8.1.4.

= N W A OO N

Figure 8.1.7: (a) A sketch of a lake, and (b)
the lake with length measurements.
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We have the following data points:

(0,0), (2,2.25), (4,5.08), (6,6.35), (8,5.21), (10,2.76), (12,0).

We also have that Ax = b%” = 2, so Simpson’s Rule gives

Area ig<1~O+4~2.25+2~5.08+4'6.35+2~5.21+4~2.76+1~0)
3
= 44.013 units’.
Since the measurements are in hundreds of feet, units?> = (100 ft)*> =

10, 000 ft?, giving a total area of 440, 133 ft%. (Since we are approximating, we’d
likely say the area was about 440, 000 ft?, which is a little more than 10 acres.)

In the next section we apply our applications—of-integration techniques to
finding the volumes of certain solids.
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Use the Five Step Procedure in each problem

Exercises 8.1

Terms and Concepts

1. T/F: The area between curves is always positive.

2. T/F:Calculus can be used to find the area of basic geometric
shapes.

3. In your own words, describe how to find the total area en-
closed by y = f(x) and y = g(x).

4. Describe a situation where it is advantageous to find an
area enclosed by curves through integration with respect
to y instead of x.

Problems

In Exercises 5 — 12, find the area of the shaded region in the
given graph.

4
5. P
2 4 y=3cosx+1
/—_\/_
t t X
™ 27
y
3,,
y=—3x3+3x+2
2
6.
14 /
- > X
-1 1
~ - y=x+x-1
y
2 y=2
7. 1 =1
t t X
/2 ™

10.

11.

17

y =sinx+1

y = sinx

71"/2 7\X

0.5

y = sinx




2l y=vx+1 y=+2—x+1

12.

In Exercises 13 — 20, find the total area enclosed by the func-

tions fand g.

13. f(x) = 2x* 4+ 5x — 3, g(x) = X 4+4x—1

14. f(x) =x* —3x+2,g(x) = —3x + 3

15. f(x) =sinx, g(x) = 2x/7

16. f(xX) =x =4 +x—1,9(x) = —x*+2x— 4
17. f(x) = x, g(x) = v/x

18. f(x) = —x* + 5 + 2x+1,9(x) =3x* +x+3

19. The functions f(x) = cos(x) and g(x) = sinx intersect
infinitely many times, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

20. The functions f(x) = cos(2x) and g(x) = sinx intersect
infinitely many times, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

In Exercises 21 — 26, find the area of the enclosed region in
two ways:

1. by treating the boundaries as functions of x, and

2. by treating the boundaries as functions of y.

1x—32+1

21.
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22.

23.

24.

25.

26.

y
1,,
y =X
0.5 +
y=—2x+3
1 2
—0.5
y=—3x
—1
y
4,
y=x+2
y=x
2
-1 1 2
y
1,,
_ 1
x=-—3y+1
1 2
—1
x= 1y
-2 +

1 y=vx+1

y=+v2—-x+1




In Exercises 27 — 30, find the area triangle formed by the given
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three points.

27.

28.

29.

30.

31.

(1,1),

(_17 1)’

(1,1),

(0,0),

(2,3), and (3,3)
(1,3), and (2,-1)
(3,3), and (3,3)
(2,5), and (5,2)

Use the Trapezoidal Rule to approximate the area of the
pictured lake whose lengths, in hundreds of feet, are mea-
sured in 100-foot increments.

PVZIRN

4.9

5.2
7.3
4.5

N

g

Solutions 8.1

10.
11.
12.
13.
14.
15.
16.
17.
18.

© ©° N o w

1. T
2. T
3.
4

Answers will vary.

. Answers may vary; one common answer is when the region has

two or more “top” or “bottom” functions when viewing the
region with respect to x, but has only 1 “top” function and 1
“bottom” function when viewed with respect to y. The former
area requires multiple integrals to compute, whereas the latter
area requires one.

. Am 4+ 7% = 22.436

16/3

T

m

1/2
2v2
1/In4
4/3

4.5

4/3
2—1/2

1/6
37/12

32.

Use Simpson’s Rule to approximate the area of the pictured
lake whose lengths, in hundreds of feet, are measured in
200-foot increments.

//_\
g \\\\\\\
\\\\\\\\\‘\-_____///

19. All enclosed regions have the same area, with regions being the

reflection of adjacent regions. One region is formed on
[r/4,57/4], with area 2v/2.

20. On regions such as [7/6, 57/6], the area is 34/3/2. On regions

such as [—7/2, 7/6], the area is 3v/3/4.
21. 1
22. 5/3
23. 9/2
24. 9/4
25. 1/12(9 — 2v/2) = 0.514
26. 4/3
27. 1
28. 5
29. 4
30. 133/20
31. 219,000 ft?
32. 623,333 ft?
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8.2 Volumes by Slicing. The Disk Method: 5 Steps
l,y:O,x=1andx:2 is revolved

Example Find the volume when the region bounded by y= ¢

about the X-axis.

When the differential element is rotated about the x-axis,
the result is asymptotically a disk whose volume is

dV = my2dx.

M dv = my2dx =rwhdx

v v-r['%
v =r[-%]}
T

2



base area = A
Volume=A-h

Figure 8.2.1: The volume of a general
right cylinder

10

N

Figure 8.2.2: Orienting a pyramid
along the x-axis in Example 8.2.1

dV = A(x) dx
= (2x)?dx=4x%dx
_ 5.2
V = 4 | “x“dx
)
_ X5
= 4?0
500

3
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8.2 Readings Volume by Cross-Sectional Area;
Disk and WasherMethods

The volume of a general right cylinder, as shown in Figure 8.2.1, is

Area of the base x height.
We can use this fact as the building block in finding volumes of a variety of

shapes.

Given an arbitrary solid, we can approximate its volume by cutting it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
sectional area x thickness. (These slices are the differential elements.)

By orienting a solid along the x-axis, we can let A(x,») represent the cross-
sectional area of the i ™ slice, and let Ax; represent the thickness of this slice (the
thickness is a small change in x). The total volume of the solid is approximately:

n

Volume ﬁz {Area X thickness}
i=1

= i A(X,’)AX,‘.
i=1

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

Theorem 8.2.1 Volume By Cross-Sectional Area

The volume V of a solid, oriented along the x-axis with cross-sectional
area A(x) fromx =atox =b, is

V= /abA(x) dx.

Example 8.2.1 Finding the volume of a solid
Find the volume of a pyramid with a square base of side length 10 in and a height
of 5in.

SOLUTION There are many ways to “orient” the pyramid along the x-
axis; Figure 8.2.2 gives one such way, with the pointed top of the pyramid at the
origin and the x-axis going through the center of the base.

Each cross section of the pyramid is a square; this is a sample differential
element. To determine its area A(x), we need to determine the side lengths of
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the square.

When x = 5, the square has side length 10; when x = 0, the square has side
length 0. Since the edges of the pyramid are lines, it is easy to figure that each
cross-sectional square has side length 2x, giving A(x) = (2x)? = 4x?.

If one were to cut a slice out of the pyramid at x = 3, as shown in Figure
8.2.3, one would have a shape with square bottom and top with sloped sides. If
the slice were thin, both the bottom and top squares would have sides lengths
of about 6, and thus the cross—sectional area of the bottom and top would be
about 36in?. Letting Ax; represent the thickness of the slice, the volume of this
slice would then be about 36 Ax;in3.

Cutting the pyramid into n slices divides the total volume into n equally—
spaced smaller pieces, each with volume (2x;)2 Ax, where x; is the approximate
location of the slice along the x-axis and Ax represents the thickness of each
slice. One can approximate total volume of the pyramid by summing up the
volumes of these slices:

n
Approximate volume = Z(in)zAx.
=1
Taking the limit as n — oo gives the actual volume of the pyramid; recoginizing
this sum as a Riemann Sum allows us to find the exact answer using a definite
integral, matching the definite integral given by Theorem 8.2.1.
We have

n

_ 32
V= nll)rr;o 2(2)(’) Ax
=

5
= / 4x° dx
0

4 .5
= 7)(3‘
3

_ 500 | .3

=3 = 166.67 in”.
We can check our work by consulting the general equation for the volume of a
pyramid (see the back cover under “Volume of A General Cone”):

1 x area of base x height.
Certainly, using this formula from geometry is faster than our new method, but
the calculus—based method can be applied to much more than just cones.

0

An important special case of Theorem 8.2.1 is when the solid is a solid of
revolution, that is, when the solid is formed by rotating a shape around an axis.
Start with a function y = f(x) from x = a to x = b. Revolving this curve
about a horizontal axis creates a three-dimensional solid whose cross sections

Figure 8.2.3: Cutting a slice in the pyramid
in Example 8.2.1 at x = 3.
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are disks (thin circles). Let R(x) represent the radius of the cross-sectional disk
at x; the area of this disk is 7R(x)%. Applying Theorem 8.2.1 gives the Disk
Method.

Key Idea 7.8.1 The Disk Method

Let a solid be formed by revolving the curve y = f(x) fromx = atox = b
around a horizontal axis, and let R(x) be the radius of the cross-sectional
disk at x. The volume of the solid is

b
V= 77/ R(x)? dx.
a

Example 8.2.2 Finding volume using the Disk Method

Find the volume of the solid formed by revolving the curve y = 1/x, fromx = 1
Y to x = 2, around the x-axis.
14 y=1/x

soruTion A sketch can help us understand this problem. In Figure 8.2.4(a)
the curve y = 1/x is sketched along with the differential element — a disk — at x
with radius R(x) = 1/x. In Figure 8.2.4 (b) the whole solid is pictured, along
with the differential element.

The volume of the differential element shown in part (a) of the figure is ap-
proximately mR(x;)>Ax, where R(x;) is the radius of the disk shown and Ax is
the thickness of that slice. The radius R(x;) is the distance from the x-axis to the
curve, hence R(x;) = 1/x;.

Slicing the solid into n equally—spaced slices, we can approximate the total
volume by adding up the approximate volume of each slice:

n 2
1
Approximate volume = E m (x) Ax.
i=1 i

Taking the limit of the above sum as n — oo gives the actual volume; recog-
nizing this sum as a Riemann sum allows us to evaluate the limit with a definite

integral, which matches the formula given in Key Idea 8.2.1:

(b) . 1\’
V:nll[gozﬂ(x,) Ax

Figure 8.2.4: Sketching a solid in Example

8.2.2. 2 /1\?
:77/ () dx
1 X
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While Key Idea 8.2.1 is given in terms of functions of x, the principle involved
can be applied to functions of y when the axis of rotation is vertical, not hori-
zontal. We demonstrate this in the next example.

Example 7.2.3 Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, fromx = 1
to x = 2, about the y-axis.

SOLUTION Since the axis of rotation is vertical, we need to convert the
function into a function of y and convert the x-bounds to y-bounds. Since y =
1/x defines the curve, we rewrite it as x = 1/y. The bound x = 1 corresponds to
the y-bound y = 1, and the bound x = 2 corresponds to the y-bound y = 1/2.

Thus we are rotating the curve x = 1/y, fromy = 1/2 toy = 1 about the
y-axis to form a solid. The curve and sample differential element are sketched
in Figure 8.2.5 (a), with a full sketch of the solid in Figure 8.2.5 (b). We
integrate to find the volume:

y
= 7 units®.

1/2

We can also compute the volume of solids of revolution that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespective of the hole, then subtract the volume of the hole. If the outside
radius of the solid is R(x) and the inside radius (defining the hole) is r(x), then
the volume is

V= w/b R(x)* dx — w/b r(x)? dx = w/b (R(x)* = r(x)?) dx.

One can generate a solid of revolution with a hole in the middle by revolving a
region about an axis. Consider Figure 8.2.6(a), where a region is sketched along

14 x=1/y

Figure 8.2.5: Sketching a solid in Example

(b)

Establishing the Washer

Method; see also Figure 8.2.7.



Figure 8.2.7: Establishing the Washer
Method; see also Figure 8.2.6.

54
T T =
1 2 3
— 54
(a)
y
5_
_ 1 3 ;
— 54
(b)

Figure 8.2.8: Sketching the differential
el-ement and solid in Example 8.2.4.
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with a dashed, horizontal axis of rotation. By rotating the region about the axis, a
solid is formed as sketched in Figure 8.2.6(b). The outside of the solid has radius
R(x), whereas the inside has radius r(x). Each cross section of this solid will be
a washer (a disk with a hole in the center) as sketched in Figure 8.2.7. This leads
us to the Washer Method.

Key Idea 7.2.2 The Washer Method

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross section at x will be a washer with outside radius R(x)
and inside radius r(x). The volume of the solid is

V= W/ab (R(x)2 — r(x)2> dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

Example 7.2.4 Finding volume with the Washer Method
Find the volume of the solid formed by rotating the region bounded by y =
x> — 2x+ 2 and y = 2x — 1 about the x-axis.

SOLUTION A sketch of the region will help, as given in Figure 8.2.8(a).
Rotating about the x-axis will produce cross sections in the shape of washers, as
shown in Figure 8.2.8(b); the complete solid is shown in part (c). The outside
radius of this washer is R(x) = 2x 4 1; the inside radius is r(xf) =x2—2x+2.As
the region is bounded from x = 1 to x = 3, we integrate as follows to compute

the volume.

When rotating about a vertical axis, the outside and inside radius functions
must be functions of y.
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Example 8.2.5 Finding volume with the Washer Method
Find the volume of the solid formed by rotating the triangular region with ver-
tices at (1,1), (2,1) and (2, 3) about the y-axis.

SOLUTION The triangular region is sketched in Figure 8.2.9(a); the dif-
ferential element is sketched in (b) and the full solid is drawn in (c). They help us
establish the outside and inside radii. Since the axis of rotation is vertical, each
radius is a function of y.

The outside radius R(y) is formed by the line connecting (2,1) and (2, 3); it
is a constant function, as regardless of the y-value the distance from the line to
the axis of rotation is 2. Thus R(y) = 2.

The inside radius is formed by the line connecting (1, 1) and (2, 3). The equa-
tion of this lineisy = 2x— 1, but we need to refer to it as a function of y. Solving
forx gives r(y) = 2(y +1).

We integrate over the y-bounds of y = 1 to y = 3. Thus the volume is

v:w[ (2~ G +1))

3
1, 1 15
= — - y+=2)d
7T/1( d 2y+4>y

[ 1 12+15H3
=T _— — —_ = JE—
12y 4y 4y 1

= 1?07r = 10.47 units®.

This section introduced a new application of the definite integral. Our de-
fault view of the definite integral is that it gives “the area under the curve.” How-
ever, we can establish definite integrals that represent other quantities; in this
section, we computed volume.

The ultimate goal of this section is not to compute volumes of solids. That
can be useful, but what is more useful is the understanding of this basic
principle of integral calculus, outlined in Key Idea 8.0.1: to find the exact value
of some quantity,

e we start with an approximation (in this section, slice the solid and approx-
imate the volume of each slice),

¢ then make the approximation better by refining our original approxima-
tion (i.e., use more slices),

¢ then use limits to establish a definite integral which gives the exact value.

We practice this principle in the next section where we find volumes by slic-
ing solids in a different way.

y
34
r(y)
24
4 &y
TZ\_Il\\{\;
(a)
y
34
-
14
jz\,ll\\i\;
(b)

Figure 8.2.9: Sketching the solid in

Example 8.2.5.
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Use the Five Step Procedure in each problem

Exercises 8.2

Terms and Concepts It is an excellent exercise to translate each of the examples of
Apex above into the 5 step Method.

1. T/F: A solid of revolution is formed by revolving a shape
around an axis.

2. Inyour own words, explain how the Disk and Washer Meth-
ods are related. 14

3. Explain the how the units of volume are found in the inte-
gral of Theorem 7.2.1: if A(x) has units of in?, how does 8. o5 1 y=x
J A(x) dx have units of in*?

4. Afundamental principle of this section is “ can be
found by integrating an area function.”

0.5 1

In Exercises 9 — 12, a region of the Cartesian plane is shaded.

Problems Use the Disk/Washer Method to find the volume of the solid
of revolution formed by revolving the region about the y-
In Exercises 5 — 8, a region of the Cartesian plane is shaded. axis.
Use the Disk/Washer Method to find the volume of the solid
of revolution formed by revolving the region about the x-
axis.
y
y
9.
5.
y
y
10 +
10 |
y = 5x
y = 5x
10.
5 |
6. s
+ X
: ‘ : > X 0.5 1 1.5 2
0.5 1 1.5 2
y
y
11.
7.

(Hint: Integration By Parts will be necessary, twice. First let
u = arccos® x, then let u = arccos x.)
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0.5 1

In Exercises 13 — 18, a region of the Cartesian plane is de-
scribed. Use the Disk/Washer Method to find the volume of
the solid of revolution formed by rotating the region about
each of the given axes.

13. Region bounded by: y = v/x, y = O and x = 1.
Rotate about:

(c) the y-axis
(d) x=1

(a) the x-axis
(b) y=1
14. Region bounded by: y =4 — x* andy = 0.
Rotate about:
() y=-1
(d) x=2

(a) the x-axis
(b) y=4
15. The triangle with vertices (1, 1), (1,2) and (2,1).
Rotate about:
(c) the y-axis
(d) x=1

(a) the x-axis
(b) y=2

16. Region bounded by y = x> — 2x+ 2 andy = 2x — 1.
Rotate about:

(a) the x-axis (c) y=5

(b) y=1
17. Region bounded by y = 1/v/x*+1,x = —1,x = land

the x-axis.
Rotate about:

(a) the x-axis (c) y=-1
(b) y=1

18. Region bounded byy = 2x,y = xand x = 2.
Rotate about:

(c) the y-axis
(d) x=2

(a) the x-axis
(b) y=4

23. Find the volume of water in the tank if it is filled to height h.
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In Exercises 19-22, a solid is described. Orient the solid along
the x-axis such that a cross-sectional area function A(x) can
be obtained, then apply Theorem 7.2.1 to find the volume of
the solid.

19. Aright circular cone with height of 10 and base radius of 5.

20. Askew right circular cone with height of 10 and base radius
of 5. (Hint: all cross-sections are circles.)

0T

21. Aright triangular cone with height of 10 and whose base is
a right, isosceles triangle with side length 4.

22. Asolid with length 10 with a rectangular base and triangu-
lar top, wherein one end is a square with side length 5 and
the other end is a triangle with base and height of 5.

—a(X,y)

X X
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Section 8.2

v

11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

L N

T
Answers will vary.

Recall that “dx” does not just “sit there;” it is multiplied by A(x)
and represents the thickness of a small slice of the solid.
Therefore dx has units of in, giving A(x) dx the units of in3.

volume
487+/3/5 units?

1757/3 units®
72 /4 units3
7/6 units®
97/2 units®
357 /3 units3
% — 27 units3
27/15 units?
(a) m/2
(b) 57/6
(c) 4m/5
(d) 8w/15
(a) 5127/15
(b) 256m/5
(c) 8327w/15
(d) 1287/3
(a) 4x/3
(b) 27/3
(c) 4m/3
(d) =/3
(a) 1047/15
(b) 647/15
(c) 327/5
(a) 7%/2
(b) 72/2 — 4msinh—1(1)
(c) 7%/2 + 4msinh—1(1)
(a) 8w
(b) 8w
(c) 167/3
(d) 87/3
Placing the tip of the cone at the origin such that the x-axis runs

through the center of the circular base, we have A(x) = mx? /4.
Thus the volume is 2507 /3 units3.

The cross—sections of this cone are the same as the cone in
Exercise 19. Thus they have the same volume of 2507 /3 units3.

Orient the cone such that the tip is at the origin and the x-axis is
perpendicular to the base. The cross—sections of this cone are
right, isosceles triangles with side length 2x/5; thus the
cross—sectional areas are A(x) = 2x? /25, giving a volume of 80/3
units3.

Orient the solid so that the x-axis is parallel to long side of the
base. All cross—sections are trapezoids (at the far left, the
trapezoid is a square; at the far right, the trapezoid has a top
length of 0, making it a triangle). The area of the trapezoid at x is
A(x) =1/2(—1/2x 4+ 5+ 5)(5) = —5/4x + 25. The volume is
187.5 units3.

h-5 375x
—_ = -1
V=150 =5 Y k(10— h) +375sin [ 5 ] + 5, - If you can work this one,

you should get an A*,
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8.3 Volumes by Cylindrical Shell Method: 5 Steps

Find the volume when the region bounded by y = )17, y=0,x=1and x=2 isrevolved about the Y-axis.

12+

Distance around:

Cc=271x

x|=

I dv = 2mtxydx =
IV. V = 2nfl2dx

V. =21x] 3 = 21

Figure 8.3.1: Introducing
the Shell Method.

ZﬂX'%dX = 271dx

Note that dV is independent of dx.
Can you explain this intuitively?

8.3 Readings The Shell Method

Often a given problem can be solved in more than one way. A particular method
may be chosen out of convenience, personal preference, or perhaps necessity.
Ultimately, it is good to have options.

The previous section introduced the Disk and Washer Methods, which com-
puted the volume of solids of revolution by integrating the cross—sectional area
of the solid. This section develops another method of computing volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotation
creating cross-sections, we now slice it parallel to the axis of rotation, creating
“shells.”

Consider Figure 8.3.1, where the region shown in (a) is rotated around the
y-axis forming the solid shown in (b). A small slice of the region is drawn in (a),
parallel to the axis of rotation. When the region is rotated, this thin slice forms
a cylindrical shell, as pictured in part (c) of the figure. The previous section
approximated a solid with lots of thin disks (or washers); we now approximate
a solid with many thin cylindrical shells.

To compute the volume of one shell, first consider the paper label on a soup
can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 27r. Thus the area is A = 27r h; see Figure 8.3.2(a).

Do a similar process with a cylindrical shell, with height h, thickness Ax, and
approximate radius r. Cutting the shell and laying it flat forms a rectangular solid

with length 27r, height h and depth Ax. Thus the volume is V = 2wrh Ax; see

Figure 8.3.2(b). (We say “approximately” since our radius was an approxima-
tion.)

By breaking the solid into n cylindrical shells, we can approximate the volume
of the solid as N

V = Z 27'("’,'h,'AX,'7
i=1

where r;, h; and Ax; are the radius, height and thickness of the i shell, respec-
tively.
This is a Riemann Sum. Rounding off yields the definite integral.
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27r

A = 2nrh h

Ax 27r

(b)

Figure 8.3.2: Determining the volume of a thin cylindrical shell.

Key Idea 8.3.1 The Shell Method

Let a solid be formed by revolving a region R, bounded by x = a and
x = b, around a vertical axis. Let r(x) represent the distance from the axis
of rotation to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of
the solid is

V=2r /b r(x)h(x) dx.

Special Cases:

1. When the region R is bounded above by y = f(x) and below by y = g(x),
then h(x) = f(x) — g(x).

2. When the axis of rotation is the y-axis (i.e., x = 0) then r(x) = x.

Let’s practice using the Shell Method.

Example 8.3.1 Finding volume using the Shell Method
Find the volume of the solid formed by rotating the region bounded by y = 0,
y=1/(1+x%),x = 0and x = 1 about the y-axis.

SOLUTION This is the region used to introduce the Shell Method in Fig-
ure 8.3.1, but is sketched again in Figure 8.3.3 for closer reference. A line is
drawn in the region parallel to the axis of rotation representing a shell that will

Y X 1
r(x)

Figure 8.3.3: Graphing a region in
Example 8.3.1.
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Figure 8.3.4: Graphing a region in
Example 8.3.2.
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be carved out as the region is rotated about the y-axis. (This is the differential
element.)

The distance this line is from the axis of rotation determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this line
determines h(x); the top of the line is aty = 1/(1 + x*), whereas the bottom
of the lineis aty = 0. Thus h(x) = 1/(1 4 x*>) — 0 = 1/(1 + x*). The region is
bounded from x = 0 to x = 1, so the volume is

1
V:27r/ X
o 1+x?

This requires substitution. Let u = 1 + x%, so du = 2x dx. We also change the
bounds: u(0) = 1 and u(1) = 2. Thus we have:

2
1

:7T/ —du
L u

2
=7lnu

1
=7In2 = 2.178 units®.

Note: in order to find this volume using the Disk Method, two integrals would
be needed to account for the regions above and below y = 1/2.

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

Example 7.3.2 Finding volume using the Shell Method
Find the volume of the solid formed by rotating the triangular region determined
by the points (0, 1), (1,1) and (1, 3) about the line x = 3.

sowution The region is sketched in Figure 8.3.4(a) along with the dif-
ferential element, a line within the region parallel to the axis of rotation. In
part (b) of the figure, we see the shell traced out by the differential element,
and in part (c) the whole solid is shown.

The height of the differential element is the distance fromy = 1toy = 2x+
1, the line that connects the points (0, 1) and (1, 3). Thus h(x) = 2x+1—1 = 2x.
The radius of the shell formed by the differential element is the distance from
xto x = 3; thatis, itis r(x) = 3 — x. The x-bounds of the region are x = 0 to
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x =1, giving
1
V= 271'/ (3 — x)(2x) dx
0

1
= 27?/ (6x — 2x*) dx
0

1
=27 (3% — Exg‘ ‘
3 0

14 .3
= 3 T = 14.66 units”.

When revolving a region around a horizontal axis, we must consider the ra-
dius and height functions in terms of y, not x.

Example 8.3.3 Finding volume using the Shell Method
Find the volume of the solid formed by rotating the region given in Example 8.3.2
about the x-axis.

sowution The region is sketched in Figure 8.3.5(a) with a sample dif-
ferential element. In part (b) of the figure the shell formed by the differential
element is drawn, and the solid is sketched in (c). (Note that the triangular re-
gion looks “short and wide” here, whereas in the previous example the same
region looked “tall and narrow.” This is because the bounds on the graphs are
different.)

The height of the differential element is an x-distance, between x = %y — %
andx = 1. Thush(y) = 1—(3y—3) = —3y+ 3. The radius is the distance from
y to the x-axis, so r(y) = y. The y bounds of the regionarey = landy = 3,

leading to the integral

1 3 3
—or |23 72‘
"o ]
9 7
=21 |> - =
4 12
= ? 7 = 10.472 units>.

A
7 Ky
N——
h(y)
! r(y)
1
(a)

(c)

Figure 8.3.5: Graphing a region in
Example 8.3.3.



Figure 8.3.6: Graphing a region in
Example 8.3.4.
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At the beginning of this section it was stated that “it is good to have options.”
The next example finds the volume of a solid rather easily with the Shell Method,
but using the Washer Method would be quite a chore.

Example 8.3.4 Finding volume using the Shell Method
Find the volume of the solid formed by revolving the region bounded by y = sin x
and the x-axis from x = 0 to x = 7 about the y-axis.

sowution The region and a differential element, the shell formed by this
differential element, and the resulting solid are given in Figure 8.3.6. The
radius of a sample shell is r(x) = x; the height of a sample shell is h(x) = sin x,
each from x = 0 to x = 7. Thus the volume of the solid is

s
V= 27r/ xsin x dx.
0

This requires Integration By Parts. Set u = x and dv = sin x dx; we leave it to
the reader to fill in the rest. We have:

Zw{—xcosx

‘ +/ cosxdx}
0 0
N

= 27?2 = 19.74 units>.

27 [w + sinx

27r[7r+o]

Note that in order to use the Washer Method, we would need to solve y =
sin x for x, requiring the use of the arcsine function. We leave it to the reader
to verify that the outside radius function is R(y) = m — arcsiny and the inside
radius function is r(y) = arcsiny. Thus the volume can be computed as

7'('/1 [(77 — arcsiny)? — (arcsin y)z} dy.

This integral isn’t terrible given that the arcsin? y terms cancel, but it is more
onerous than the integral created by the Shell Method.

We end this section with a table summarizing the usage of the Washer and
Shell Methods.
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Key Idea 8.3.2 Summary of the Washer and Shell Methods

Let a region R be given with x-bounds x = a and x = b and y-bounds
y=candy=d.

Washer Method Shell Method

. b d
Hon;i?:tal 7T/a (R(x)? — r(x)?) dx 27r/c r(y)h(y) dy

Axis

. d b
Vertical ﬂ_/c (R(y)2 _ r(y)Z) dy 27r/a r(x)h(x) dx

As in the previous section, the real goal of this section is not to be able to
compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approximating, then using limits to refine the approximation to give the
exact value. In this section, we approximate the volume of a solid by cutting it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approximation of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summation can be evaluated as a definite integral,
giving the exact value.

We use this same principle again in the next section, where we find the
length of curves in the plane.
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Use the Five Step Procedure in each problem

Again, it is an excellent exercise to translate each of the

Exe rCises 8 ° 3 examples of Apex above into the 5 step Method.
Terms and Concepts y

1. T/F: A solid of revolution is formed by revolving a shape
around an axis.

2. T/F: The Shell Method can only be used when the Washer
Method fails.

3. T/F: The Shell Method works by integrating cross—sectional
areas of a solid.

4. T/F: When finding the volume of a solid of revolution that
was revolved around a vertical axis, the Shell Method inte- 8. 1 y=x
grates with respect to x.

05 1
Problems
In Exercises 9 — 12, a region of the Cartesian plane is shaded.

Use the Shell Method to find the volume of the solid of revo-
lution formed by revolving the region about the x-axis.

In Exercises 5 — 8, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
lution formed by revolving the region about the y-axis.

y = 5x

y = 5x

0.5 1 1.5 2 0.5 1 1.5 2



11.

12.

0.5 +

0.5 1

In Exercises 13 — 18, a region of the Cartesian plane is de-
scribed. Use the Shell Method to find the volume of the solid
of revolution formed by rotating the region about each of the
given axes.

13.

Region bounded by: y = /x,y = 0and x = 1.
Rotate about:

(a) the y-axis (c) the x-axis

(b) x=1 d y=1
Solutions 8.3
LT 10. 3507/3 units3
2. F 11. 72 /4 units®
3. F 12. /6 units?
4T 13.  (a) 4n/5
5. 97/2 units3 (b) 87/15
6. 707/3 units3 (c) m/2
7. w — 27 units? (d) 57/6
8. 2m/15 units® 14.  (a) 1287/3
9. 487/3/5 units3 (b) 1287/3
(c) 5127/15
(d) 2567/5
15.  (a) 47/3
(b) /3
(c) 4m/3
(d) 27/3
16. (a) 167/3
(b) 8/3
(c) 8w
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14.

15.

16.

17.

18.

Region bounded by: y = 4 — x> and y = 0.
Rotate about:

(a) x=2
(b) x=-2

(c) the x-axis
(d y=14

The triangle with vertices (1, 1), (1,2) and (2, 1).
Rotate about:

(c) the x-axis
(d) y=2

(a) the y-axis
(b) x=1

Region bounded by y = x* — 2x +2andy = 2x — 1.
Rotate about:

(a) the y-axis
(b) x=1

() x=-1

Region bounded by y = 1/4/x?> + 1, x = 1 and the x and
y-axes.

Rotate about:

(a) the y-axis (b) x=1

Region bounded by y = 2x, y = xand x = 2.
Rotate about:

(a) the y-axis
(b) x=2

(c) the x-axis
(d) y=4

17.(a)2r (W2 — 1)

(b) 27(1 — +/2 +sinh~1(1))
(a) 167/3

(b) 87/3

(c) 87

(d) 8

18.
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8.4 ArcLength

What is the arc length, the length of the curve, y=f(x), as<x<b?

Y
|
|
|
|
|
|
| |
l l
| |
| L |
a X b X
Theorem Let y=f(x) be differentiable for a<x<b. Then its arc length on that interval is
s = f ,/l + dx ® dx.
Derivation

f is differentiable on the interval. So f is differentiable a x and therefore locally linear or equivalently
‘asymptotically straight' there. Therefore

ds? = dx?+dy? Theorem of Pythagoras Note diagram below

= [1+ (5]

ds= re@ o = o= [l (@) o

Example Find the length of y=2x*2 for 0<x<1. dx
Y
2 'y = 2x°2
| 1
! meaning of slope
L., Il. |
1 |
ds, dy :
dx |
|
: X
x 1

m. y=2¢72 > %‘XL:3)(1/2
2
+ (L) =vi+ox
1
Iv. SZJ:)\/1+9X dx

V. u=1+9x, du=9dx
x=0->u=1
Xx=1->u=10

- 12 3/2
= ["VTdu=t2un|



1l
0.5
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(a)
y
1 4
Vil
2
0.5 +
s jus 37 T
4 2 'y

(b)

Figure 8.4.1: Graphing y = sin x on [0, 7]
and approximating the curve with line
segments.

Yit1

Vi

Figure 8.4.2: Zooming in on the j "
subin-terval [x;, xi+1] of a partition of
[a, b].
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8.4 Arc Length and Surface Area Readings

In previous sections we have used integration to answer the following questions:
1. Given aregion, what is its area?
2. Given a solid, what is its volume?

In this section, we address a related question: Given a curve, what is its
length? This is often referred to as arc length.

Consider the graph of y = sin x on [0, 7] given in Figure 8.4.1(a). How long
is this curve? That is, if we were to use a piece of string to exactly match the
shape of this curve, how long would the string be?

As we have done in the past, we start by approximating; later, we will refine
our answer using limits to get an exact solution.

The length of straight—line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approximating
the curve with straight lines and measuring their lengths.

In Figure 8.4.1(b), the curve y = sin x has been approximated with 4 line
segments (the interval [0, 7] has been divided into 4 equally—lengthed subinter-
vals). It is clear that these four line segments approximate y = sinx very well
on the first and last subinterval, though not so well in the middle. Regardless,
the sum of the lengths of the line segments is 3.79, so we approximate the arc
length of y = sinx on [0, 7] to be 3.79.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Leta = x; < x; < ... < X, < Xp+1 = b be a partition
of [a, b] into n subintervals. Let Ax; represent the length of the i*" subinterval
[Xi, Xi ]

Figure 8.4.2 zooms in on the i ™ subinterval where y = f(x) is approximated
by a straight line segment. The dashed lines show that we can view this line seg-
ment as the hypotenuse of a right triangle whose sides have length Ax; and Ay;.

Using the Pythagorean Theorem, the length of this line segment is \/AX,Z + Ay2.
Summing over all subintervals gives an arc length approximation

L ﬁzn:,/Ax,z + Ay?.
i=1

As shown here, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a little algebra.
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8.4 C Arc Length and Surface Area

In the above expression factor out a Ax? term:

;\/Ax,2+Ayi2:;1/Axf (1+ ﬁﬁ)

Now pull the Ax? term out of the square root:

J AX,‘.

Xj

Ay?
A 2

n
=Y y/1+
i=1

This is nearly a Riemann Sum. Consider the Ay?/Ax? term. The expression
Ay;/ Ax; measures the “change in y/change in x,” that is, the “rise over run” of
fon the i™ subinterval. The Mean Value Theorem of Differentiation (Theorem
3.2.1) states that there is a ¢; in the i ™" subinterval where f'(c;) = Ay, /Ax;. Thus
we can rewrite our above expression as:

= Z \/W Ax;.
i=1

This is a Riemann Sum. As long as f’ is continuous, we can invoke Theorem 5.3.2
and conclude

- [ Ve

Theorem 8.4.1 Arc Length

Let fbe differentiable on [a, b], where f” is also continuous on [a, b]. Then
the arc length of ffromx =atox =biis

= /b\/1 72 dx.

As the integrand contains a square root, it is often difficult to use the
formula in Theorem 8.4.1 to find the length exactly. When exact answers are
difficult to come by, we resort to using numerical methods of approximating
definite integrals. The following examples will demonstrate this.

Note: This is our first use of differentiability
on a closed interval since Section 5.2.

The theorem also requires that f ' be
con-tinuous on [a, b]; while examples are
ar-cane, it is possible for f to be
differen-tiable yet f'is not continuous.
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8.4 C  Arc Length and Surface Area
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Example 8.4.1 Finding arc length
Find the arc length of f(x) = x*/2 from x = O to x = 4.

SOLUTION We find f/(x) = %xl/z; note that on [0, 4], fis differentiable
and f’ is also continuous. Using the formula, we find the arc length L as

2

Figure 8.4.3: A graph of f(x) =

from Example 8.4.1.

3/2

. 4 9
:/ 1+ —xdx
JO 4
2 9 3/24
St (142 )
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_° (103/2 - 1) = 9.07units.
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A graph of fis given in Figure 8.4.3.

Example 8.4.2 Finding arc length
1
Find the arc length of f(x) = gxz —Inxfromx=1tox = 2.

SOLUTION This function was chosen specifically because the resulting
integral can be evaluated exactly. We begin by finding f'(x) = x/4 — 1/x. The

arc length is
L—/ 1/1+ ==
XZ
/\/R‘i‘ +;dX
X 1
= -+—-] d
INGHE
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= X2+Inx
-\ 8

3
= 3 +In 2 = 1.07 units.

1

A graph of fis given in Figure 8.4.4; the portion of the curve measured in this
problem is in bold.

The previous examples found the arc length exactly through careful choice
of the functions. In general, exact answers are much more difficult to come by
and numerical approximations are necessary.

Example 8.4.3 Approximating arc length numerically
Find the length of the sine curve from x = 0 to x = .

SOLUTION This is somewhat of a mathematical curiosity; in Example
5.4.3 we found the area under one “hump” of the sine curve is 2 square units;
now we are measuring its arc length.

The setup is straightforward: f(x) = sinx and f’(x) = cos x. Thus

L :/ v/1 4+ cos? x dx.
0

This integral cannot be evaluated in terms of elementary functions so we will ap-
proximate it with Simpson’s Method with n = 4. Figure 7.4.5 gives v/1 + cos? x
evaluated at 5 evenly spaced points in [0, 7r]. Simpson’s Rule then states that

/ﬂvl—i—coszxdxiﬂ(\6—1-4\/3/72—1-2(1)4—4\/%%-\6)

4.3
— 3.82918.

Using a computer with n = 100 the approximation is L = 3.8202; our approxi-
mation with n = 4 is quite good.

0.5

Figure 8.4.4: A graph of f(x) = %xz —Inx
from Example 8.4.2.

X V14 cos?x

0 V2
/4 3/2
/2 1
3w /4 3/2

m V2

Figure 8.4.5: A table of values of

y =41+ cos?x
to evaluate a definite integral in

Example 8.4.3.
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Figure 8.4.6: Establishing the formula for
surface area.
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Surface Area of Solids of Revolution

We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of computing its volume, we now consider its
surface area.

We begin as we have in the previous sections: we partition the interval [a, b]
with n subintervals, where the i ™ subinterval is [Xi, Xi+1]. On each subinterval,
we can approximate the curve y = f(x) with a straight line that connects f(x;)
and f(x;+1) as shown in Figure 8.4.6(a). Revolving this line segment about the x-
axis creates part of a cone (called a frustum of a cone) as shown in Figure 8.4.6(b).
The surface area of a frustum of a cone is

27 - length - average of the two radii R and r.

The length is given by L; we use the material just covered by arc length to

state that
L=+/1 +f/(Ci)2AX/

for some c; in the i " subinterval. The radii are just the function evaluated at the
endpoints of the interval. That is,

R=f(xit1) and r=f(x;).

Thus the surface area of this sample frustum of the cone is approximately

20 ) e

Since fis a continuous function, the Intermediate Value Theorem states there
fOi) + f(xiv1)

> ; we can use this to rewrite

is some d; in [x;, x;11] such that f(d;) =
the above equation as

27Tf(d,‘)\/ 1 +fI(C,')2AX,'.

Summing over all the subintervals we get the total surface area to be approxi-
mately

Surface Area = Z 27f(di)\/1 + f'(ci)? Ax;,
i=1

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following theorem.
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Theorem 8.4.2 Surface Area of a Solid of Revolution

Let f be differentiable on [a, b], where f is also continuous on [a, b].

1. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) > 0, about the x-axis is

b
Surface Area = 27/ fO)N 14 f'(x)? dx.
a

2. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a, b > 0, is

b
Surface Area = 27r/ xy/ 1+ f'(x)? dx.
a

(When revolving y = f(x) about the y-axis, the radii of the resulting frustum
are x; and x;.1; their average value is simply the midpoint of the interval. In the
limit, this midpoint is just x. This gives the second part of Theorem 8.4.2.)

Example 8.4.4 Finding surface area of a solid of revolution
Find the surface area of the solid formed by revolving y = sin x on [0, 7]

around the x-axis, as shown in Figure 8.4.7.

SOLUTION The setup s relatively straightforward. Using Theorem 7.4.2,
we have the surface area SA is:

™
SA = 27r/ sinxy/1 4 cos? x dx
0
1 ™
_ZWE (sinh_l(cos x) + cos xy/ 1 + cos? x)
0

27 (\ﬁ +sinh 7! 1) = 14.42 units>.

The integration step above is nontrivial, utilizing an integration method called
Trigonometric Substitution.

Itis interesting to see that the surface area of a solid, whose shape is defined
by a trigonometric function, involves both a square root and an inverse hyper-
bolic trigonometric function.

Example 8.4.5 Finding surface area of a solid of revolution
Find the surface area of the solid formed by revolving the curve y = x* on [0, 1]
about the x-axis and the y-axis.

Figure 8.4.7: Revolving y = sin x on [0, 7]
about the x-axis.



(b)

Figure 8.4.8: The solids used in Example
8.4.5.

Figure 8.4.9: A graph of Gabriel’s Horn.
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SOLUTION About the x-axis: the integral is straightforward to setup:
1
SA = 27r/ xX*\/1+ (2x)2 dx.
0

Like the integral in Example 8.4.4, this requires Trigonometric Substitution.
1

= 312 (2(8x3 +x)V1+ 42 — sinh*1(2x)> ’
0

- (18\@ —sinh™?! 2)

32
= 3.81 units?.

The solid formed by revolving y = x* around the x-axis is graphed in Figure 8.4.8 (a).
About the y-axis: since we are revolving around the y-axis, the “radius” of the
solid is not f(x) but rather x. Thus the integral to compute the surface areais:

1
SA = 271'/ x/1+ (2x)? dx.
0

This integral can be solved using substitution. Set u = 1 + 4x?; the new bounds
are u = 1tou = 5. We then have

5
:z/ \u du
41
5
2
_ TTZ .3
43 1

- (ev-)

= 5.33 units’.

The solid formed by revolving y = x* about the y-axis is graphed in Figure 8.4.8 (b).

Our final example is a famous mathematical “paradox.”

Example 8.4.6 The surface area and volume of Gabriel’s Horn

Consider the solid formed by revolving y = 1/x about the x-axis on [1, c0). Find the
volume and surface area of this solid. (This shape, as graphed in Figure 8.4.9, is
known as “Gabriel’s Horn” since it looks like a very long horn that only a
supernatural person, such as an angel, could play.)
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SOLUTION To compute the volume it is natural to use the Disk Method.
We have:
o0

1

V= 7T/ > dx
1 X

b
= lim« — dx
b— o0 1 X

b

! <_1)
lim 7 —
b— o0 X 1
lim 1 1
= | —_——
b—)ooTr b

= 7 units®.

Gabriel’s Horn has a finite volume of 7 cubic units. Since we have already seen
that regions with infinite length can have a finite area, this is not too difficult to
accept.

We now consider its surface area. The integral is straightforward to setup:

> q
SA:27r/ “V1+1/x
1

Integrating this expression is not trivial. We can, however, compare it to other
improper integrals. Since 1 < y/1 + 1/x* on [1, c0), we can state that

<1 1
27T/ fdx<27r/ =1+ 1/x*dx.
1 X 1 X

By Key Idea 6.8.1, the improper integral on the left diverges. Since the integral
on the right is larger, we conclude it also diverges, meaning Gabriel’s Horn has
infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Horn with a finite amount of paint,
but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of vol-
ume and area. However, we have seen a similar paradox before, as referenced
above. We know that the area under the curve y = 1/x* on [1, 00) is finite, yet
the shape has an infinite perimeter. Strange things can occur when we deal with
the infinite.

A standard equation from physics is “Work = force x distance”, when the
force applied is constant. In the next section we learn how to compute work
when the force applied is variable.

NOTE No real paradox here at all. When you paint the area under the curve,
the paint thickness is the same for all x. Infinite area = infinite volume.
When you fill the horn with paint, its thickness decreases in two dimensions:

""small x small = very small"
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Use the Five Step Procedure in each problem

Exercises

Terms and Concepts

1. T/F: The integral formula for computing Arc Length was
found by first approximating arc length with straight line
segments.

2. T/F:Theintegral formula for computing Arc Length includes
a square—root, meaning the integration is probably easy.

Problems

In Exercises 3 — 12, find the arc length of the function on the
given interval.

3. f(x) =xon|0,1].
4. f(x) = V8xon[-1,1].

1
5. f(x) = 5)(3/2 —x"?on 0, 1].

1 1
6. f(x) = Ex3 + Zon 1, 4].

7. flx) = 2x*/% — %ﬁon [0,9].

8. f(x) = coshxon [—In2,In2].

9. f(x) = %(ex +e ) on[0,In5].
10. f(x) = 1—12x5 + 5—; on [.1,1].

11. f(x) = In (sinx) on [ /6,7 /2].
12. f(x) =In (cosx) on [0, 7/4].

In Exercises 13 — 20, set up the integral to compute the arc
length of the function on the given interval. Do not evaluate
the integral.

13. f(x) = x* on [0, 1].
14. f(x) =x"° on [0, 1].
15. f(x) = v/xon[0,1].

16. f(x) = Inxon [1,e€].

Again,

17. f(x) = V1 —x? on [—1,1]. (Note: this describes the top
half of a circle with radius 1.)

18. f(x) = y/1 —x*/90n [—3, 3]. (Note: this describes the top
half of an ellipse with a major axis of length 6 and a minor
axis of length 2.)

19. f(x) = %on [1,2].

20. f(x) = secxon [—7/4,7/4].
In Exercises 21 — 28, use Simpson’s Rule, with n = 4, to ap-
proximate the arc length of the function on the given interval.
Note: these are the same problems as in Exercises 13-20.

21. f(x) = x" on [0, 1].

22. f(x) =xon [0,1].

23. f(x) = v/xon [0, 1]. (Note: f'(x) is not defined at x = 0.)

24. f(x) =Inxon[1,e€].

25. f(x) = V1 —x2 on [—1,1]. (Note: f'(x) is not defined at
the endpoints.)

26. f(x) = /1 —x2/9 on [-3,3]. (Note: f'(x) is not defined
at the endpoints.)

27. flx) = %on 1,2).
28. f(x) =secxon [—7/4,m/4].

In Exercises 29 — 33, find the surface area of the described
solid of revolution.

29. The solid formed by revolving y = 2x on [0, 1] about the
X-axis.

30. The solid formed by revolving y = x* on [0, 1] about the
y-axis.

31. The solid formed by revolving y = x* on [0, 1] about the
X-axis.

32. The solid formed by revolving y = /x on [0, 1] about the
X-axis.

33. The sphere formed by revolvingy = /1 — x? on [—1,1]
about the x-axis.
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Solutions 8.4

[ = S SN
w np R o

14.

15.

16.

17.

18.

19.

20.
21.
22.
23.

24.
25.
26.
27.
28.
29.
30.
31.
32.

33.

L ® N Uk W N R

m -

4/3

6

109/2

3/2

12/5

79953333/400000 = 199.883

. —In(2 —/3) = 1.31696

sinh—11

fol V1 4+ 4x2 dx

fol /1 + 100x18 dx

1 1
Jo \/1+ 7 ax
Jia/1+ X% dx
2

fil 14 755 dx

3 2
I2s Vit gz X
ff,/l—&— X%dx

fﬂ:}ll V1 + sec? xtan? x dx

1.4790
1.8377

Simpson’s Rule fails, as it requires one to divide by 0. However,
recognize the answer should be the same as for y = x2; why?

2.1300

Simpson’s Rule fails.

Simpson’s Rule fails.

1.4058

1.7625

21 [} 2x/5 dx = 21/5

21 [ xv/1+ 4x? dx = 7/6(5v/5 — 1)

21 [ x3V/1+ 9% dx = 7/27(10v/10 — 1)
21 [} /x\/1+ 1/(4x) dx = 7/6(5v/5 — 1)
21 [1 VI =2\ /1+x/(1 —x2) dx = 4r
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8.5 Water Tank Problems thereare many work problem in physics and engineering,

often involving advanced scientific concepts.

One easy to understand application is calculating the work required to fill a water tank. It is more
complicated in some ways than the previous applications of integrations in that two asymptotic equality
approximations are often required. Recall:

Theorem a=A,bx=B <& a:‘A=b'B

The most basic work problem in grade 10 physics is moving a through a straight line distance d by a constant
force F is

W =F-d

o—>-

Awater tank problem is more complicated. An infinitesimal
element of volume dV meter” 3 is lifted by a force
dF = dm-g where g = 9.08 meter/sec? is the acceleration of
gravity acting through a vertical distance d meters.
Theinfinitesimal work done in lifting the element is then

dW = df-h =(dm-g)h = (6dV)gh = 6ghdv.

Forwater, 6 = 1000 %

dF

0 A

dW =dF-h
=(dmg)h
=(6dV)gh
=6ghdVv
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Example A water tank is made by rotating the curve y = x? meters, 0 < x <2 meters about the Y-axis.
How much work is required to fill the tank from a source 3 meters below the bottom of the tank?

Y

4
y
T )
h
. X
2
Note that in these problems
there are two approximations:
ol radius of element = x
h=y+3
and we must use
Theorem A=B,C=D =
dV = rtx*dy = mrydy AC = BD
h=y-(-3)=y+3
dW = 6ghdVv
= 6g(y +3) (rrydy)

69 17(y* +3y)dy

= W = 6 4( 2 - L3 3 2|4
= grrfo(y +2y)dy—5g7’r[3+5y o Joules
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Use the Five Step Procedure in each problem

Exercises Use the grade 10 formula dW=6gh dV in each problem.

#1. A water tank is 5 meters high and has a square cross section 2 meters on a side.
a. How much work is required to fill the tank from a well 10 meters below the bottom of the tank?
b. How much work is required to empty the full tank to a height 10 meters above the top of the tank?

#2. A water tank is made by rotating the curve y =x meters, 0 <x <2 meters about the Y-axis.
a. How much work is required to fill the tank from the bottom of the tank?
b. How much work is required to empty the full tank over the top of the tank?

#3. Awater tank is 5 meters high and has a circular cross section of radius 1 meter.
a. How much work is required to fill a half full tank from a well 10 meters below the bottom of the tank?
b. How much work is required to half empty a full tank to a height 10 meters above the top of the tank?

#4. A water tank is 10 meters long and has an equilateral triangle cross section of side 2 meters, point down.
a. How much work is required to fill the tank from the bottom of the tank?
b. How much work is required to empty the full tank out over the top of the tank?

#5. A water tank lying on its side is 5 meters long and has a circular cross section of radius 1 meter.
a. How much work is required to fill the tank from a well 4 meters below the bottom of the tank?
b. How much work is required to empty a full tank to a height 4 meters above the top of the tank?

#6. A water tank is a sphere of radius 2 meters.
a. How much work is required to fill the tank from a well 5 meters below the bottom of the tank?
b. How much work is required to empty a full tank to a height 5 meters above the top of the tank?

#7. How much work is required to fill the tank of Exercise 23 of section 2 in this chapter with water pumped in
at the bottom of the tank?



Solutions
#1a.
Y
5t
dy
y
A
h=y+10
dv=2%2dy=4dy

dW=6ghdv=46g(y+10)dy

#4a.

h=y

By similar triangles
X_ Y
Lys
y=v3x

dvV=2x-10dy

=20x dy

20

=5ydy

dw=6ghdv= %6gy2dy
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W= 46g [’ (y+10)dy

=2500¢g

_20 s (V3
==6g [, vy
=200¢g
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8.6 Application to Economics. Present and Future Value
A dollar at a future time is not worth as much as a dollar now, because a dollar now can be invested

at the going interest rate and so will be worth more than one dollar at that future time.

We will assume in the calculations of this section that whether borrowing or investing, money is worth a
constant going interest rate r over the period of time considered. The interest rate can include a component
that compensates for inflation.

Discrete Investment or Income, Lump Sum Recall the exponential lump sum growth formula

F=Pe't
F=pPe't future value of a present sum
Solving for P:
P=Fe "t present value of a future sum

Continuous Investments or Income Suppose an investment is made or an income is received continu-

ously according or an investment /income stream | = |(t) ye% In the following derivation, we assume

that I(t) is a continuous function and therefore approximately constant on the interval of length dt;
then the amount of money received/invested during that interval is approximately
'rate x time' = I(t) dt.

——T-t—»

S Time
0 t t+dt T

Total Money The amount invested/received on the interval dt:
dM = I(t) dt.

So the total money invested/received is
M= fo Ti(t) dt.
Present Value The present value of the money on the interval dt at time 0, by the discrete formula
dP=dMert=|(t) e-rtdt
So the total present value is
P= [ I(t)ertdt
Future Value The future value of the money on the interval dt at time T, by the discrete formula (1):
dF = dMe" ™0 =|(t) e (70 dt
So the total future value is

F= [ I(t)er0 dt
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Use the Five Step Procedure in each problem

Exercises

For each of #1 to 7 find:
a. The total money (received or invested)
b. The present value of this money.

c. The future value of this money.
#0. You invest $10000 lump sum now at an interest rate of 10% for 40 years.

#1. You invest $1000 per year at an interest rate of 10% for 40 years.
#2. You invest $100t per year at an interest rate of 10% for 40 years.
#3. You invest $10t? per year at an interest rate of 10% for 40 years

For each of $4 to 7 also determine how much should you pay for the annuity.
Money is worth 10% interest.

#4. You purchase an annuity which pays 10000 $/year for 20 years.

#5. You purchase an annuity which pays 10000 $/year forever.

#6. You purchase an annuity which pays 1000t $/year for 20 years.

#7. You purchase an annuity which pays 1000t $/year forever.

Answer each of the following two questions. You wish to give you child
$100,000 in 20 years for its education. You invest at 10%/year return.

#8. What lump sum should you invest now?

#9. At what constant yearly rate should you invest over the next 20 years?

10. Explain why interest implies inflation and why some of the world's
major religions have at times forbidden interest.
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Solutions/ Hints

#0. M = total money invested = $ 10,000
P = presentvalue = $10,000

F =future value = 10000 e%1(40 = § 545 982

#1. M = golooOdt
p = ngIOOOe‘O'”dt
F = [1"1000 >0 gt

#2. 1(t) = 100t
M = (‘)‘0100tdt

P = ["100te 1t dt
F = [17100 te® (-0 dt

#4. P = 2100000 dt
#5. The present value, what you should pay.

_ [t° -0.1t
P= fo 10000 e~ %1t dt
= $100,000
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Chapter9 Generalized Functions

Generalized functions and their special generalized calculus give correct answers in some important areas
of application where ordinary calculus fails. One area is writing piecewise defined functions in a form
where the Fundamental Theorem of Calculus applies. Another is a way of representing impulse spikes
or the densityof a point particle in function form.

9.1 Piecewise Defined Functions

In applications, functions are often defined by piecing together simpler continuous functions.

Example The Unit Step Function, U(t). This piecewise defined function is very important in applications.
For example, it can represent ‘turning on’ an electric potential of 1 Volt exactly at time t=0.

ug)

Sectionally Continuous Functions For both reasons of application and mathematics we modify
acceptable types of piecewise defined functions.

Definition A sectionally continuous function is a function which is

1. continuous on the real line except at finitely many points in each subinterval.
2. at each point of discontinuity x;, f(x;) and f(x;) are finite real numbers.

3. f(x) is undefined at each point of discontinuity.
4. f(-00) =0 (this is not unduly restrictive because in many application, a quantity
is 0 initially or ‘turned on’ at some finite time after the creation).
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The Unit Step Function is not a sectionally continuous function according to our definition because it is
defined at the jJump point t=0. A modification of that function, the Heaviside Generalized Function, is
a sectionally continuous function. In applications, it is physically meaningful not to define the function
at t=0 because one does not know and it does not matter whether a quantity is turned on exactly at
or just before or just after t=0!

H(t)

-3 -2 -1 1 2 3 4

Example The Heaviside function multiplied by 3 and translated 2 to therightis 3 H(t-2).
It can represent ‘turning on’ an electric potential of 3 Volts at t=2.

3H(t - 2)

3r o

2t

1t

Example A sawtooth function. The open circle convention at discontinuities is normally assumed when
working with generalized functions and will not usually be shown explicitly.

Sawtooth (x)

Example A more complicated sectionally continuous function is

0, x<0
c(x)={sinx,0< x< 27T
X—8, x>277

c(x)

1 1 1 x
) 2 v 8
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Example This jump function j(x) is not a sectionally continuous function because it has infinitely many
discontinuities on the finite interval 0 <x <1. (At endpoints of continuous subintervals, j(x) is not defined.)
Nevertheless, because the discontinuities occur on an appropriate sequence of points, the theory we will
develop in the next sections will also apply to this example.

Y

y=j®)

Exercises

1. Write the equation for each sectionally continuous function using piecewise notation.

a.
Y
1.0
O-SE\ /‘
A L L L n n X
* _OISE \/ ° ° 0
-1.0
b.
Y
25
2.0
1.5
1.0
0.5
+ - X
1 2 3 4 5 6
C.
Y
1
X
-2 -1 1 2 3 4 5
d.
Y

-4 -2 2 4 6 8 10
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2. Graph each. Which are sectionally continuous functions? Graph each. Modify the ones which are not
sectionally continuous, when possible, so they are sectionally continuous.

0, x < -1
aﬂm:{2X>_1

0, x<0
X, x>0

b. g = {

0, x<0
c. h(x)= {sin(rrx), 0<sx<2
0, x>2

0, x<0
1, 0<x<2
d.kX)=1_1 2<x<4
0, x>4
e. l(x) = &

3. Invent four sectionally continuous functions. Graph each.

4. The Square Tooth Function (repeats indefinitely to the right).

ST(X)
1

-2 2 4 6 8

Graph each of the following. State if not a sectional continuous function.
a. y=3ST(x)
b. y=-2ST(x)
c. y=ST(-x)
d. y=ST(2x)
. X
e. y=sinx ST(,—T)
f. y=2ST(x-2)
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Solutions
r o X< -1
1-X -1<x<0
0 O0<x<1
1d. y= { y/4-(x-3)> 1<x<5
0 5>x<6
6<x<8
L O X>8

2a. not sectionally continuous.

f(x)

4 -

[ ]
o

2c. sectionally continuous

h(x)
1.0}

05¢

-05¢

-1.0+

2e. sectionally continuous

eX

4 -3 -2 -1 1 2 X
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9.2 Generalized Function Calculus Graphically

Generalized functions and their generalized integrals and derivatives give correct answers in
many areas of applications where ordinary derivatives or integrals fail.

Generalized Integrals First we note that, by the definition of definite integral, fabf(X) dx,
does not exist if f(x) is undefined somewhere on theintervala<x<b.

Y

)
<
In
e}

This is because in the definition of integral, Ziﬁl f (xf) dx => fbf(x) dx, if for some choice of dx, f(x:) is
a

undefined, then the entire sum is undefined (even an infinitesimal defect poisons the whole sum). However,
since the area under a point, no matter what's its value, is 0, we generalize the definition of definite integral

to ignore isolated points where f(x) is undefined. Such an integral is called a generalized integral of f.

So in this graphical example we agree that fabf(x) dx = (b-a)-c. Before we continue, recall the following for
reference.

Fact:

If f is continuous (except at isolated points) = faxf (t) dt is smooth (differentiable). Proof: DIY

Integrating Derivatives We would like, because of the Fundamental Theorem, the following to be true:
[f1 (0 dt = f(x) - f(a),

"the integral of the derivative of a function is the function minus its initial value". For sectionally functions,
f(-00) =0. Then

f Xt dt = f(x) An even better looking Fundamental Theorem!

This holds if f(x) is continuous using generalized integration. However, we will see that if f is not continuous,
we will also have to generalize the idea of derivative for f_xoof "(t)dt =f(x) to hold.
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Example f(x) is continuous. Everything is fine. Verify mentally, using the slope and area interpretations.

y = f(x) f'(®) J "ty dt = £(x)

00

The Heaviside Function Let us recall the basic sectionally continuous function, H(x).

_[e t<o
H(t)_{l t>0

It is undefined at t=0. Itis useful as a multiplier in applications for ‘turning on’ a quantity at time t=0.

H()
3

1 f———

Example Let us try differentiating and then integrating H(x). Everything is not fine.

H() H' () X dt = Heo
3r 3 -
3
2f 2
2
1 — 1 y
T
2 -1 1 2 3 2 -1 ‘{ T2 3 o 9 1 2 3X
-1F _ —1E

The problem in this example is taking the ordinary derivative of H(t) at a discontinuity. Somehow we lose
information at x = 0. We will have to search for a correct 'generalized derivative'. (The generalized integral
was used in integrating H'(t)). Let us search for a more useful derivative by considering a modified
Heaviside function and its derivative.

He(t)

He(t) j He (8 dt = Hi)

1/e

1,F
1’ .
1 T 1 x

€ €

In more detail:



He (1)
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1/€ =
° t<o
He(t) = 4 & O<tx<e
(] t>e
;
€

The above graph shows the approximation H¢(t) to H(t) with € an infinitesimal. The area under H¢'(t)

is 1, just what we need. We call the resulting idea, the (Dirac) delta function, named after its inventor.

Itis written O(x).

The delta function is not a function in the usual sense because at the 'interesting' place x=0, it is undefined.
It is called a distribution and is a generalized function .

Definition The Dirac Delta Function 6(x) is defined analytically by:
1. 6(x)=0, x*0

2. ,L o(t) dt=H(x). Conversely the generalized derivative of H(x) is 6(x). Equivalently
L Hx) = 6(x) |

Graphically 6(x) is shown by an upward unit arrow with its tail at (0, 0).

The above H¢'(t) is a perfectly good definition for 6(x) because for every infinitesimal €> 0 the ‘spike’ fits
between 0 and €. Also the area of the spike, 1, is independent of €. However, most mathematicians prefer
a definition free of infinitesimals. We will use the following definition although some proofs are easier if we

use He(t),

The Dirac Delta Function 6(x), a traditional definition
1. 6(x)=0, x*0
2. f_io 6(t) dt=H(x) or conversely JiXH(x) = O(x)

Graphically 6(x) is shown as as a unit arrow with its tail at (0, 0).
O(x)

-2 -1 1 2 3

We now with generalized functions, generalized derivatives and generalized integrals have the desired

derivative of H(x) which satisfies f_iH‘ (t) dt=H(x)!
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H(t) H'(t) j_XH "(t) dt = H(x)

e a— 1 2 3 e T2 3 e a— T2 3

The method of finding the 'correct' generalized derivative of any generalized function is now clear.
Its generalized derivative is just its ordinary derivative plus appropriated shifted delta functions
multiplied by the magnitude of the function's jump at each discontinuity. We say that bd(x-a) is a
‘delta function of strength b at x=a'.

Example Let f(t) be the function graphed below.
f(x)

4+

Its generalized derivative is then:

f'(x)
4 ~

EN
(<2}
©

-2

-2+

4L
You can verify, by visual generalized integration of f'(t) from - to x, that the resultis f(x).

The Rule for Graphical Generalized Differentiation:

1. Draw the ordinary derivative of the function.
2. Add an arrow with length equal to the jump at each discontinuity.
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Summary Functions which are 0 for x large and negative and which are
continuous and ordinary differentiable except at isolated points and are bounded
are called generalized functions. The generalized function calculus consists of
the generalized functions and ordinary functions together with their generalized
derivatives and integrals.

A generalized function with generalized differentiation and generalized
integration satisfies the Fundamental Theorem of Calculus! >
f £ (t) dt = (x)

-0

Exercises Do all quickly.
1. Graph the generalized derivative f'(x). Verify its generalized integralis f(x).

f(x)

-2 F 2 4 6
£ (x)
3¢ 3
2 20
s 1
n n " " X N n n n
-2 2 4 6 -2 2 4 6 X
-1 -1
-2t ot

-2 2 \ 6 8
-1k
2L
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3. Invent your own h(x). Graph the generalized derivative h'(x). Verify its generalized integral is h(x).

h(x)

4. Generally 'integrating first and then differentiating' causes no problem: if:f(t) dt =f(x).

a. Prove this. Hint: use the Fundamental Theorem of Calculus, f:f(t) dt=F(b) - F(a).
b. Verify this graphically for the Heaviside function H(x).

H(x)
4.
3,
2,
1,
‘ X
37574 12 3 4
_1,
_2,
X
jH(t)dt
4,
3,
2,
1,
R 12 3 4
1
_2,
d
2 Hey dt
dx /=
4
3
2
1
X

-3-2-1%1234
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9.3 Generalized Functions Analytically

Review The Heaviside Function H(t)
0 t<o
i = {
(®) 1 t>0

H(t)
3+

2t

1

-2 -1 1 2 3

-1t

Review The Dirac Delta Function &(x):
1. 6(x)=0, x*0
2. [7 o(t)dt=H(x) or conversely ZH(x)= &(x)

Graphically 6(x) is shown by an upward unit arrow with its tail at x=0 on the X-axis.
&(x)
3 L

Using the Heaviside Step function to write equations of generalized functions

First we do this for one function segment.
Y

y =f(x)

|

s b

y ='turnon f(x) at x=a' and then 'turn off f(x) at x="b'
= f(x)H(x-a) - f(x)H(x-b).

For general generalized functions apply the above technique to each function segment.
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Example

Its equation is
f(x) = (x - 1)H(x-1) - (x - 1)H(x-3).

Generalized Calculus Properties of H and 6

1.6(x)=0,x*0 1.6(x-a)=0,x*a

2. [* 5(t) dt=H(x) 2. [* 5(t - a) dt = H(x-a)

3.H'(x)= 6(x) 3. H'(x-a) = 6(x-a)

4. f(x) O(x) =f(0) O(x) 4. f(x) 6(x-a) = f(a) 6(x-a) 'Sifting Property'

The Sifting Property is useful in simplifying expressions involving the delta function.

Proof The only mystery is #4, the Sifting Property. f(x) 5(x) = f(0) 6(x) follows from #1, since the only
value of f that 'counts'isat x=0.

Example Let us look at the previous example.
f(x) = (x - 1)H(x-1) - (x - 1)H(x-3).
By the Product Rule
f'(x)=1H(x-1)+ (x-1)O(x-1) - 1 H(x-3) - (x - 1)6(x-3)
=H(x-1) - H(x-3) - 26(x-3) since by the Sifting Property:
(x-1)6(x-1) =(1-1)6(x-1) =0
(x-1)0(x-3) =(3-1)6(x-3) =206(x-3)
Note that this derivative does not involve a delta function at x = 1. This is because f is continuous
there. The graph of the derivative is
f'(x)

1 which looks just right.
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Interpretation of 6'(x) The delta function and its derivative are important in applications.
Their geometric approximations are useful in understanding their properties.

Here are the approximations of H(x) and &(x) againand & '(x). You can verify them by
starting at the top with differentiation or starting at the bottom with integration.

He(x)

To find the derivative of &¢(x) we will use another version of it in triangular form which also has area 1.
6e(x)

-
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Graph of 6'(x) Adouble headed arrow of length 1.
6'(x)

-2 -1 A 1 2 3

Physical Interpretations

O(t) is a strong kick forward, 'unitimpulse' at t=0. The area underitis 1. You can calculate
that the effect of a force &(t) when applied to a particle is to produce an instantaneous change
in its velocity.

0 '(t) is a very strong kick forwards followed immediately by an equal strong kick backward at t=0.
The area under each spike is +oo for every non-zero €. We will see that the effect of the force
0'"(t) when applied to a particle is to produce an instantaneous change in its position with no net
change of velocity.

Note The Dirac Delta function is a genuine hyperreal based function, not the hyperreal extension of
areal function. Clearly we need a hyper-hyperreal calculus based on hyperinfinitesimals dx
smaller in size than any positive infinitesimal, in particular the € we used in the pre-delta function.
However, we can still get by thinking of the derivative as a slope and the integral as an area: there is
no need here to develop a full hyper-hyperreal calculus.

Exercises Work some from 1 to 9. Marvel the advanced application appendix.

1. A. Write a formula for f(x) shown below in terms of H analytically. Find f(x) in terms of H and §
and simplify using the Sifting Property. Finally verify analytically that the Fundamental Theorem of

Calculus holds.
B. Repeat part A but this time do graphically.

f(x)

C. Why doesn't f'(x) involve a delta function?
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2. Repeat parts 1 A and 1B for the function below.

y=9(x)

3. Repeat parts 1 A and 1B for the function below.

9(x)

1 1 1 X
-2 2 4 6 8
b
2L

4. Verify each by graphing and/or analytically.
a. [ H(t)dt=xH(x)
b [ JLLH(s) ds dt= 3 HOd
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5. Verify each Sifting Property of 6 '(x).
a. f(x) 6'(x) =-f'(0)6(x)
b. f(x) 6 '(x-a)=-f'(a)S(x-a)

6. Graph each.

a. 0(x)
b. ﬁ(ooé(t) dt Write a formula for this function.
c. ffwﬁmé(s) dsdt Write a formula for this function.

7. Criticise the graphical representation of &' (x).

8. a. Draw an approximation 6¢'(x) for 6 "(x).
b. How would you show the graph of 6 "(x)?
c. What is the Sifting Property of 6 "(x)?

9. Showthat [*”6(x) dx=1.

10. A particle with mass 1initially at rest at x=0. At t=0, the particle is subject to the following forces:
a. F=H(t)
b. F=6(t)
c. F=6'(t).

Use Newton's Law, F=ma, to find the velocity and position as a function of time in each case. Graph

11. a. Find the antiderivatives of the functions f(x) and g(x) in exercises 1 and 2.

X
Notation: F(x) = f_oof(t) dt. Verify the Fundamental Theorem of Calculus for these functions.
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Future types of applications, FYI.

I. Application to a vibrating string

Find the solution for the plucked string problem with f(x) = 6(x - t/2). How would you produce this
initial condition? The solution graphed below is the solution of the wave equation, 8%z/9x*= 8*z/at.
Study the solution and describe what happens.

Astringis fixed at x=0 and x=T.

Itis drawn up at T/2 between two
fingers into a pulse approximating a
delta function and released at t=0.
The motion of the pulse between t=0
and t=2m isshown.

Il. Generalized Differentiability at a ridge - generalized derivatives work!
X osxsZ
’ 2

The solution for the plucked string problem with f(x) :{ o x, 7,( <y <rr

Want to show that at a point where the solution is not differentiable in the ordinary sense, the solution satisfies
the PDE in the generalized sense.

The string is plucked as shown below at t=0.

z

At t= 7 itlooks like this. Surprise!

z
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One half of a period of vibration is shown below.

A contour plot of the above is drawn below.

0 4 T
7T*‘

=

X

We will examine the solution at the red dot: x = %, t= f
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The curve through the red point in the X-direction is

z

In elementary calculus, this solution does not have
either a first or second derivative in either the X-
direction or the T-direction at the corner point.
Highly unsatisfactory (because the motion is real).

E]

w
N

2 B d Exercise Draw the first and second
derivatives of the graphs on the left.
The line through the red point in the T-direction is Of course they are equal respectively!
Thus the wave equation is satisfied at

Z the red point.

ENE

a. Graphically find the generalized derivatives g—)z( and g—i. Note that they exist and are equal. Note: the symbol 0

is used instead of d when there is more than one independent variable

b. Graphically find the generalized derivatives g% and %. Note that they exist and are equal. This means the
wave equation at a sharp corner has a solution when generalized calculus is used, but not with ordinary calculus.

In generalized calculus , this solution does have
both a first or second derivative in both the X-
direction and the T-direction everywhere.
Completely satisfactory.
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Chapter 10 First Order Differential Equations

10.1 First Order Separable Differential Equations

The laws of growth of a quantity - particularly in finance, the natural sciences and engineering - are
often expressed by equations where derivatives of the quantity appear. In this chapter we will begin
the study of simple first order and second order differential equations.

First order differential equations have the forms

d d
+=fx,y) or  Fxy,3) =0.

Their solutions have one arbitrary constant because in one way or another an indefinite integration is
involved. The simple differential equation

3—1 = x has the general solution y = Xz—z +C.
The constant C is found by requiring the solution to pass through a point. If the solution goes through

(2,2),then C=0 and y=7%.

How does a differential equation determine a solution? Let us look at an example.

Example Consider the differential equation j—i = x +y. Let us find the solution passing through the

point (0, 2).
Write the differential equation in its approximate differential form:
Ay = (x +y)Ax.

Start at (0, 1). Chose Ax=1 (very large!). Find Ay. Get the point (0+Ax, 1+Ay). Repeat.
(0,1) = Ax=1,Ay=(0+1)1 = (1,2)
(1,2) = Ax=1Ay=(1+2)1 = (2,5)
(2, 5) and so on. See the blue data points. Not bad? It goes roughly in the right direction when com-
pared to the exact solution, the black curve.

For a better solution take Ax=0.1, say. Then you would get the red data. Much better. You could do
this by hand in a few minutes with good mental arithmetic and concentration
For a very good solution take Ax=0.01. Then you would get the purple data. The data points barely
peek out from the under exact solution on the right. You could do this with some simple programming.
For a solution asymptotically equal to the exact solution, take Ax=dx, an infinitesimal, of course!
This is how a first order differential determines a solution.
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0.5 1.0 1.5 2.0 25

The exact general solution of %}f = x+yisy = Ce*x-1.ltis graphed for several values of C below.

It is a homework problem to find this solution. The solution passing through (0, 1) is

y = 2e"-x-1

dy
Solutions of — = xX+Yy
dx

c-6 C=>

25


Bill
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First order differential equations, Variables Separable

Both mathematicians and students like exact analytic methods which work for a large number of
differential equations. One type is the variables separable equations:

&= f(x)gly)

;_&f f(x) dx separating variables
f% = ff(X)dX integrating
The solution.

Example Find the general solution of 3—§= %
dy _ dx . .
T T X separating variables
&= [2  integrating

Iny = Inx+InC equivalentto C as the constant of integration. Why?
Iny-Inx=InC Property 1 of logs
In(y/x) = InC  Property 2 of logs

y= & Exponentiation
dy _x
Example Find the solution of the initial value problem { =y
y@©) =1
dy _x
dx Ty
ydy = xdx separating variables
fydy = fxdx integrating
yyz = §+ Cz—z looking ahead
yr-x*=¢? a hyperbola
12-02=¢? initial condition
=1
Y
34 T T T T |
2\/
1, ]
Solution: y? - x> =17? 0

-2F

3-2-10 1 2 3

Since the bottom curve does not pass through the point (0, 1), the correct solution is:

Y
30 e
25} ]
20} ]
Solution: y =/ 1+ > 13\,/
0.5¢ E
0.0

-3 -2 -1 0 1 2 3

X


Bill
Typewritten text
?
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Sometimes separation of variables is not entirely obvious.

Example Find the general solution of 3—1 = .

dy = Xy

= eXe” property of exponents
¢/dy = e“dx  separating variables
feydy = J'exdx integrating
e =e+C
Note: y = Ine*+ InC
=x+D
is wrong. Why?

y = In(e*+ C)

Exercise 10.1.0 Find the exact solution of j—i = x+y. Hint: make the change of variable u=x+y.

Exercise 10.1.1 Which of the following equations are separable?
(a) y = sin(ty)
(b) y =e'e
(c) yy' =t
(d) y = (> — 1) arcsin(y)

(e) ¥ =t*Iny+4s Iny
Exercise 10.1.2 Solve y =1/(1+1?).

Exercise 10.1.3 Solve the initial value problem y' = t" with y(0) = 1 and n > 0.
Exercise 10.1.4 Solve y/ = Int.

Exercise 10.1.5 Identify the constant solutions (if any) of y = tsiny.

Exercise 10.1.6 Identify the constant solutions (if any) of y = te”.

Exercise 10.1.7 Solve y' =t/y.

Exercise 10.1.8 Solve y’ =y* — 1.

Exercise 10.1.9 Solve y = t/(y3 —5). You may leave your solution in implicit form: that is, you may stop
once you have done the integration, without solving for y.

Exercise 10.1.10 Find a non-constant solution of the initial value problem y' = yl/ 3, 9(0) = 0, using
separation of variables. Note that the constant function y(t) = 0 also solves the initial value problem.
This shows that an initial value problem can have more than one solution.
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10.6 Generalized Functions Analytically

Review The Heaviside Function H(t)
0 t<0o
0= {
(®) 1 t>0

u(t)
3 L

Review The Dirac Delta Function 6(x):
1. 6(x)=0, x*0
2. ffmé(t) dt=H(x) or conversely %H(x) = 6(x)
Graphically 6(x) is shown by an upward unit arrow with its tail at x=0 on the X-axis.

6(x)
3f

Using the Heaviside Step function to write equations of generalized functions

First we do this for one function segment.
Y

y =f(x)

I
I
I
I
I
I
I
I I
I I
I I
1 1
a b

y ='turnon f(x) at x=a' and then 'turn off f(x) at x="b'
= f(x)H(x-a) - f(x)H(x-b).

For general generalized functions apply the above technique to each function segment.
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Example*

f(x)

4r

x-1

3r

2:,

B

4 1 2 3 4 5 X
Its equation is
f(x) = (x - 1)H(x-1) - (x - 1)H(x-3).

Generalized Calculus Properties of H(x-a) and &(x-a)
1. 6(x)=0,x*0 1. 6(x-a)=0,x*a
2. [ &(t)dt=H(x) 2. [ &(t-a)dt=H(x-a)
3.H'(x)= 6(x) 3. H'(x-a) = 6(x-a)
4. f(x) 6(x) =f(0) 6(x) 4. f(x) 6(x-a) = f(a) &(x-a) 'Sifting Property"

Proofs The only mystery is #4, the Sifting Property. f(x) 6(x) = f(0) 6(x) follows from #1, since the only value of f
that 'counts' is at x=0. The Sifting Property is useful in simplifying expressions involving the delta function.

Example Let us look at the previous example.
f(x) = (x - 1)H(x-1) - (x- 1)H(x-3).
By the Product Rule
f'(x)=1H(x-1) +(x-1)6(x-1) - 1 H(x-3) - (x-1)6(x-3)
=H(x-1) - H(x-3) - 26(x-3) since by the Sifting Property:
(x-1)6(x-1) =(1-1)6(x-1) =0
(x-1)0(x-3) =(3-1)O0(x-3) =206(x-3)
Note that this derivative does not involve a delta function at x = 1. This is because f is continuous there. The
graph of the derivative is

_2}

which looks just right.
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Interpretation of 6'(x) The delta function and its derivative are important in applications. Their geometric
approximations are useful in understanding their properties.

Here are the approximations of H(x), 6(x), and & '(x). You can verify them by starting at the top with differentia
tion or starting at the bottom with integration.

He(x)

To find the derivative of &¢(x) we will use another version of it in triangular form which also has area 1.
6e(x)

m
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Graph of 6'(x) Adouble headed arrow of length 1.

&'(x)

-2 -1 1 2 3

Physical Interpretations

H(t) is a constant force of magnitude 1 startingat t=0.

O(t) is a strong kick forward, 'unitimpulse' at t=0. The area underitis 1.You can calculate that the effect
of a force 6(t) when applied to a particle is to produce an instantaneous change in its velocity.

0'(t) is a very strong kick forwards followed immediately by an equal strong kick backward at t=0. The
area under each spike is +oo as €— 0. We will see that the effect of the force 6'(t) when applied to a particle
is to produce an instantaneous change in its position with no net change of velocity.

Exercises Work 1to 6, 10, 11. Marvel at advanced applications.

1. Write a formula for f(x) interms of H. Find f'(x) and simplify. Graph f'(x) by hand and computer.
f(x)

-2 2 4 6
ME

2L
Why doesn't f'(x) involve a delta function? Do both graphically and analytically.
2. Write a formula for g(x) interms of U. Find g'(x) and simplify. Graph g'(x) by hand and computer.
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-2 2 4 6 8

2L

3. Invent your own h(x). Write a formula for h(x) in terms of U. Find h'(x) and simplify. Graph h(x) and h'(x)
by hand and by computer. h should have two non-zero segments one of which is non-constant.

h(x)
3 -
2 L
'] L
-2 2 4‘1 6 8 X
Lk
2L
h'(x)
3 -
2+
1 L
-2 2 A‘l 6 8 X
-1t
oL
4. Verify each by graphing.
a. [ H(t)dt=xH(x)
b. [* [ H(s)dsdt=2x2H(x)
5. Verify each Sifting Property of 6'(x).
a. f(x) 6'(x) =-f'(0)6(x)
b. f(x) 6'(x-a)=-f'(a)6(x-a)
6. Graph each.
a. 0(x)
b. ﬁ(ooé(t) dt Write a formula for this function.
c. ffmﬁmé(s) dsdt Write a formula for this function.

7. Criticise the graphical representation of &' (x).
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8. a. Draw an approximation &¢'(x) for 6" (x).
b. How would you show the graph of 6''(x)?
c. What is the Sifting Property of 6"(x)?
9. Show that ["6(x) dx=1.
10. A particle with mass 1initially at rest at x=0. At t=0, the particle is subject to the following forces:
a. F=H(t)

b. F=0(t)

c. F=6'(t).
Use Newton's Law, F=ma, to find the velocity and position as a function of time in each case.

11. Show that f(x) in Example * satisfies the fundamental theorem of calculus

J2 () dt = f(x).
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Solutions 10.1

10.1.2 y = arctant +C

n+1
10.1.3 y =

1
n+1+

10.14 y=t¢tInt—t+C

10.1.5 y = nm, for any integer n.

10.1.6 none

10.1.7 y=+V2+C

10.1.8 y =41,y = (1+A4e*) /(1 —Ae*)
10.1.9 y*/4 —5y=12/24C

10.1.10 y = (21/3)3/?

10.2 First Order Homogeneous Linear Equations

A simple, but important and useful, type of separable equation is the first order homogeneous linear
equation:

Definition 10.1.2.1: First Order Homogeneous Linear Equation

A first order homogeneous linear differential equation is one of the form y' + p(t)y = 0 or equiva-
lently y' = —p(t)y.

“Homogeneous” refers to the zero on the right side of the equation, provided that y’ and y are on the
left. “Linear” in this definition indicates that both y and y appear independently and explicitly; we don’t
see y or y to any power greater than 1, or multiplied by each other (i.e. y'y).
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Example 10.2.1: Linear Examples

The equationy’ = 2¢(25 —y) can be written y’ +2ty = 50t. This is linear, but not homogeneous. The
equation y' = ky, or y/ — ky = 0 is linear and homogeneous, with a particularly simple p(t) = —k.
The equation y' +y> = 0 is homogeneous, but not linear.

Since first order homogeneous linear equations are separable, we can solve them in the usual way:

dy _ —p(t)y
1 dx
=dy = [ —p(t)dt
Inlyy = P(t)+ C
P

y = AelP ) where +eC=A

where P(¢) is an anti-derivative of —p(t). As in previous examples, if we allow A = 0 we get the constant
solution y = 0.

Example 10.2.2 Solving an IVP

Solve the initial value problem

y +ycost =0,
subject to y(0) = 1/2 and y(2) = 1/2.

Solution. We start with
P(t) = /—costdt = —sint,

so the general solution to the differential equation is

y= Ae~ sint
To compute A we substitute:
% A —SiIlO _ A,
so the solutions is |
—sint
= —e .
)
For the second problem,
1 .
Z = Ae” sin2
2
A = 1 sin2
2
so the solution is
1 sin2 e” sint

)’253
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Differential Equations

Example 10.2.2

Solve the initial value problemty +3y =0, y(1) = 2, assumingt > 0.

Solution. We write the equation in standard form: y’ +3y/t = 0. Then

3
P(t) = /—;dl = —3Int

and
y=Ae 3= A3,
Substituting to find A: 2 = A(1) ™3 = A, so the solution is
-3
y=2t".

Exercises for 10.2

Find the general solution of each equation in the following exercises.

Y

Exercise 10.2.1 y +5y=0 Exercise 10.2.3 ' + 2= 0
Exercise 10.2.2 y/ —2y =0 Exercise 10.2.4 y +12y =0

In the following exercises, solve the initial value problem.
Exercise 10.2.5 y +y =0, y(0) =4 Exercise 10.2.10 y' +ycos(¢') =0, y(0) =0
Exercise 10.2.6 y —3y =0, y(1) = -2 Exercise 10.2.11 1y —2y =10, y(1) =4
Exercise 10.2.7 y' +ysint =0, y(7) = 1 Exercise 10.2.12 12y +y =0, y(1)=-2,t>0
Exercise 10.2.8 y' +ye' =0, y(0) = ¢ Exercise 10.2.13 13y =2y, y(1)=1,1>0
Exercise 10.2.9 Y/ +yv/1+1* =0, y(0) =0 Exercise 10.2.14 3y =2y, y(1) =0, > 0

Exercise 10.2.15 A function y(t) is a solution of y' +ky = 0. Suppose that y(0) = 100 and y(2) = 4. Find
k and find y(t).

Exercise 10.2.16 A function y(t) is a solution of y' +*y = 0. Suppose that y(0) =1 and y(1) = ¢~ 13,
Find k and find y(t).

Exercise 10.2.17 A bacterial culture grows at a rate proportional to its population. If the population is
one million att =0 and 1.5 million at t = 1 hour, find the population as a function of time.

Exercise 10.2.18 A radioactive element decays with a half-life of 6 years. If a mass of the element weighs
ten pounds at t = 0, find the amount of the element at time t.



Solutions 10.2

10.2.1y = Ae™
10.2.2 y = Ae*

10.2.3 y = Ae~ drctant
10.2.4y = A3
10.2.5y =4e”!

10.2.6 y = —2¢°3
10.2.7 y = e!teost
10.2.8 y = %
10.2.9 y=0

10.2.10 y=0

10.2.11 y = 47>
10.2.12 y = —2¢1/0-1
10.2.13 y = el
10.2.14 y=0

10.2.15 k=1n5,y = 100103

10.2.16 k= —12/13,y = exp(—13t"/13)

10217 y = 100" G/2)

10.2.18 y =10e~'n(2)/6

209
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10.3 First Order Linear Equations

Y +p(t)y = £(t)

A common method for solving such a differential equation is by multiplying both sides by the

integrating factor:
e P(t)

where P(t) is an antiderivative of p(t).
Then

d
o (eF0y) = eP(’)f(t). Product Rule

Integrating both sides gives

y=¢? (?) / el (t)f (¢)dt + C, the solution

Example Solve %‘t‘ -2y=6
Integrating Factor = el2dt= g2t

%\tLe—zt —2ye2t = ge 2t
j_t[ye—2t] = ge-2t
ye?t=-3e2t+Cy integrating both sides

y=-3+Ce?!

Note: in the exercises, use the procedure of the example. Don't use the red formula.
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E o f 1 0 3 NOTE Big people, when no one is watching, use Wolfram
Xercises 1or . Alpha or other resources to evaluate difficult integrals.

In the following exercises, find the general solution of the equation.

Exercise 10.3.1 y +4y =38

. / -
Exercise 10.3.2y" — 2y =6 10.3.11 a. Derive again the general

solution of
{y' +p(tly=0
y(0)=y_.
b. Show that the above system can
be written in the one-line form preferred in
some applications by

y' +py =y §(t).

Exercise 10.3.3 y +ty =5t
Exercise 10.3.4 y' +e'y =—2¢'

Exercise 10.3.5 y — y =¢>

Exercise 10.3.6 2y +y =1

Exercise 10.3.7 ty' — 2y =1/t, t >0 Important Note
Show it is correct by solving it. When you
Exercise 10.3.8 1y’ +y =1, 1 >0 integrate, use generalized integration and the Sifting
s ’ Property.
Exercise 10.3.9 y’ cost +ysint =1, - /2 <t <1 /2 The idea here is that all solutions are 0 at minus

infinity and get a displacement at t =0 because of

. , an impulse force.
Exercise 10.3.10 y' + ysect =tant, —7 /2 <t <m /2

Solutions 10.3

10.3.1y =Ae ¥ 42
1032y =Ae? — 3

1033y =Ae (/27 5
1034y =Ae ¢ —2
1035y =Ae' — 12— 2t —2

10.3.6 y =Ae /> 41 — 2

42 1

10.3.7 y=Ar — 3
2

10.3.8 y— g +3Vi

10.3.9 y = Acost +sint

A t
sect +tant sect +tanft
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Memory work in 1958: all the formulas

Derivative Formulas

() = yn-1
dx()() nx

A (X)) = o
dX(e) e
d 1
a(ln X) = ;
di(sm X) = cos x
Jix(tan X) = sec?x
i(sec X) =sec x tan x
dx
%(S|n‘1x)= L
1-x2
i “ly)= L
(tan X) T
d ( -1 1
sec™1x) =
dx x4 -1
9 (sinh x) = cosh x
™ h h
di(tanh X) = sech?x
di(sech X) =-sech x tanh x
2 (sinh1x) = —=
1+x2
9 (tanh=1x) = <1
dx -x2’
d 1.\ — -1
—(sech™x) =
dx X+l 1=X2

%(a") a*lna
d
&(l ) Xlna
%(cos X) =-sin x
Jix(cot X) = - ¢sC?x
di(csc X) =-csc x cot X
di(cos‘lx) -1

1-x2
i -1 = -1
dx (cot™x) 1+x?
d —1u) — -1
—(cscx) =
dx( ) 21
di(cosh X) =sinh x
di(coth x) = - csch®x
di(csch X) =-csch x coth x
di(cosh‘lx) S

x2-1

d —1,) —
&(coth X) =

9 (csch™ix) =

-1
dx |)<| -1

The above list includes derivatives of all the basic elementary functions.

Integral Formulas

fu”du =uym1l+ C

fe”du =e'+C
fcosuduzsinu+C
[sectudu=tanu+C
fsecutan udu=secu+C
[tanudu=1In|secu|+C
[secudu=In|secu+tanu|+C
fcosh udu=sinhu+C
[sech2udu=tanhu+C

fsech utanhudu=-sech u+C

[ _=sin-tu+C
1-u?
du _ _. -1
=sinh™u+C

\ 1+u?
[ =tanh~lu+C,|u|<1
1-u?
U —seclu+C
u?-1

du
lu] {f u*+1

=cschlu+C

/

Integrals of basic inverse functions can always be done by integration by parts.

=lnju[+C
Jadu= L+ C
fsinuduz—cos u+C
Jesc2udu=-cot u+C
fcscucotudu:—csc u+C
fcotudu:ln |sinu]+C
fcscudu=ln|cscu— cotu|+C
fsinhudu:coshu+C
Jesch?u du=-coth u+C

fcsch ucothudu=-csch u+C

[ _=cosh™tu+C
u-1
4 =tan-lu+C
1+u

[ =coth™lu+C,|ul>1
1-u

/

du

uq 1-u?

=sech™u+C

Memory work in 2015: the boldface formulas
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