THE SITUATION. Let dx be any non-zero infinitesimal.

f(a) is an indeterminate form, undefined.
Compute f(a+dx) = b+dy instead.
Set dy = 0.
b is the number we need for calculus.
We write .
limf(x)=b
X=a
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Preface

Why an infinitesimal calculus approach? For many years | used textbooks primarily as a source
of problem sets but did most the theory and derivations using infinitesimal analysis. It went well.

What is wrong with with the -6 limit approach?
Students did not master solving absolute value & inequality statements before university

(High School students tend to think they had a ‘nice’ mathematics teacher if they did not do
much with word problems, piecewise defined functions or absolute value & inequality
statements!)

€-6 calculations are ugly and difficult!

Often €-6 limits are treated very lightly or not at all and students do calculus with a minimal
understanding of limits and get through calculus by memorizing formulas and mimicking
textbook examples. Some important basic theorems such as the Extreme Value Theorem or
the Riemann Integrability o f a Continuous Function on a Closed Interval are simply too hard
to do.

:—Y* is not a fraction; The differentials dx and dy are not infinitesimals.

Few engineers or scientists use the traditional limit approach in their work, either in their
university courses or in their work life. Calculus courses should help these in applied science to
use good style with a clear understanding rather than have it hinder them.

What is good about the infinitesimal approach?

Calculations tend to look like standard Algebra 10 calculations. (Grade 10 algebra is often the
last algebra they have really understood and mastered!)

Proofs of the Extreme Value Theorem and the Riemann Integrability of a Continuous on a
Closed Interval are easy and intuitive and could be understood by a calculus student with
only a successful grade 10 algebra background.

We do prove all the hard theorems in class; no one every gave me a raspberry for doing that.
% is a fraction. Writing %\f = f'(x) is only infinitesimally wrong!

There is a most excellent equivalence relation, asymptotic equality =, available for simplifying
calculations; it encourages input by intuition; its misuse tends not to affect the final answer.
Did an engineering student ever use the Mean Value Theorem?

Also traditional applied notation is used throughout: a<x<b not (a, b), f(g(x)) not fog(x).

Why did | make this patchwork calculus textbook?
I had hundreds of pages of infinitesimal based theory and applications handout sheets. | like

the idea of Open Commons textbooks. Last summer our department was assigned a student
partially subsidized by a government grant. No one had work for him. | thought,"Hey, we could

make an infinitesimal calculus book." I informed our department chair. She wanted me to do it
in IATEX. | thought of the effort involved. It would take about three years of drudgery to learn

IATEX and type up a manuscript and do its many revisions. | worried; I'm 80 and would the
textbook or the dementia win out? I decided we could do a "3 Month Infinitesimal Calculus”
book to get started. The department chipped in for two copies of Acrobat Pro. Dallas McIntosh,
my student assistant, was a great organizer and soon learned how to work around some of it's

pdf rigidities.

You are invited to use this textbook, make suggestions, proofread or be an editoror . . -.



Chapter 0 Beginnings & Refreshments

A purpose of a university education is to produce experts in their major fields of study. Experts are

required for teaching, doing original research, those who apply advanced knowledge to solving practical

problems or those who are intellectually curious. Part of this expertise is understanding the background of

their knowledge from its beginnings to your current level of study. That’s why we start with the counting
numbers. In this chapter we also do a basic algebra and function review. We finish with a new yet old kind

of number system, one which includes very small numbers called infinitesimals, which allows us to study

calculus at both an intuitive and at the same time at at a more advanced level.

THE PATH TO CALCULUS
Real Numbers

—> Algebra
—> Functions

—> Continuity & Limits e e .
} via infinitesimals
— Calculus!

The Derivative
The Definite Integral
The Fundamental Theorem of Calculus

0.1 The Real Numbers we begin with a short review of the real numbers and
functions and graphing. Other topics in algebra will be reviewed as required.

Preliminaries We start with a statement of a few logical symbols that we often will use as well as

some properties of equals.

Logical Symbols For the sake of brevity we often use the following logical symbols for statements A and B.
= “implies”. A= B, or "A implies B" or "If A istrue, then B istrue"

< "means the same thingas" or "is equivalentto" or "if and onlyif".

Properties of Equals, =
a=b means arithmetically that a and b are the same real numbers.
a=b means geometrically that a and b are at the same place on the number line.

1. Reflexive property a=a
Mathematicians say that = is an equivalence

2. Symmetric property a = b b=a relation because it has these three properties.

3. Transitive property a=b,b=c> a=c
You may wish to check in this lesson that wherever we use = that these properties are consistent with its use.

Further properties of equals Useful when working with equations; in this context < means 'has the same
solutions as'.

Addition Rule a=b e a+tc=b+c

MultiplicationRule a=b < a-c=b-c, c*0
These properties are true because, for example, in the addition rule of equals you could add -c to both sides of

the equation on the right and recover the equation on the left.



The Real Numbers we will do an informal review of the real numbers. It is assumed you know
rules of arithmetic of the real numbers and that elementary algebra is governed by to the same rules.

The set of counting numbers or natural numbers or positive whole numbers N is the set

1,2,3,4, ---.

The natural numbers are useful for counting discrete objects such as jelly beans or kumquats. The sum or product
of two natural numbers is a natural number. However, the difference may not be; 2 -2 and 3-5 are not natural
numbers. To allow for such subtractions we add 0 and the negative integers to the set of natural numbers to get a
new set of numbers.

The set of integers 1 contains the number 0 and the positive and negative whole numbers
+++=3,-2,-1,0,1,2,3, - - .

With integers it is possible to do all additions, subtractions and multiplications. However, the division of two
integers is not necessarily an integer. To cure this problem we add fractions to the integers.

For the purposes of geometry and measurement it is convenient to place the integers equally spaced on a number
line ordered from left to right.

-3 -2 -1 0 1 2 3 4

The set of rational numbers Q (for Quotients) are ratios of integers %, n%0.

Two examples are

Integers are in the set of rational numbers with the understanding that m = ml; we say a rational extension of the

integer m is the rational number % We need, for example, a rational extension of 7 so that we can combine

7x2 _14
= 1.5 =3 . Nevertheless, we feel

wp\)

an integer by an arithmetic operation with a rational number; Yx% =7, but %x

free to write in short 7 x?% informally.

A rational number % is placed on the number line by subdividing the intervals between integers into n parts and

2 is placed on the number line by subdividing the

counting off m of them starting at the origin. For example, 3

integer intervals into 3 equal parts and counting off 5 of the subdivisions to the right from the origin, 0.

[ ]
x



The square root of a rational number may not be a rational number, but rather a nonrepeating, unending decimal.
For example
V2 =1.414213562373095048 - - -.

The irrational numbers are the nonrepeating, unending decimal numbers.

Examples of irrational numbers

1.01001000100001 - - - 7t = 3.141592653589793238 - - -
1.23456789101112 - - - 4/ 71 =1.772453850905516027 - - -
1.38159834725918 - - - ’% =1.77281052085583665 - - -

Irrational numbers are difficult to place on a number line. What we do is approach the location exactly by an
unending sequence of increasing rational numbers (as suggested by its unending decimal form). We know how to
place rational numbers on a line. So in a theoretical way, we can also place irrational numbers on a number line
exactly with an unending sequence of steps.

For example,
_ 31 314 3141 31415
3.1,3.14,3.141, 3.1415, = 157 T00° 1000° 10000° - T

‘ - =X
3.0 e 4.0
3.10 T 3.20

L * * L L L L L L L L X
3.140 e 3.150

The symbol - isread “approaches (exactly)'. The word exactly is appropriate because at each step the
quality of the approximation increases by one decimal place and the unending sequence of
approximations ultimately gives 3.1415--- = 51 exactly.

The Real Extensions of Rational Numbers If you wish to combine a rational number with an irrational real
number (by addition, say), you must in theory write the rational one in unending decimal form.

Every rational number can also be written an unending repeating decimal ore sometimes as a terminating decimal.

S =T —5 =

i 0.75 = E+ 17— 0.75000

L. _ 6 3 6
H—0.636363--~ = SHEtEt

This is because to write % in decimal form you use long division; if the remainder at any step is 0, the division stops

and the result is a terminating decimal. Otherwise the remainders canonly be 1,2,---,q - 1. So afterat most g-1
steps, a remainder repeats and the result must be a repeating decimal repeating in groups of at most g - 1 digits.
For %, the decimal form terminates; 17—1 repeats in groups of two; % repeats in groups of six (verify this). Again we

say the real extension of % is 0.75000 - - -; with it you can combine % arithmetically with a real number, any number

that can be written as an unending decimal.

Example %+T[ = 0.750000000 - - - + 3.141592653 - -+ = 3.891592653 - -



The fractional form of a repeating decimal can always be recovered.

Example

7.4235235235- - -; callit x. Then
1000x = 7423.5235235 - - -

(-) x= 7.4235235 - -

999x =T7416.1
_ 74161 _ 74161
SO X= 555~ = "3990 -

Terminating decimals, other than for 0, can be written in repeating decimal form in two ways:
220.75=0.75000 - - -

ENTAREN

=0.75=0.74999 - - -.

The set of real numbers R is the set of all unending decimals. That is, every real number r can be
written in the form
r= in.d1d2d3 e

where n is zero or a positive integer.

Natural numbers, integers and rational numbers are in the set of real numbers because their real extension can be
written in repeating decimal form; however, one may feel free to write them in their usual natural number, integer,
or rational (fractional) form.

When all the real numbers have been placed on the number line we obtain the real number line. The real number
line is perfect for measuring because every physical measurement, as far as we know, is a real number. We say "the
real line is geometrically complete.' The rational line is not geometrically complete; for example, with it we would
not be able to measure exactly the hypotenuse of the right triangle shown below because the rational line does not
have a numberat /2.

Note: at the elementary level you cannot take the square root of a negative number or the logarithm of 0 or
a negative number; however within the set of complex numbers C, /-1 =i and log,(-1) =i, as examples.
You cannot ever divide by 0 or take the log of 0.

The real numbers are also algebraically complete because every legal arithmetic operation at the elementary
level gives a real number.



Are there other numbers? Yes there are. We do not need any more for real world calculations or measurements.
However the inventors of calculus in the seventh century found out that the theory and calculations of calculus
would be easy if very small numbers called infinitesimals existed. At that time infinitesimals were not known to

exist. But they, without any confirmation of their existence, used them anyway and quickly discovered most of

the calculus you will learn this year.

In the mid-nineteenth century mathematicians discovered the rigorous but difficult epsilon-delta calculus
which gave calculus the reputation of being a very difficult subject.

About 1960, the mathematician Abraham Robinson proved that the earlier infinitesimals did exist. Some day

infinitesimal calculus will be widely used again!

Exercises

Read the lesson very carefully. Make sure you understand everything. However, there is no need to memorize
much.

Try all the exercises below. Do not look at the solutions except to check your answers or if you need a hint.

1. Write each integer as a rational number in two ways.
a. 7
b.-3

2. Write each as a terminating decimal. Use long division.

3
a.
.
b. 15
4
C. 35

3. Write each in an unending decimal form.

o o

-
~s '_,l..} o~

o

4. Write each in fraction form.
a. 0.999---
b. 0.373737 - - -
C. 71.333141414 - - -

5. Write a sequence of rational numbers approaching A5 =2.23606 - -.
6. Use the sequence of #5 to plot 4/5 within 0.001 of its correct place on the real line.

7. The theorems, Further Properties of Equals are often, but improperly, restated as " you can do the
same thing to both sides of an equation’ without changing its solutions. Show that this not true for
squaring. Thatis a=b < a?=b? is not true.



8. Determine which of the following are irrational real numbers.
Hint: is the number likely to be a non-repeating decimal?

a 9 C. 7T3
V ¢ d. 0.767667666
b. y21 e. 7.010101

9. Find the decimal expansions of % for n from 1 to 11. Identify the group of repeating
digits for each.

10. Invent three examples of irrational numbers in decimal form which are easy to memorize.

11. Inventa right triangle with hypotenuse 5. Is there one with hypotenuse 37

12. What are the integer, rational and real extension of the natural number 5?

13. Use appropriate extensions to work each.
a. 13 +%. Do with and without decimal representations.
b. rT+2

¢ 1+0.1234567891011 - - .
14. Which is larger: 36/45 or 37/46?
15. Whichis larger: 7.532438 or 7.532418?

Solutions

_ 14 _ -4
la7=5==

3.a.0.444444 - - -
c. % =0.571428571428 - - -

4.a.1
C. 7061981
49000

5.2,2.2,2.23,2.236, - - -

7. For example, the equation:

x=3 has the solution set {3}. Squaring:
x*=9 has the solution set {-3, 3}.

11. Forexample, 1,2,4/5 or /2,4/3,4/5; 1,4/2,4/3

13 b. 7T+% =3.14159265 - - - +0.22222222 - - - = 3.36381487 - - -



10

APPENDIX Some Algebra Reminders

The rules of algebra are the same as the rules of arithmetic:

Associative Laws for + and -

Commutative Laws for + and -
Distributive Law

Existence of Identities 0 and 1
Existence of inverses -x and % s X*0,

Keeping these in mind helps prevent algebra mistakes.

Order of Operations To avoid excessive use of parentheses, obey the following conventions.

First: evaluate inside parentheses (including those implied by arguments of functions,
roots, exponents and fractions)

Then: do multiplications and divisions

Then: do additions and subtractions

Bad and Good Algebra We conclude with a list of common algebra errors along with
their correct counterparts. These mistakes count doubly wrong on an exam!

False Linearity Only Correct Case (linear function)
[X*+y* * x+y g(x) = kx, where k is a constant.
fix+y) # f(x) + f(y) = g(x+y)=g(x)+ gly)
sin(x+y) # sinx+siny
b+ b+ b
Wrong Fraction Property Correct
a,aqa4_a a,b_a+b
b + c * b+c c + c <
g,C 4 atc g, c_ad+be
bYd ¥ bed b T4~ bd
Improper Cancellation Correct: Remove a Common Factor, i.e. Cancel
Q+x-3  2-3 X(x+2) _ _ x+2
X+2 * 2 x(3+3x-2) T +3x-2’ X#0
Others Correct
vV x*#xunless x>0 V2 = I

\/7:4 (=x)*> #-x N.B. Example /9 =4/ (-3)? -3
VO = (-3)? =|-3]=3



1"

0.2 Whatis a Function?

Functions are the fundamental objects we study in calculus; so we need to know exactly what a function is.
Here we review the basics.

Definition A function f associates every number x in its domain set D), exactly one
number y=f(x) in its range set Ry.

Examples

f is a function r is not a function

Ways of Representing a Function

I. Functions as data or table of values

Example 1 The position x of a cart attimes t is show on the table below.

Tseconds 1 2 3 4 5
X meters 1 2 4 7 11

The domainis the set {1, 2, 3, 4, 5].
Therangeistheset (1,2,4,7,11}.

For each t thereis exactly one x.
= The data defines a function.

Note that in most experiments, for each measurement t, there is exactly oneresult y.

That is why the 'exactly one' restriction in the definition of a function.

Example 2. The function f diagrammed above

o f={{-7,-5,{2,4}1{7,4}}
Itis a function function because no different ordered pairs have the same first
element.

Example 3. The non-function r diagrammed above

r={{-7,-5},{2,4},{2, 1}, {7, 4}
is not a function because two different ordered pairs have the same first element.
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Il. Functions as graphs

We associate an ordered pair {x,y} of a function with the point (x,y) and graph on a rectangular
coordinate system. The 'only one' function requirement means it passes the 'vertical line test.'
For many people graphs are preferred, especially those not in the physical sciences. "A graph is

worth a thousand x's."

Let us look at Example 2 above in graphical form.

f(x)
4+ [ ] [ ]
o0
-10 —‘5 5 1‘0 X
2+
4}
[ J
6L
Example 4 The Square Root function
Vx
3.
o[
WL
4 1 2 3 2 X
1t

At x =4, the absence of a large dot means the graph extends to the right. No domain was specified, so we assume it is
its natural domain, x > 0.

lll. Functions as a formula + a domain

Example 5. sqrt(x) =4/x , 0<x<4,
This function is different than the previous function because it has a different domain.

y =sqrt(x)
3 -
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Linear Functions

Linear functions are as important in calculus as they are in other areas of mathematics.
As a review, we will do a derivation of a line through two points.

Let the two points be (x1,y1) and (xp,),). Let (x,y) be any point on the line.

Y

X

Then by similar triangles

Yoy _ X=X

Y2=y1 X2—X1
or

Y=y1= .}E\f. (X - X1) Two Point Form of a line

2 T AL
Ly _Y27%1

Definition Slope m= 7 =

To draw a line of slope m, start at a point on the line. Go 1 unit in the x-direction and m units in the y-direction.

Mark the new point. Then draw the line through the two points.

Substituting m into the two-point form, we get perhaps the most important for calculus

y=y1= m(X - X1) Point-Slope Form

Substituting (0, b) for (x1, ), we get

y=mx+b Slope-Intercept Form
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Example 6 Minimal Decency Curve It is minimally OK for a person of age A to date someone whose age is given
by a= % A+T.

a=%A+7
70 ¢
60 F
50 F
40 F
30F
20 F

0 e ey A

Wikipedia The “never date anyone under half your age plus seven” rule is a rule of thumb
sometimes used to prejudge whether an age difference is socially acceptable. Although the
origin of the rule is unclear, it is sometimes considered to have French origin.

. - <0
Example 7 Absolute Value Function y=|x|= { o .
x x=0
Y
2.5}
20}
Absolute values are used when only the
15f . . .
size or magnitude of a quantity matters.
10f
0.5
‘ X
-2 -1 1 2

Y
4 —
3 *-— A .
Jumps like these occur, in theory,
: whenever data is obtained from a
I e digital readout.
i X
-2 -1 1 2 3 4 5
ot
— -2

Exercises

1. Find the equation of each line.
a. The line through the points (1,2) and (-2, 3).
b. The line through (2, 3) with slope -2.
c. The line with y-intercept 3 and slope -1.

2. Show that g—+ %= 1, the intercept-intercept form of a line, has the x-intercept a and y-intercept b.

3. Show the details of the simplifications of the two point form of the line to the other forms
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4 Graph the absolute value function, y = |x|. Make a table of values.

5. Find the relationship for the temperature F in °F in terms of the temperature C in °C.
Whenis F=C?

6. Suppose hamburger casts 1 cent for each full gram purchased (digital readout).
a. How much does it cost if you get 0.5 grams for your pet roach?
b. Draw an accurate graph (price vs grams) for purchasing up to 5 grams.

7. For the basic decency curve, when is A=a?
8. What do the results of a lab experiment using a digital readout have to do in common with the Floor function?

9. Abox with a square base xcm by xcm and an open top has a volume of 100 cm? Find the function which
gives its surface area.

10. Derive the mid-point formula for the points (x,,y,) and (x,,y,).

Solutions
5. Hint
OC OF
0 32
100 212
6.a. 0 cents
Price
4 e
3 e
b. 2

7. a= %A+7, A=a
A=1A+7
2
1, _
SA=T
A = 14 years. gth graders should be careful.

9. A=x2 +1Xm
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0.3 Memory Functions and Operations on them

You have encountered many examples of functions in high school and your leisure reading. It is time to
review some of them and reincorporate them into your active collection of recognition functions. Look at
each graph/equation pair and identify its interesting features.

These graphs you should be able to graph quickly and fairly accurately with a short table of

values as shown by points on the graphs:
Two data points for each line segment. Three data points for each ‘hump’ or curved segment.
You are expected to be able to graph these quickly and fairly accurately on exams.

Parabola y = x2 Square Root y=Vx Think 'curved segment':
Y
3 Xy
2 0o o0
1 Y — 1 1
X X 4 2
-2 -1 12
Reciprocal y= )1‘— Reciprocal Square y = ;—2
Y Y
2
1 3
X 2
12 X
‘ ‘ X
3-2-10 1 2 3
Reciprocal Square Root y = \IF_ Semicircle y =4/ 72 —x2
X
Y Y
2
1L
X X
12 3 4 r
Sine y =sinx Cosine y = cosx Tangent y = tan x
Y Y
\4‘; . N\
X ‘ X

Memory Work

Be able to sketch the above functions quickly. These functions are ones you will be required
to sketch rapidly and fairly accurately in exams.
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Transforming and Combining Functions
Chemistry is easy. There are only about 100 elements and a handful of ways to combine them.

Not quite true! But this idea is even truer for basic functions study. There are nine functions on
the above memory list. Today we will look at a few ways of transforming and combining those
functions so that we greatly expand the number of functions we can readily graph. These
transformation methods are very important.

Transforming functions

Translation (or Shifting) Principle

Fix, y) =
0 shifted

h units horizontally
k units vertically

becomes
Fix—h,y-k)=0

Example Start with a memory friend, the parabola y = x? (graphed black).

a. Shift 2 to theright,3up: y-3=(x-2)% (graph red)
b. Shift 2 to the left: y = (x +2)2. (graph blue)
c. Shift 3 totheright, 1 down. (graph magenta)

Example An easy, butimportant one: y = x (graphed black).
a. Shift 3 to theright. (graph blue)
b. Shift 1 up. (pink)
c. Shift 1 to the left. (red)
d. Notice anything interesting?

4

So if you know the line y =x, you know the equation of this line shifted in any direction.
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Stretching (or Scaling) Principle

Fix,y) =0
stretched

{A times horizontally
B timesvertically
becomes

Fi)=c

Example Start again with the parabola y = x? (graphed black).
a. Make me twice as fat: y= ()21)2. (graph pink)

b. Make me one-quarter as tall: 1—),/4 =x? (graph red)

¢. Notice anything interesting?
Y

n n n n n 1 n n n n J
-4 -2 E 2 4 X
-1

Example Your second favorite curve, the line: y =x (graphed black).
a. Stretch by 2 vertically. }24=x (graphed red)

Y
4

-4 -2 2 4

4L

So now you only need to know only one line y=x! All others of any slope you can get by
a shift and/or a stretch!
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Example This time your favorite non-function, the unit circle about the origin.
x?+y? =1 (graphed black).
a. Make me thrice as big: (’31)2 + (}31)2 =1. (graph red)

b. Stretch me by 3 times as wide and twice as high : (£)* +(%)* =1 (graph blue)

4F

Y of

-2+

-4 b ‘ ‘ ‘ d
-4 -2 0 2 4

Example Yes, you can combine a stretch with a shift (that order is best).

a. Start with x2+y? =1 (graph black).

b. Stretch me by 3 times as wide and twice as high : (g)2 + (%)2 =1 (red)

c. Shift 3 totherightand 2 up: (:52)*+(52)° =1 (blue)

-4 b . . . . .
-4 -2 0 2 4 6

Example A bonus. If you stretch by a negative number, that corresponds to a stretch plus a flip.
(Think about why this is true)

a. Start with the exponential function y =2*. (black)
b. Stretch by 3 horizontally. y= 23 (blue)
c. Flip across the y axis. y= 275 (red)

Y
4 -

3F

-4 -2 2 4
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Combining Functions

Another way of gaining expertise at new functions is to combine two or more known functions
by basic algebraic operations

If f(x) and g(x) are functions you know, then so are by

Addition f(x) + g(x)
Subtraction f(x) - g(x)
Multiplication f(x) - g(x)
Division f(x) + g(x)
Composition f(g(x)).

We know a function well if you can compute
with it or, perhaps even better, graph it by hand
quickly. Some tools are graphical addition, 4
subtraction, multiplication and division. Even
graphical composition is possible.

Example Graphical addition.

Graph y = x/2+sin x 3 /\
First graph x/2 and sinx separately. ‘ ‘ ‘ ‘ L x
Then add corresponding y-values. 2 U 8

Quite frankly, these are often hard to do by hand. | would do it here by noting where sinx is 0

or has a high or low point and plotting those points and connecting them with a reasonable curve.
Itis easy to make mistakes. You might expect a high point on the sum curve to be at the high point
of the sin curve. Not true!

Buy a graphing calculator! However, knowing about how these combinations work is often useful
in analyzing graphs.

Exercises

1. y=+1 - x*, upperunitsemicircle. Find the equation for each transform. Graph each.
a. shift 1 to theright.
b. shift 3 to the left,2 up.
¢. stretch by 2 horizontally.
d. stretch by 2 horizontally, -3 vertically.
0, x=<0
X, 0<x<1
2-x, 1<x<2
0, x>4
a. shift 1 to theright.
b. shift 3 to the left,2 up.
¢. stretch by 2 horizontally.
d

2.y= Find the equation for each transform. Graph each.

. stretch by 2 horizontally, -3 vertically.

3. x> +y?=4. Find the equation for each transform. Graph each.
a. shift 2 to therightand 2 up.
b. compress the circle of part by a factor of 2 vertically,
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4, f(x) = 2x+3. g(x) =V 1-x*. Find
a. f(g(x)
b. g(f(x))
c. f(F(x))
d. f(g(f(x)))

5. Use graphical subtraction to graph y =sinx - )3—( Y

6. The transformation
X —0.7X-0.7Y ol
y —0.7X+0.7Y

rotates the parabola y=x2.
For further enlightenment

on this, take a Linear -27
Algebra course.

-4 -2 0 2

7. For each of the nine graphs on your memory list, do a shift or a magnification and
then graph the result. Be creative.

8. Graph y=37x-sinx by graphical subtraction.

9. Graph (y-x)(x2+y2-1)=0.
10 a. Prove the Translation Principle.
b. Prove the Stretching Principle.

10. Graph:
a. y=x

11. The domain of y=f(x) is a<x<b anditsrangeis c<y<d.
a. What is the domain and range of y - k=f(x- h)?
b. What is the domain and range of y/B =f(x/A)? .

Solutions
#2.
1.5
1.0
0.5
> ‘ 1 2 3 4 5

#4.a. figx) =f(V1-x2)=2v1-x>+3
b. g(f(x)) = g(2x+3) = 4/1 - (2 x + 3)?
c. f(f(x) )=f(2x+3) = 2(2x+3)+3

#8. Hint: graph y= ;x and y=sinx separately and subtract suitable y-values.
Y

#9. Hint: AB=0 implies A=0 or B=0. 1
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0.4 Discovering Infinitesimals. Counting to Infinity.

You encounter an unusual mathematical problem when starting calculus. It is will be often necessary there
to evaluate a function which is undefined precisely at the point of interest. Look below for such a function at
X=a.

ar.
a+i

You will need to know the value of f at x=a, but f(a) does not exist. What will suffice is the value b, if it exists, as
suggested by f(x) when x is very close to a; unfortunately, ‘very close’ is not a precise or easily quantifiable idea in
terms of real numbers. The discoverers of calculus, particularly the seventeenth century co-discoverer of calculus,
Gottfried Wilhelm Leibniz, took ‘very close’ to mean any nonzero infinitesimal distance i from the point a.
Infinitesimals were thought to be some strange kind of number smaller in size than any positive real number.

To find b he calculated f(a+ i) for every nonzero infinitesimal i and after doing some algebra with them, set i=0.
He did not know what an infinitesimal was or even if such a number existed; furthermore, how could i be non-zero
and then take it to be zero?

Nevertheless, despite the lack of clarity about what infinitesimals were, mathematicians then were skilled at
doing the relatively easy, direct calculations desired of them and in short order discovered most of the calculus
formulas, theorems and techniques you are likely to need for elementary applications.

But still, mathematicians were quite apprehensive about their lack of understanding of infinitesimals. Imprecise
ideas like those infinitesimals have no place in subject like mathematics; one cannot trust the outcome of
calculations based on a vague, imprecise foundation. For applications, trust is absolutely necessary because much
of modern science and technology depends on the methods of calculus.

About two centuries after the discovery of infinitesimal based calculus, the mathematician Weierstrass and
others discovered the so-called €-& limit method of doing calculus. While it was rigorous and did not use
infinitesimals, its adoption made the theory of calculus very difficult for beginners because it did not provide a
direct calculation method for determining the number b; one had to first guess b and then verify that it was correct
by solving often difficult inequalities involving absolute values. Proofs of some important calculus formulas and
theorems were too difficult to put even in the appendix of textbooks; derivations of some important application
techniques were needlessly complicated.

In 1960, the mathematician Abraham Robinson showed infinitesimals had a rigorous basis. However, in demon-
strating this, he had to use very advanced abstract mathematics unsuitable for beginning calculus students.
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Since infinitesimals make the theory, calculations and applications of calculus relatively easy, we wish to base
our understanding of calculus in terms of infinitesimals and related numbers in a rigorous but intuitive way. We will
begin with a search for infinitesimals. Then, after we find infinitesimals, we will look for an infinite positive integer.
Finally, with this infinite integer we will be able to write infinitesimals and other related new numbers in decimal
form. The decimal form of the new numbers makes them feel less abstract and immediately allows us to identify
their algebraic properties and how to use them in the analysis of functions.

A preliminary concept - the cardinal number of a set

The natural numbers were defined in terms of an intuitive idea of the sizes of sets. We will extend that idea to

non-finite sets where we use the term cardinal number or cardinality for the number of elements in such sets.

Let us begin by looking at the set whose elements form an unending sequence
{01)02703, o dpy, }'
The number of elements in this set is called Ko, Aleph-zero. It is the smallest infinite cardinal number. An important

principal when working with cardinal numbers is:

If the elements of two sets can be put into a 1-1 correspondence, then the sets have the same cardinal number.

For example, the sets {1,2,3, --- n, ---}and {2,4,6, - -- 2n, - - -} both have the same cardinality X, because
their elements, can be putinto a 1-1 correspondence
12,264,366, ' ne2n, -,
This may seem counterintuitive because the first set appears to have more elements than the second, but it is
according to the principle nevertheless correct and is widely used in advanced mathematics.

As a side comment, mathematics problems are often are often categorized as being either easy or hard.
An easy problemis one which can be done in a finite number of steps. Solving a quadratic equation is an easy
problem because its solution can be found using the quadratic formula, which requires only a few steps including

simplification.

A hard problem is one which requires an unending sequence of better and better approximations which
approach the exact solution. Solving a fifth degree polynomial equation is often a hard problem. For example,
x°—x +1 =0 isahard problem. A more elementary example is finding the square root of 2 in decimal form. One
way of doing this is by trial and error and with the aid of a calculator, finding the largest n significant digit decimal
number whose squareis lessthan 2 forn=1,2,3, - - -. When you do this, you get 1, 1.4,1.41,1.414 - - - which after

X, steps gives you+/2 = 1.414213562 - - - exactly.

The set of all real numbers or equivalently the set of unending decimal numbers, -co < x < +00, does not
have cardinality N,; it has a larger cardinality called ¢ (for continuum). Real numbers often result from
unending sequences of rational numbers. The real numbers also are required for space or time variables and
many other measurable physical quantities.
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The figure below shows there is a 1-1 correspondence between each point x on a semicircle
of length ¢ and a point y on the real number line. Thus the open interval 0 <x < ¢ has the same

cardinality ¢ as the entire line of real numbers!

0 y
- : —-—>

Infinitesimals Exist

A positive infinitesimal i is a number which satisfies 0<i < ; for every natural number n.

Let us hunt for infinitesimals by considering the sequence of intervals below.

Length Cardinal Number

O O 1 t
0

|

L
1
0 2
o—-0 1
0 1 ’ L
3
o——o0

As n increases through the natural numbers N:

sl
s
(o]

The length of the openintervals decreases to 0.

But the cardinality of eachintervalremains c¢.

The endresultisanopeninterval of length 0.

It contains noreal numbers.

= The numbersremainingmustbeinfinitesimals!

NOTE I find this argument
entirely convincing but
could not find any support
for it in the literature.
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Again: *The end result of going down the sequence is an open interval of length 0 and cardinality ¢, whose
elements are all smaller than % for every natural number n, and which therefore must be infinitesimals!

This observation indicates there must be a continuum of infinitesimals just to the right of the origin and to the left
of every positive real number as shown below. This prompts the following axiom.

Note You don't actually have the option of not accepting the
Axiom Infinitesimals exist. existence of infinitesimals. Each infinitesimal exists and has a
unique place on the number line. Shortly you will learn how
to place them there.
/ positive infinitesimals
0 1 2 3 4

We could proceed directly with these abstract infinitesimals to construct a new so-called hyperreal number system for
doing calculus. However, it will be useful to write infinitesimals and other hyperreal numbers in a decimal form in order
to get an intuitive concrete feeling for these new numbers and to help discover their algebraic properties and how they
are used in the analysis of functions; we will need to find a positive infinite integer in order to do this. So we will start by
looking for such a very large number (since the reciprocal of very small positive real numbers are very large positive real
numbers, we should suspect the reciprocals of positive infinitesimals to be infinitely large positive numbers and that
some of these might be infinitely large positive integers

A positive infinite integer exists! Athought experiment The idea of experiencing an infinite number
of events, particularly in a finite time period, might be hard for you to conceive. Imagine that you throw a ball up
to a height of 1 meter and that after each time it hits the ground, it bounces up to exactly half its previous
bounce height. Clearly the ball does an unending (as opposed perhaps to an actual infinite) number of bounces;
every bounce is followed by another bounce half as high. You might think that the ball bounces forever, in
theory, and never comes to a complete stop. Surprisingly, the bouncing lasts only for about 3.08

seconds! (You can show this if you know a bit of physics, y =1 gt2 and the geometric series

L+r+r2+r3+--- = L if [r|<1. See Exercise 2.)

If you had perfect real hearing or vision, you should be able to hear or see the unending sequence of real number
height bounces.

Now that we know that infinitesimals exist, the ball after it stops making real bounces continues, of course, with
bounces of infinitesimal height for a further infinitesimal period of time (how would it know not to do so!). If you
had hyper-hearing, you would hear an actual infinite number of bounces. (This is a thought experiment for a
classical Newtonian ball, the kind you normally think about; so for this thought experiment we will ignore the
physical fact that quantum mechanics for this bounded system forbids arbitrarily small bounces.) The next figure

shows the height of our bouncing ball as a function of time.

Note again I'm not certain that all mathematicians would consider our 'demonstration’ of
the existence of an infinite integers rigorous. My students and | found it convincing. | saw no
mention of thisin the literature. If it incorrect, we would simply postulate their existence on
the basis of Abraham Robinson's work, but not have much intuition about them.
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‘ ; ‘ T (seconds)
1 2 3¢ 4
1 2 3 4 5 o+ No Bounce Number

Next, let us construct a number line with an actual infinite number of integers marked off on it. Here is how you
can do it; using our bouncing ball as a metronome will make counting to infinity seem intuitive and easy. Start at a
point marked 0. Throw the ball up to a height of 1 meter. Every time you hear a bounce, mark off other integers at
equal spacings and label these appropriately as 1, 2, 3, - - -. After you have recorded the real height bounces, you
will have the familiar unending positive real integer line. Continue marking off until you hear or see (with your
imagined hyper-hearing or hyper-vision abilities) infinitesimal height bounces; stop after one of these bounces and
record it as the infinite integer N,. (For later convenience, we will want N, to be an even infinite integer; you can

assure this by counting off the bounces in groups of two.

Then, continuing this process of marking off the bounces, you will get a positive integer line as shown below
which includes the positive infinite integers. So you have found an infinite integer and constructed the infinitely
long positive integer number line in a little more than 3.08 seconds! (This required you to travel at hyper-relativistic
speeds; again, this is a thought experiment.)

0 1 2 3 4 e No—1 No No+1

The number N, is at a definite point on the line corresponding to a definite number of bounces. The integer line
you just constructed records an unbroken sequence of whole numbers from 0 to N, and beyond. This line at infinite
whole numbers, other than the number names labeling it, looks exactly like the line at finite whole numbers.

Infinitesimals in decimal form

Now that we have an infinite integer N,, we can write an infinitesimal in decimal form! Consider the number
i, = 107 = 0.000 - - - 001,000- - -.

For convenience, we use a comma in decimal numbers to mark off groups of N, decimal places from the decimal
point (contrast this with the ordinary comma usage used to mark off groups of 3 decimal places). iy is an infinitesi-
mal because it has zeros at all finite decimal places (hence it is smaller than any positive real number which would
have a nonzero digit at some finite place); because of the 1 at the infinite decimal place N,, it is also nonzero and
positive. We can think of i, as our special, basic infinitesimal. You can place it exactly on the number line by
subdividing the interval 0 <x <1 into 10" equal parts and then counting off one sub-interval.

Alternative Definitions i is an infinitesimal means

1
li] <% forevery natural number n

or equivalently
|i] <r for every positive real number r

or equivalently

i is any number with zeros at all finite decimal places.
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0=0.000---000,000--- isaninfinitesimal and is the only infinitesimal that is a real number. There are

many infinitesimals, both positive and negative, in addition to 0 and /.

Examples Infinitesimal numbers in decimal form are now easy to write down.

0=0.000 - - 000,000 - - -
io=0.000 - - - 001,000 - - -

3i,=0.000 - - - 003,000 - -

~%io==0.000 -~ 000,333 - - -

v[2i5=0.000-- 001,414 -

i¢ =0.000 - - - 000,000 - - - 001,000 -~ Thefirst 1 isin the 2No'" place.
Vi =0.000---001---000,000" " The 1isin the (No/2)™ place; since Ny is even.
i tan i, 1/1_0 —
< ) ‘/ ‘/ L . » X
-V2iy 0 io 3ip

Observe on the infinitely magnified real line that ig is much smaller than i, and that Vio ismuch larger than io;

these two numbers and others such as tan i, are infinitesimals which are not real number multiples of i,.

Note also that the term real, as in real number, refers to the set of unending decimals we introduced in section 0.1.
However, the nonzero infinitesimals are also real in the sense that there is room for them on the number line. They
are also not unreal in the sense that the imaginary or complex numbers of the form a+bi (i?=-1,b #0 )are. They

are unreal mainly because real world measurements only require real number precision.

The task in the next section is to learn how the infinitesimal numbers can be combined with the real numbers to yield

the set of so-called hyperreal numbers. Then we will be ready to do calculus.

2 3"'5-6-..1-‘

Before that you will want to understand infinity.

Getting Comfortable with Infinity !
If you had enough fingers ...

In many applications, you are interested in what happens for large (infinite) values of space or time.
First, how can you get there in order to get a good look at infinite places? Perhaps once when you were young you decided
to run away from home. After several days of walking you realized you barely got out of the city. Perhaps if you were
precocious, you wanted to get away from it all by walking to infinite places. But you eventually realized you were making
almost no progress.

If you were precocious in an Einsteinian way, you may have realized the problem was with the old ticktock watch you
used as a metronome to pace yourself. Then you realized that if you used our bouncing ball as a metronome, you could
get to see anywhere in your infinite places in about 3.08 seconds!

To your surprise, space there looked just like back home. But the street signs were very long. A special moment was passing

1,000 - - - 000 Street, known to the locals there at infinity as 'l, Street'.

With the same metronome many hard problems become easy. You can calculate and write down all the real or hyperreal
digits of the square root of 2 or even 7T. Even easier is placing i, exactly on the number line by subdividing the interval from

0 to 1 into I, equalsubdivisions and then counting off 1.

You now have some superpowers you may not have expected as a bonus for taking calculus!
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Exercises Numbers 2,5, 8, and 12 which are optional.
1. Which of the following are infinitesimals?

a. 0 b. @ c. —TTip
1 -1000 ;

d. Toooor e. 10 f. 1000/,

I I + 71000
g. 7:2- h. —\/:_L i. iy
j. 0.00000000015 k. 0.0033 ---333,000 --- [. 0.0000 --- 000,000 ---000,0700 ---

2. a. Show that our bouncing ball stops bouncing after about 3.08 seconds. Use the formula y :%g t? from physics and
the geometric series, 1+r+r2+r3+---= 3= |r |<1. g=9.802

1 -
b. Argue that the height of the N bounce, Yn= (Z)N l, is an infinitesimal for N an infinite integer.
c. Show that after the ball stops making real height bounces, the ball continues bouncing making infinitesimal
height bounces for only a non-zero infinitesimal period of time.
3. Write each in decimal form. Note why each is an infinitesimal.

a. 3, b. 5is C. Tio+5ip d. 77,
e. 27T, f. (rt+1)i, g ip+2i? h. ip+2i2+3i
5. There is a website www.lightandmatter.com/calc/inf which can work problems involving i,. In it, take d

=i, =0.000---001,000 - - -. See which of the numbers in Exercise 1 can be put in decimal form using this
calculator; check which answers have zeros at all finite places. Also evaluate sini, and tan .

6. Explain why the set of natural number multiples of iy, {io, 2i, 3io, - - - }, is a set of infinitesimals.
7. On the line below show where the negative infinitesimals are.

3 2 0 1 2 3 4 X
8. Suppose we had chosen N, one less and hence an infinite odd integer. Then write /i, in decimal form.
9. Write i, in fraction form.

10. a. Inthe phrase used by the former TV broadcaster Dan Rather, 'a nit on the nut of a gnat', is the nit
an infinitesimal?

b. The shortest possible physical length is Planck's Length, 1.616 x 1073 meter. Is this an infinitesimal

11. Experiment Listen to a hard ball dropped on a rigid surface. For a more dramatic and long lasting similar effect,
spin a thick vertically held porcelain saucer on a hard surface to experience a similar phenomenon as it wobbles

upside-down with an increasing frequency to a stop (Do this and you will appreciate why cafeterias often only
give you paper plates!). Try this or view a YouTube video on Euler's disk.

12. Explain why the three definitions given for an infinitesimal are equivalent.

13. Things you can now do in 3.08 seconds Think about these.
a. A(seeming) paradox of Zeno says you can never go from point A to point B because you first have to go half
way to B, then half of the remaining way, and so on, never getting to B. Explain why this is not actually a paradox.
b. Describe the thought experiment for isolating the set of positive infinitesimals quickly as suggested by the
idea of the demonstration of the existence of infinitesimals.

14. Suppose you do not like or believe in infinitesimals. Planck's Length, 1.6 x107-35 m, is the shortest possible
length and Planck's Time is 5.39 x107-44 s. Could you get away with taking an infinitesimal to be any real number
less than 1x107-1000, say, for all practical purposes?
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Solutions
1. a,b,c,f h,i,l
2. a. Time for one half-bounce:

— 1.2 - ’& P
s=Sgtt e t= gs,s-zn_l

Total bounce time:

- +
9
\/7( 2t ( i) ) A geometric series

= 2
2\ ¢ \/* Sum of the geometric series
- - meters
= 3.0847 seconds g=9.80 cecond 2
3. a. 0.000 - --000,5000 - - - b. 0.000 - - - 005,000 - - - c. 0.000 - --005,500 - - -
d. 0.000 ---003,141 --- e. 0.000 --- 006,281 - - - f. 0.000 - --004,141 - - -

g. 0.000 - - - 001,000 - - - 002,000 - -- h. 0.000 - --001,000 - - - 002,000 - - - 003,000 - - -
Each number in this exercise has zeros at all finite places and so is an infinitesimal.

4, a.F, b.F, c¢.T, d.F

there
7. \
0 1 2 3 4

X
No. —(No+1)+1

8. Vo :\/ 10 =102 =107 2 =+/1010""*12=0,000- - 003162 - - - where the 3 isinthe ((No+1)/2)t"

place.

10. a. No. b. No.

13. b. Start with the open interval 0 <x < 1. Use our bouncing ball as a metronomeforn=1,2,3, -+ -,
remove the real numbers > % The result, taking only about 3.08 seconds, leaves only infinitesimals!

Review Our special hyperreal numbers:
N,, our bouncing ballinfinite integer

I, =10", our special infinite number for decimal hyperreals
i, =10™""°, our special infinitesimal number
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0.5 A Hyperreal Number System

For the theory of calculus it will be convenient to have a much finer and a much longer line than the
real number line. To do this, we will need the infinitesimals we discovered in the last section.

We will use certain arithmetic combinations of our basic infinitesimal i, =0.000 - - - 001,000 - - - and the real

numbers to construct a new set of numbers called the hyperreal numbers (" hyper' in this context means more
than) which includes all these combinations; we will use these combinations to do calculus

computations. Since we have the decimal form of i,, we will then be able to write all the hyperreal
numbers in decimal form.

The first part of this section is somewhat optional. There are three main reasons for studying it.

First, some students have trouble in believing in infinitesimals and other hyperreal numbers unless they
can see these numbers and computations with them in a somewhat familiar concrete decimal form.

Second, it becomes clear the hyperreal numbers have the same arithmetic properties as the real numbers.

Hyperreal arithmetic operations in decimal notation are only a step more difficult than those for the real
numbers in unending decimal form.

Third, you should be able to explain to loved ones the interesting concepts you are learning in calculus!

I. The hyperreal numbers and their decimal representations Frirst, the real
numbers in hyperreal form. They must have digits at infinite places so that they are in hyperreal form.

4 =4.000---000,000"--

1 =0.500---000,000- - -

2

;— =2.333---333,333 - - Long division requires the 3's at infinite places also.
13—1 =0.2727 - - 727,2727 - - - We chose N, to be an even infinite integer.

7T =3.14159 - - - 722,777 - - - We don't know what all the digits are, but they exist.

There is a technical difference between a real number r and its hyperreal form, written r*. For example
r=2.666--- * r*=2.666---666,666 - .

because r* has digits at infinite places and r does not. (We say, "The hyperreal extension of the real
number r=2.666 - - - is the hyperreal number r*=2.666 - - - 666,666 - - - ". However, we will not always
show or say their distinction because in context we always know with which form we are dealing. )

There are three types of hyperreal numbers, categorized according to their relative sizes: the
infinitesimals which we met in the previous section, the finite hyperreal numbers, and the infinite
hyperreal numbers.

These three categories combined are called the set of hyperreal numbers R*. Our next task is to
construct these numbers. We begin by reviewing the infinitesimals which we already familiar

1. The infinitesimals An infinitesimal i is a hyperreal numbers with zeros at all finite decimal places; so it
is smaller in size than any nonzero real number. 0 =0.000 - - - 000,000 - - - is an infinitesimal and is the only
infinitesimal that is (the hyperreal extension of) a real number. There are positive and negative
infinitesimals.
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Examples of infinitesimal hyperreal numbers
0=0.000---000,000"- - -
ip, =0.000---001,000 - -
3.1i,=0.000---003,100 - -

—%io==0.000 -+ 000,333 - - -
\2i,=0.000---001,414 - - -
i2=0.000 - - - 000,000 - - - 001,000 - - -

5692iy+ V2 iy =0.000 - - - 0005693,414 - - -

Near x=0 there a family of infinitesimals which includes all multiples of i,. The line near x=0 is shown
infinitely magnified by the amount 10" (the arrowheads indicate infinitely magnified parts of the hyper-
real line) in order to be able to see the infinitesimals. Note that i2 is much smaller than i, and that /i, is
much larger than i,.

—
-€ » X

o i2 o tan io [,
_ﬁ io 0 iO 3 io

2. Finite hyperreal numbers of the form r* + i, r+ 0 Every real number r (in hyperreal form) is
surrounded by hyperreal numbers infinitesimally close to r. The general form of such finite hyperreal
numbersis h=r*+i,r* 0, where i is aninfinitesimal. Below are a few of the hyperreal numbers
infinitesimally close to 0. Itis a homework exercise to write each explicitly in the form r*+ i. For

example,
- 331,000 - - - Important Observation There are as many hyperreal
- 332,333 - - . numbers infinitesimally close to every real number r as
§+i =0.333---) ---333,333 - - - there are in the set of all real numbers. This means you can
.. 333,533 . - . do all analogs of real number algebra infinitesimally close
. 334,333 - - - to r. Understand this!

Examples of finite hyperreal numbers
2.000---001,000"- -
;+io 0.333---334,333 - -

2-3ip = 1.999 -~ 999,666 - - -
17 +\/7i(,2 = 17.000---000,000---001,414--- an irrational hyperreal number

1

The decimal expansions above are done by ordinary decimal calculations in hyperreal form. For example,

for 2+,
2.000- - - 000, 000 - - .
(+) ©.000- - -001, 000 - . -
2.000. - -001, 000 - - -

The infinitely magnified hyperreal line near x=2 is shown below with a few nearby points plotted.

» X

- . . .
2-1, 2y 2 2+ig 2+2iy
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3. Infinite hyperreal numbers There are positive and negative infinite numbers. The reciprocal
of an infinitesimal must be an infinitely large number. Our special infinite integer I, is

L= —L-=10%=1,000- - - 000

Ip =

The 1 isinthe (N, + 1)™ place as shown by the comma.
An infinite hyperreal number in decimal form has a digit at an infinite place to the left of the decimal point.

Examples of infinite hyperreal numbers

lo+5 =1,000"---005 infinite integer
215 +§ +5i,=2,000 - - - 000,000 - - - 000.333 -+ 338,333 - - infinite rational number
—lo = 7Tip ==1,000 ---000.000 - - - 003,141 - - negative infinite irrational

Below is the hyperreal line near 7, as well as a infinite magnification of it.

L - L L L

‘ N ‘ ‘ ‘
fo-1 I fo+1 Io+2 Io+3
0 0 o* 0 0 lo—2 o Iy lotio  lo+2io  lo*3io

» X

As a summary of the hyperreal line, showing the three above categories of hyperreal numbers, see the

figure below.
IR T R B R T = R T hem X

lo+71T

=lo =lo+1

The hyperreal line is both longer than and finer than the real line!

Longer: You can explore the end behavior of functions at infinite values of space or time.

Finer: Surrounding the hyperreal form of every real number r, there is a continuum of points

infinitesimally close to it. This allows you to explore computationally the behavior of a a function
near r in great detail.
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Algebra with the Hyperreal Numbers R* itisclear that the hyperreal numbers,

because they are decimal numbers, calculations with them work just like calculations with the real
numbers. So the algebra of hyperreal numbers works just like that for the real numbers.

Numbers One caution is that in theory when we are doing arithmetic or algebra with hyperreal
numbers, all real numbers must in theory be written in their hyperreal extension form. For example,
§+ ip=0.333--- + 0.000 ---001,000 ---

does not work because the decimal numbers have different lengths:

9.333. . . 22?,2?2?
(+) ©.000 - - - 001, 000 -
9.333. . . 222,?2?
But (3)"+ ip= 0.333---333,333-+ + 0.000 - -+ 001,000 - - = 0.333--- 334,333 - does work:
9.333 - - -333, 333
(+) ©.000- - - 001, 000 -
9.333 . . - 334, 333.

Formulas All formulas or identities from real number algebra translate directly into hyperreal algebra
formulas or identities.

(x+a)’=x*+2ax+ a2

even if x and a are hyperreal numbers. This is because this hyperreal formula is derived using the same
properties enjoyed by both the real and hyperreal numbers.

sin?@ +cos?0 =1
even if 8 is a hyperreal number. Let us show this. By the unit circle definitions of the trig functions,
cos B=x and sin 8=y, where (x,y) is the point on the unit circle X2+ y?=1 at the end of the arc length 6.
We define the trig functions in the same way whether the arc is described by real numbers or by hyperreal
numbers. So if @ is a hyperreal number, so are x = cos 8 and y=sin 8 and therefore

X%+ y?>=cos?0 +sin%0 =1
in this case also.
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Sequences Unending hyperreal sequences behave just like those of unending real sequences in the
sense that the same questions that can be asked and answered about the real sequences also apply to the

hyperreal ones. Perhaps more surprising, this is also true for closed sequences.

Closed Sequence Principle Every mathematical question which can be answered for a finite sequence
r,ra, -+, r, canbeanswered for a closed infinite terminating sequence hy, hy -« -, hy.

For example
27* is the least element of the finite sequence {1,27,272,273,27%}.
2N s the greatest element of the infinite sequence {1, 21,22, -- -, 2Noy,

But this cannot always be done for a non-terminating sequence:

{1,271,272,273 .- -} does not have a least element!

Functions A real function is one involving only explicit real numbers and variables. For example,
f(x) =x?>+3x+5 is areal function and

f(2)=22+3-2+5=15
a real number.

In calculus we will often want to explore a function such as f infinitesimally close to a real number r.
To do this we will compute f(r*+i) for every infinitesimal i. In order to do this we must translate f into a
hyperreal function so that x can be a hyperreal number; to do this, the real numbersin f must, in theory,
be written as hyperreal numbers. We write

f*(x) =x% + (3.000 - - - 000,000 - - - )x + 5.000 - - - 000,000 - - -

We normally do not show this hyperreal extension f* of the real function f explicitly. Such a hyperreal
function of a hyperreal number is a hyperreal number. For example

f(2+3ip) = (2+3ip)*+3(2+3i, ) +5
=4+12i,+9i,2+6+9i,+5
=15+ 21iy+ 9iy°
=15.000 - - - 021,000 - - - 009,000 - - -.

All the real functions of a real variable we will use have a hyperreal extension.

An example of an explicit hyperreal function which is not the hyperreal extension of a real function is
g(x) = 2x + 3.
g(2) =22 + 3,
=4.000---003,000 - -
a hyperreal number. We will not need such functions in this course and only once, perhaps, in the next
course.
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Exercises

1. Write each hyperreal number in both fractional and decimal form. Use commas appropriately.

1 1 L
a. g b. 5 C.5lo
d. 2+3j, e. 2-3i, f. 5lp +71+5j,

2. Write each in decimal form.
a. iyt 2i, b. 3 + 2i,)? € 243k d. 312+ 5/,+ 7

3. Show by hyperreal long division that %2 2.333---333,333- -,

4. A positive hyper-infinitesimal is a number smaller in size than any positive infinitesimal. Starting with the
hyper-infinitesimals, the infinitesimals and the real numbers, you can construct the hyper-hyperreal
numbers and the hyper-hyperreal number line. Invent a decimal representation for the hyper-hyperreals.
Give a few examples. (You will see in this course that infinitesimals are sufficient for doing the calculus of
real-valued functions, but in the next course that hyper-infinitesimals are required for the calculus of
hyperreal valued functions.)

5. Find the hyperreal extension of each real function.
a. a. f(x)=x3-1x+5

b. g(6)=tan 6

¢. h(x) =2*¥ Hint: recall how you define 2* for x a realirrationalnumber.

Solutions
1. a. 0.1250 000,000 - - = ¢
-1
c. 0.000---000,111 -+ = goei—re
_ 1,999---997
€. 1.999"'997,000"' - 1)000000
2. b. 9.000 - --012,000 - - - 004,000 - - - d. 3,000 - - - 005,000 - - - 007
3.
2.333 . . . 333,333 . . .
3) 7.000 . . . 900, 00O - - -

5.a. Itis OK as written with the understanding that 1/3 and 5 are understood as hyperreal numbers.
b. Itis OK as written with the understanding that 6 is a hyperreal angle.

e
c. 29 makes sense even if p and q are hyperreal integers.
R q
2" =V2r

Find a sequence of hyper-rational numbers approaching x and then compute the sequence composed of
raising each element as a power of 2. This sequence approaches 2.
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0.6 At the End of a Hyperreal Calculation

We will want the hyperreal numbers in order to do some " hyper-precise' calculations with the hyperreal
extensions of real functions. However, at the end of a calculation a real number is all the precision we need.
So for an infinitesimal answer we drop the digits at infinite places; ‘Every infinitesimal rounds off to 0’.

For a finite hyperreal number answer r* + i, we also drop the infinitesimal part, rounding off to the nearest
real number r. We do not distinguish between positive infinite answers (to us mortals, all positive infinite
numbers are just equally incredibility large); we say that any positive infinite number rounds off to plus
infinity, written +oo, and likewise negative infinite numbers round off to —oo.

You now should have a clear precise understanding of the meaning and use of the symbol oo.

Rules for Rounding Off The symbol => denotes rounding off.

1. Infinitesimals i =0
2. Finite hyperreal numbers h=r"+i=>r
3. Infinite numbers | > +00, —| ®> —co (I positive infinite)

Examples Rounding off is often easy.

3i, > 0 17.250 -+ 000,000 - - &> 177

5+2i, +Tig? ®> 5 6.781--- 034,172+ -=> 6,781 - - -
Tlp— 84 => +oo cosi, => 1

0.333 ---33,433 --- => 0333 --- = § cos lg exists, but do not know its value.

cos X

If you do not prefer the phrase ‘rounds off to' related to the optional understanding of the hyperreals as

decimals, you can use for => by saying 'associates with or 'associates with the extended real number'

Examples Let x be areal numberand dx a positive infinitesimal

X+ dx ‘associates with’ x

1 . L . .
I ‘associates with’ +oo We have a great symbol, =>, for 'associates with'.
Need a better phrase for 'associates with'.

GRAND PRIZE. One free PDF of this book!

Example The following hyperreal numbers associate with the same real number.

.+331, 000 - - -

.+332,333 - - -

7.333-+ ¢ ..333,333... => 7.333--: = %
.+333,533 - - -

..334,567 - - -




The Extended Real Numbers These numbers are widely used in answers in pure and applied

mathematics. Their meaning is clear in the context of associating hyperreal numbers with a real number.

Verifying the extended real arithmetic facts is left as an exercise.

The early users of calculus often used infinitesimals and other hyperreal numbers in their theory and
calculations (calculus then was often called infinitesimal calculus). In fact, just about all the formulas and
techniques of calculus you are likely to meet were discovered using infinitesimals. Infinitesimals came
under suspicion because no one understood them in a rigorous way or even had a confident intuition
about them (decimal numbers were were only beginning to be used in the seventeenth century). By the
twentieth century, mathematicians stopped using infinitesimals and used Weierstrass’ rigorous, but
difficult, e-6 method instead. Even so, most scientists and engineers continued using infinitesimals
because of their intuitive appeal and the way they simplified derivations and calculations. The theory of
hyperreal numbers was put on a rigorous foundation in the mid—twentieth century. However, that rigorous
treatment is too difficult and tedious for most calculus beginners.

Nevertheless, despite our very elementary introduction to the hyperreal numbers, your knowledge of
the hyperreal number system now should be as complete and intuitively understood as your knowledge of
the real number system, and furthermore, because mathematicians have given the hyperreals their official
endorsement, you can use them with confidence.

Final note We will normally only use the hyperreal numbers symbolically.
That is, we will write our finite hyperreal numbers inthe form x+ dx
where x isareal numberin hyperreal form and dx is aninfinitesimal.
We will have no need to work with their decimal form (we emphasized
their decimal form so you would feel comfortable with them and help

recognize they have the same algebraic properties as the real numbers).

You will never see hyperreal numbers in decimal form again!



39

A Short Axiomatic Summary of the Hyperreal Number System

Pure mathematicians, when describing a mathematical system, state its definitions and list its axioms
(statements taken to be true) and then derive from them theorems (true statements about the system).
For beginners it is usually better to develop a good intuition about the system as we did in the previous
two sections for the hyperreal number system. However, once you understand the hyperreal system, the
following provides a quick summary and review.

Definition An infinitesimal dx is a number smaller in size than every positive real number x.

Axiom Infinitesimals exist. (About 1969 Abraham Robinson proved infinitesimals exist.)

Axiom The hyperreal numbers, consisting of all algebraic combinations of the real numbers (in

hyperreal form) and infinitesimals, satisfy the usual laws of the real numbers.

Examples
2dx +5dx? = dx(2 +5dx)
(3+dx)?= 9+6dx+ dx?

1+2dx _ 1
= @& t2 dx*0

Definition => associates hyperreal numbers with extended real numbers:

1. infinitesimals dx => 0

2. finite numbers x +dx => x At the end of a hyperreal
3. infinite numbers (X positive} calculation, we want an
X => +oo extended real number.
-X=> -0
Examples

2dx+5dx? => 0
(3+dx)?= 9+6dx+dx>=> 9

1 .
I &> +oo, dx>0.

Definition Two hyperreal numbers h; and h, are asymptotically equal, written h, = h, if

hy . e
h,=1+€ where € isan infinitesimal.

Theorem A=B,C=D Looks like asymptotic equality
1.AC= BD Y at infinity shows up early!
Ay B 250 000 F
Y7o | v
Examples ,
150 000 F

2dx +5dx? ® 2dx = Proof 234 =1+2dx =1+€

2dx 5

(3+dx)?=9+6dx+ dx*= 9 [
50 000

X2-2X = X2 X aninfinite hyperreal number.  ——

100 200 300 400



40

Exercises Semi-memorize the Axiomatic Summary.
1. Provide five different = answers for each.

a. 3dx-dx3
b. 7-4dx
C. 2X-4X2+7

2. Round off each

Note: = allows us to make simplifications
while doing calculations. It is more flexible
than = butin the end results in the same
extended real answer!

a. 7.333 ---333,733 - - b. 0.000 ---012,345 - -- C. Ilg-
d. sini, e. sinlp f. I\/?
g. tan(g—io ), tan(§+io ), tan(f) h. sin(t/,) i. Qg

3. For each expression:

First simplify by hyperreal algebra (assume dx is not 0)

Then round off, taking dx=0).

(L+dx)®-1 (Ot dx)2—x2
a. q b. y
X X
1 1 1 1 1
c. &(1+dx B 1) ' a()ﬁdx B ;)
Vi1+dx -1 Vx+dx -x
e~ f. —/—
X dx
Vdx Vdx_
todx h. dx
Y
4. The problems in #3 are actual calculus y = f(x)
problems. (Don't worry what they mean
now.) See if you can relate them to the bydy
process illustrated in the diagram from
the front cover
In each part identify f(x) and a.
What is the problem if dx=0?
X
aH
5. For each expression: a+dx
X is a positive infinite number.
First simplify by hyperreal algebra if required.
Then round off.
X X2
a. X+1 b 2X+1
X3 4 =
c. 3X24+2X+1 tX3-5X2
X+dx f VX+5 —x
e. X-dx : X?
g = h. VX + 7 -X



Solutions
1.b. 7-4dx = 7-4dx
7T-4dx = 7
T-4dx = 7+24dx
T-4dx = 7-24dx
7-4dx = 7-24dx+dx?
2.a.7333 -+ b.0
d. 0 €
h.0 .
Walk to |, and have a look.
3e Vi4dx -1
’ dx
- V1i+dx -1 V1+dx +1 rationalize
A Tvdx +1 lonatiz
(L+dx)-1
dx(y/ 1+dx + 1)
_ dx
dx(y 1+dx + 1)
1
= m Simplified
=> % rounded off
5a. X 5b. 4+
X+1
— —t—
= 1+1/X
~ _1
1+0
=> ]
C. +o0 5d.0
el
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C. too

f1
g. +00,-00, DNE

-7

4e. a=1 won't work (why?). Goto 1+dx instead.

at b +dy

1
atb=7.
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Chapter 1 Continuity and Limits
Limits is the new computation we need to do calculus. In fact, any mathematics using limits is

called calculus. We begin with the the study of continuity, a topic about which you have some
intuition. Once you have a precise understanding of continuity, limits will be easy.

1.1 Continuity

Introduction
Your intuitive understanding of continuity may be something like this: "A function is continuous at a

point P if you can draw its curve through the point without lifting (or putting down) your pencil there".
This understanding comes from the ordinary literal meaning of the word continuous, namely
not having any breaks. Y

X

However, it would not be a good, generally applicable definition of continuity; this definition works quite
well for jump discontinuities as illustrated on the first graph below. For other types of continuity the ‘without
lifting your pencil’ definition often is inadequate (see the other graphs below). We clearly need a definition of
continuity which is stated in precise mathematical language and which works for all functions.

step x sin(x)/x x=0,y=0 random[0,1] (x)
1 y=sin(1/x)
y
B W/~
P . —— e x
‘ ‘ ‘ ‘ ‘ : : : L x -2 -1 1 2 3
2 9 1 2 3 X -10 \5/ \5/ 10 — - /d U
Jump discontinuity Hole discontinuity Oscillatory discontinuity Scattered values discontinuity
Clearly not fc:)ntmuous Lift your pencil What happens at Not continuous
at x=0. zero d'Sta;‘CE at x=0? Not clear. anywhere.
X =07

As a clue for a good definition of continuity, let us look at what continuity means in science. The concept
of continuity is important for science as well as the theory of calculus. Without continuity it would be
impossible to do measurements in science. As an example, consider the problem of measuring the
temperature T ofarod ata point x. Itisimpossible to place a thermometer exactly* at the point x. Instead,
despite our best human efforts, we find it placed at the point x + Ax, where Ax is the errorin placement.
Associated with this Ax there will be an error AT in the temperature T we wish to read. Hopefully, if Ax
issmall, AT will also be small; otherwise we could have no confidence in our measurement T.

This expectation is called the continuity of the temperature function. * Shaky hand

Imperfect vision
Quantum mechanics

T+AT

X X+Ax
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The hyperreal definition of Continuity

The temperature example suggests that we define the continuity of a function y=f(x) at x=a to mean
that if Ax is small, then Ay will also will be small. Fortunately we have an unambiguous definition of small,
namely a number is small if it is an infinitesimal.

y =1

We will use the symbols dx and dy for infinitesimals when doing calculus hyperreal calculations.
As you would expect, dx means an infinitesimal change in x in comparison with Ax which means a
real number change in x.

The definition of continuity and and the proofs of the continuity of some familiar functions and
the proofs of continuity theorems is the legitimate beginning of serious calculus. Make sure you
master continuity.

Definition of Continuity f is continuous at (the real number) x=a means
1. f(a) = b exists.
2. For every infinitesimal dx, dy =f(a+dx) - f(a) is an infinitesimal.

y =10

Two numbers are said to be infinitesimally close if their difference is an infinitesimal. So the above precise
definition means that f is continuous at x =a if whenever x is infinitesimally close to a, y is infinitesimally
close to the value f(a). We also require f(a) to exist so there is no ‘hole’ in the graph at x = a. For convenience,
on a graph we usually show infinitesimals such as dx and dy improperly as small finite numbers rather than
as infinitesimals, which would require an infinite magnification of the axes to see.
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Proving the continuity of functions using the definition
Let us begin by proving the continuity of the examples which range from easy ones to harder ones.

Example 1 Prove that f(x) = %x +1 iscontinuousat x=1.
dx and dy shown infinitely magnified
Y

=-x+1
y=5x

15 y

dx

Proof
1. f(1) = %, exists
2. Let dx be any infinitesimal. Then
dy = f(1+dx) - f(1)
= J(1+dx) +(1-3)
= %dx,
an infinitesimal. half of an infinitesimal is an infinitesimal
End of Proof

Example 2 Show that f(x) = 3/7 is continuous at x=0.

Proof
1. f(0)= V0 =0, exists
2. Let dx be any infinitesimal. Then
dy = f(0+dx) - f(0)
-V 0+dx—0
=Vdx,
an infinitesimal. (the cube root of a small number is a small number)
End of Proof
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0, x=0
1 1 . .
s @ <Xx=g 7, n=123 .. 1s continuous at x = 0.

Example 3 Show that j(x) = 21—
20 on-ley<onn=1273 ..

Y Y
Infinitely
Unmagnified magnified A
h.

graph. y=j(x) srap y =i
1F 2—No L

dx & dy dx & dy

shown shown

exaggerated. | T ‘ correctly. — idy s - X
dx‘ 1 X dx 2-N. o
Proof
1. j(0) = 0, exists
2. If dx is any negative infinitesimal. Then
dy =j(0+dx) - j(0)

=0-0

= 0’

an infinitesimal.

If dx is a positive infinitesimal, then
dy =j(0+dx) - j(0) = j(dx),
an infinitesimal between 0 and dx. End of Proof

If we examine the above curve infinitely magnified about the origin, it still looks exactly like the original
curve near the origin. It clearly is not ~ hypercontinuous' at x=0 because there are infinitesimal sized jumps
just to the right of the origin. However, we can draw it through the origin any infinitesimal amount without

lifting our pencil a real amount. What really matters is that if dx is an infinitesimal, dy is an infinitesimal.
Be clear about this.

Example 4 Show that the unit step function S(x) = { (1)’ i is not continuous at x=0.

=0
>0

y =S(x)

Proof
1. S(0) =0, exists
2. Let dx>0 be aninfinitesimal. Then
dy = S(0+dx) — S(0)
=1-0
= ]_’
not an infinitesimal.

So S is not continuous at x=0.
End of Proof
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Example 5 Prove that the Heaviside function H(x) = {? . 8 is not continuous at x=0.

Proof

y = H(x)

1. H(0) does not exist. So H is not continuous at x=0.
End of Proof

In the first three examples it was clear that if dx is an infinitesimal, then so was %dx, 3\/ dx, and a number

smaller in size than dx. In more complicated problems it is useful to have a theorem which helps us spot
immediately when dy is an infinitesimal.

Relative Size Theorem Let (with or without subscripts) i be a positive infinitesimal, h be a positive finite
hyperreal number, and | be a positive infinite hyperreal number. Then
1. The following are infinitesimals

i frequently used
.1 ’ (freq Y ) These in red are most frequently

i iz used in beginning calculus.

=

- (frequently used)

-5 |~

i", n apositive integer

'VT, n a positive integer

2. The following are finite hyperreal numbers
hi + h, (also hi— h, unless h; and h; are infinitesimally close )
h]_'hz

h
hy

hti
3. The following are infinite hyperreal numbers
Ih+1
I
h.y
/

h

4. The following are indeterminate forms; this means that examples can be given for each where the
result could be more than one of an infinitesimal, a finite hyperreal, or an infinite number.
i
2
h-1
-

|
L
[P}

If the h or i or I's are negative, the results of this theorem are readily modified.
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We shall not prove much of this theorem because the results are rather intuitive. For example, h-i isan
infinitesimal. Intuitively this says that a medium sized number times a small number is a small number, e.g.,
'2 x 0.001=0.002" or (275 + 2i,)ip = 0.000- - - 00275,000 - - - 002,000 - - - . An elementary proof is the observa-
tion that multiplying an infinitesimal which has zeros at all finite decimal places by a finite number results in
a number with zeros at all finite places, an infinitesimal. A more formal proof would be to prove |hi|is
smaller than any positive real number.

I, - I, isindeterminate because, for example, | - 2l is negative infinite, |- 1=0, and 3I-1 is positive
infinite. You should do examples to illustrate some of the others.

In the following examples we use the above theorem to determine whether dy is an infinitesimal. We
also will determine the continuity at any suitable domain value x rather than only at a given point x = a;
it usually is not much more difficult to do so. x is understood as the hyperreal form of the real number x.

Example 6 A polynomial function Prove that f(x) = x*- 3x + 3 is continuous for all x.

NOTE These Grade 10 type calculations are about

as difficult as the algebra gets in this course. The

corresponding epsilon-delta limit calculations are

1. f(X) - X2_ 3x + 3’ exists. so difficult few students understand them and so
fail to understand fully much of the calculus.

2. dy =f(x+dx) - f(x)

= ([ + dx)*= 3pckdx) + 3) = (X%~ 3x +3)

=x2 +2xdx+dx*=3x — 3dx + 3 — x*+3x -3

=2xdx — 3dx + dx?

=(2x = 3 +dx) dx, type hi or,if x= %, i1+ip

Proof.

an infinitesimal. End of Proof

Example 7 Arational function Prove that f(x) = )17 is continuous for all x 0.

Proof
1. f(x) = f, exists for x 0.

2. Let dx be any infinitesimal. Then
dy = f(x+dx) — f(x)

=_L _ L
x +dx X
= X_—((%d;l get a common denominator
X (x+ax
— _=dx .. .
~ x(c+dx) type hi since x is not the real number 0.
— 1
- ‘X(de)dxi Note also thatif x* 0, then x+dx *0.

an infinitesimal. End of Proof
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Example 8 An algebraic function Prove that f(x) =+/x is continuous for all x> 0.

Proof

1. f(x) = /x, exists for x> 0.
2. Let dx be any infinitesimal. Then
dy = f(x+dx) — f(x)

=vx+dx —/x
= Moot oy e rationalizing the numerator
! \ x+dx +4/x

— X+dx
 x+dx +x
_ ; . .
- /Hd“\/;dx’ type hi since x>0

an infinitesimal. End of Proof

One-Sided Continuity A function is not continuous at an endpoint of a domain interval because dx
either cannot be positive or cannot be negative to the left or right of a point x =a. Nevertheless, it may be
meaningful to talk about one-sided continuity there because you can start or stop with your pencil down.
Also at points of discontinuity, the concept of one-sided continuity may be meaningful.

Definition A function f is continuous from the right at x =a means
1. f(a) =b exists.
2. For every infinitesimal dx > 0, dy =f(a+dx) - f(a) is an infinitesimal.

Definition A function f is continuous from the left at x=a means
1. f(a) =b exists.
2. For every infinitesimal dx <0, dy =f(a+dx) - f(a) is an infinitesimal.

Theorem f is continuous both from the left and the right at x=a means f is continuous at x=a.
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Example 9 Use the above theorem to determine graphically the continuity of the unit step function
S(x) = {0, x=<0

I, x>0

y=H®x)

By inspection:
S(x) is continuous from the left at x=0.
S(x) is not continuous from the right at x =0.
Therefore S(x) is not continuous at x=0.

Example 10 Determine graphically the continuity of the function f(x) :{ ! x=0

1+Vx, x>0

y = f(x)

By inspection:
f is continuous from the left at x=0.
f is continuous from the right at x=0.
So f is continuous at x=0.
We could of course have proved the two previous examples analytically

Basic Continuous Functions Theorems Here we list of some basic functions that are continuous in preparation for the

next section where we prove the continuity of whole classes of functions. We will only prove the second one and give a graphical
understanding of and an analytic proof of the fourth. The first and fifth ones are left as exercises. We also saw how root functions are
proved continuous in the examples and exercises.

f(x) = c is continuous for every x=a.

()
f(x) =x is continuous for every x=a.

f(x) =/x is continuous for every x=a if n is odd and for every x=a>0 if n is even.
f(x)
(x)

f(x

a b W N =

. =sin x is continuous for every x=a.
. =cos x is continuous for every x=a.
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Proof of 2

1. f(x) =x, exists
2. Given any infinitesimal dx.
dy = f(x+dx) - f(x)
= (x +dx) - x
= dx,
an infinitesimal. End of Proof

Proof of 4
In this proof we need the geometrically motivated definition of the sine function you learned in high

school: sint=y where t is the arc length of the unit circle as shown. Note that in this problem t, not x,
is the independent variable. Also, we will show infinitesimal quantities as not very small real lengths.

Definition: sint=y

1. y=sint, exists. see drawing above for the unit circle definition of sint
2. Given any infinitesimal dt.
dy=sin(t+dt) -sint see drawing below
<PQ because the altitude of a right triangle is smaller than its hypotenuse
<dt, because the line segment PQ is the shortest curve joining P and Q

an infinitesimal.
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Enlarged View

End of Proof

In conclusion, using the hyperreal definition of continuity is often quite easy, involving only elementary
algebra skills and the ability to spot an infinitesimal quantity quickly using the Relative Size Theorem.

Exercises In exercises 1 to 8 use our precise hyperreal definition of continuity.

#1. Prove that f(x) =x* is continuous at x=2.

#2. Prove that f(x) =x*-2x+1 is continuous at x=3.

#3. Prove that f(x) =x°- 3 is continuous at x =2. Hint: Use (A + B)*= A3+ 3A?B + 3AB% + B3

#4. Prove that f(x) = +is continuous at x=1.

#5. Prove that f(x) = 2:—1 is continuous at all x * %

#6. Prove that f(x) = x:l is continuous for all x *-1.

#7. Prove that g(x) =+/2x is continuous for all x> 0.

#8. Prove that the function cr(x) = \3/ X iscontinuous forall x 0.
Hint: use (A — B)(A? + AB + B2) = A*- B? to rationalize the numerator.

#9. Prove the theorem, Basic Continuous Functions #1.
#10. Prove the theorem, Basic Continuous Functions #5.
#11. Prove that f(x) =+/x is continuous from the right at x=0.

#12. Prove the continuity of each of the following more difficult functions.
a. f(x)=x* atforall x. Hint: (A+B)* = A* +4A3B+6A>B? +4AB3 +B*
b. g(x) = £ forall x*-1
x+1

c. hx)=vx*+1 at x=3
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L
#13. a. Understand why f(x) ={s1n X x# 0 is not continuous at x =0. Verify by graphing.
0 x =0

L
b. Prove that g(x) = { g Sty is continuous at x=0. Verify by graphing.

x =0

#14. The function f(x) below has randomly produced values between 0 and 1 for x> 0;f(x) =0 for x<0.
Which of the functions are continuous at x=0?

f(x) x f(x) x2 £(x)

N ’;' .
#15. Show by example that % is indeterminate.

#16. a. Use the hyperreal calculator on the website www.lightandmatter.com/calc/inf to explore
the continuity of y=2* at x=0 taking dx=d =i, where d is the symbolic infinitesimal used in the
calculator.

b. Use the result of part a to show that y =2* appears continuous for all x.

#17. Give an example of a function which is continuous only at x=0.

Solutions

#1. Proof f(x) =x? is continuous at x = 2.
1. f(2) =2% =4, exists.
2. Let dx be any infinitesimal.
dy =f(2 + dx) - f(2)
=(2+dx)? -4
=(4 + 4dx + dx?) - 4
= (4 + dx)dx, type hi
an infinitesimal. End of Proof

#3. Proof f(x) =x® -3 is continuous at x=2.
1. f(2) =23-3=5, exists.
2. Let dx be any infinitesimal.
dy =f(2 +dx) — f(2)

=((2+dx)*-3)-5
=(8 + 12dx + 6dx*+ dx>-3) -5 expansion of (A +B)*
= (12 + 6dx + dx?)dx, type hi
an infinitesimal. End of Proof
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#5. Proof f(x) = 5= is continuous forall x # 7.

1. f(x) = 2x1—1’ exists.

2. Let dx be any infinitesimal.
dy = f(x +dx) — f(x)
— 1 1
2(x+dx)-1  2x-1
—_(2x-1)-(2(x+dx)-1)
(2(x+dx)—1)(2x—l)

= =2 dx,
2 (x+dx)-1)( 2x—l)

an infinitesimal.

#7. Proof f(x) = m is continuous for all x> 0.
1. f(x) = m, exists for x>0
2. Let dx be any infinitesimal.
dy = f(x+dx) - f(x)
= Vakrdg -2x

e V20ada) +y2x
( 2bcrd Jz_) w/2(x+dx +m

— _2(x+dx)—-2x
V2 (x+dx) ++/2x

- +dx,
\/2(1+dx +\/7

an infinitesimal.

#12 c. Proof f(x) = Vx2+1 forallx.
1. f(x) = m, exists.
2. Let dx be any infinitesimal.
dy = f(x+dx) — f(x)

\/ (x+dx)2+1 + \/x2+ 1

= (w/(x+AX)2+1 -+ ) \/(X+dx)2+1 + \/"2*1

_ ((x+dx)?+1) = (x2+1)
\/ (x+dx)?+1 + \/x2+ 1
_ 2xdx+dx?
\/ (x+dx)2+ 1 + \/x2+ 1
2x+dx
\/(x+dx)2+1 + \/x2+1 &

an infinitesimal.
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: 1
type hi, x* 3

End of Proof

rationalizing the numerator

type hi if x>0

End of Proof

rationalizing the numerator

type hi or i1ipif x=0

End of Proof



#13b. Proof
1. f(0) =0, exists.
2. Let dx beany infinitesimal. then
dy = f(0+dx) - f(0)
= dxsin gz,

an infinitesimal.
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an infinitesimal times a number between -1 and 1
Note the dx=0 and dx %0 cases.

End of Proof

#17.
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1.2 Getting Proficient at Determining Continuity

Using the definition of continuity is tedious. We will prove theorems that speed up determining
the continuity of combinations of functions of known continuity.

Recall f is continuous at (the real number) x means

1. f(x) exists.
2. Forevery infinitesimal dx, dy = f(x+dx) — f(x) is an infinitesimal.

Y

y ={x)

Continuity Theorems

The following set of theorems was introduced in the previous section.

Basic Continuity Theorems
1. f(x) = c is continuous for every x.
X is continuous for every x.
\/x is continuous for every x if n isodd and for every x > 0 if n is even.

2. f(x) =
3. f(x) =
4. f(x)
5. f(x)

X) =sin x is continuous for every x.
X) = cos x is continuous for every x.

The next set of theorems apply to any continuous functions f and g

General Continuity Theorems Let y;=f(x) and y, =g(x) be continuous at x. Then so are:
1. y=f(x) +g(x)

-y =f(x) - g(x)

. y=cf(x)

-y =f(x)g(x)

Ly= 5((')-?)- provided g(x) # 0

6. y=f(g(x)) provided f is continuous at g(x). (f need not otherwise be continuous at x)

a b W N

Proof of 1
1. f(x) + g(x) exists, because by the continuity of f and g, f(x) and g(x) exist.
2. Let dx be any infinitesimal. Let y; =f(x) and y,=g(x) and y=y; +y,. Then
dy = (f(x+dx) + g(x+dx)) - (f(x) + g(x))
= (f(x+dx) = fe0) + (goc+dx) - g(x)
dy, +dy, since dy; = f(x+dx) — f(x), etc.

an infinitesimal.

End of Proof.
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Proof of 4
1. f(x) g(x) exists because by the continuity of f and g, f(x) and g(x) exist.
2. Let dx be any infinitesimal. Then
dy = f(xrdx) g(xrdx) = f(x) gx)
= (f(x)+dy1) (g(x)+dy2) — f(x) g(x) since dy; = f(x+dx) — f(x) = f(x+dx) =f(x) + dy,, etc.
= f(x) g(x) + f(x) dy2 + g9 dy1 + dyadyz — £ g(x)
=f(x) dy, + g(x) dy1+ dy1dy, =an infinitesimal
End of Proof.
Note. The proofs of the General Continuity Theorems using Cauchy's e-0 definition are so
difficult that some are often put into an appendix of textbooks or omitted entirely.

Proof of 6

1. f(g(x)) exists. Why?

2. Let dx be any infinitesimal. Then
dy = f(g(x+dx)) - f(g(x))
= f(g(x)+dy2) - f(g(x))
=f(g(x)) + dy;— f(g(x)) by the continuity of f at g(x), dyy is an infinitesimal.
= an infinitesimal.

End of Proof
Graphical Demonstration of 6

1. By the continuity of v at x, v(x) exists.
By the continuity of u at v(x), v(u(x)) exists.

2. Let dx be any infinitesimal, then by the continuity of u(x), du is an infinitesimal.
Since du is an infinitesimal, by the continuity of v at u(x), dy is an infinitesimal.

Y

y = v(u(x))

ax Lo
X x+dx X idui
u u+du U
u=u(x) makes the infinitesimal y =v(u(x)) makes the infinitesimal
dx into the infinitesimal du; du into the infinitesimal dy;
u is continuous at x. y is continuous at u(x).

So for every infinitesimal dx, dy is an infinitesimal.
End of Demonstration
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Continuity over an Interval

The function y=+/x we proved continuous for all x>0. Since y/x is also continuous from the
right at the domain endpoint x =0, we agree to say that it is continuous on the interval x=0. In
general we say that a function is continuous over an interval if it is continuous at each point in the
interval that is not an endpoint, and the appropriate one-sided continuity holds at any endpoints of
the interval. (This is because we do not care about the continuity of a function where it does not exist.)

Using the Continuity Theorems

From the Basic Continuous Functions Theorems we know that the functions ¢ and x are continuous
forall x. Then by General Continuity Theorems part 3 sois 5x (taking ¢ =5) and consequently by part
1sois 5x +4 (taking c=4).

Likewise, since x is continuous for all x, by part4sois xx=x? and x:x>=x3 and, in general, x"
where n is a positive integer. Clearly:

Polynomial functions are continuous for all x

A rational function is one of the form y = g&;— where P and Q are rational functions. Then by

General Continuity Theorems part 5 we have the following, noting that points where Q(x) =0 are notin
the domain set.

Rational functions are continuous at each domain point

An algebraic function is one involving finite combinations of rational functions and roots. By Basic
Continuous Theorems part 3 the continuity of /x is known. Again and using the convention about
appropriate one-sided continuity at endpoints:

Algebraic functions are continuous at each domain point

Example The algebraic function r(x) =3x*> - 4+ is continuous for x 2 0.

X
X2+ 4

The elementary functions are the basic continuous functions and finite combinations of them through
addition, subtraction, multiplication, division, composition, algebraic inverses (e.g., log x and arcsin x)
and piecewise defining except possibly at join points. The elementary functions are normally
continuous at all domain points (except at join points of piecewise defined functions). However,
inverse functions can be unpredictable because of how they are chosen (check out arccot x on your
computer, calculator and other calculus textbooks).
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Example Below are two widely accepted versions of the function y =arccot x. The first is not continu-
ous at x=0; the second is. (You will have to wait for Calculus Il to appreciate why this can happen.)

arccot X
arccot x

7T/2
Mathematica
Form
. X

Example The elementary function r(x) =sin(3x2 - 4 + )

a Textbook
Form

) is continuous for x = 0.

Example The piecewise defined function S(x) = { (1)’ ;‘( i 8 is continuous except at the join point x=0.

Y

Exercises In exercises 1 to 7 prove the continuity of each stating the appropriate Basic Continuous
Functions Theorems and General Continuity Theorems used.

#1. f(x) =5sinx

#2. f(x)

#3. f(x) =2x+5
#4. f(x) =5sinx (2x +5)
#5' f(X) - X+ COSX

5sinx

_=.3 X+Cosx
#6. f(x)=7x>+ ,_Ssinx

#7. Prove General Continuity Theorems, 2.

X) =X+ COS X

#8. Prove General Continuity Theorems, 3.

#9. Prove General Continuity Theorems, 5.

#10. In the proof of General Continuity Theorem 1, why does the existence of f(x) and g(x) imply the
existence of f(x) +g(x)?

#11. Where is the function below not continuous?

Y
3t

2+




59

Solutions
#1. By Basic Continuous Functions Theorems part 1, 5 is a continuous function and by part 4, sinx is

a continuous function. Then by General Continuity Theorems part 4, so is their product 5 sin x.

#5. By exercises #1 and #2, 5sinx and x+ cos x are continuous functions. Then by General Continuity
X+ COSX

Theorems part 5, so is their quotient Sona

at all domain points (x nota multiple of 7).
#6. Hint: start by looking at part of the function in #5. Where is it not negative?
4

2

|
-10 -5

Graph near x=-1

0.02 E

-0.75 -0.70 -0.65 -0.60
-0.02

-0.04
-0.06
-0.08

#9. Proof
1. gé))- exists if g(x) 0.
— fOedx) )
2. dY = Ghean) ~ g
— fOa+dy) _ f(x)
g0)+dy; ~ g()
(F )+dys) () - F(x) (g)+dly)
(g(x)+dy,) g(x)
_ £009(9+g(x) dys - F(x) 9() - F(x) dy,
(9()+dy,) gx)

_f i
= M—(—ul(&j)wyz;;(i) Type ,’7— g(x) +dy, 0. Why?

= an infinitesimal.

End of Proof

#10. By the Closure Property of the real numbers for addition.
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1.3 The Theory of Limits. Limit Theorems

In this section we define limit in terms of continuity, develop an intuitive understanding of limits,
and learn how to evaluate 'easy’ limits. In the next section we will learn how to evaluate limits in
general.

In computations, a calculus related function often does not exist at the point of interest but is

otherwise well behaved near that point. Dealing with this problem involves what is called " finding
the limit', the main new computation required to do calculus. Let us begin with two elementary
examples that clearly illustrate the general problem.

Example 1 f(x) = )%
Y
f(x):jc—_1
1 x-1
T
1 X
1
We first observe that the graph of f hasa "hole'initat x=1. Thisis because f(1) = ﬁ = {%},

which is indeterminate or undefined. It is called an indeterminate form because its value is not
uniquely determined; consider the long division below. We get 7 with 0 remainder.

.

0) 0
0
0

So {%} = 7. Need we say more! (We enclose indeterminate forms with braces to show they are not

numbers.)

We cannot just cancel the x — 1 factors because that would give us f(x) = 1, technically a different
function (because it has a different graph - no 'hole' in it). What we say to describe the situation that
while f(1) is not defined, infinitesimally near x =1 f(x) is infinitesimally close to 1, is'the limitas x
approaches 1 of )X% is 1' and write

“m)(_)lﬁ = l.

This example illustrates the unique difficulty that occurs in beginning calculus, the problem of
finding the derivative of a function, which you will encounter in a few more lessons. The limit is
essentially the value that fills in the 'hole' in the graph to make the resulting function
continuous there.
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Example 2 f(x) ={ g’ X # 1 Its graph is shown below.
X

X

1
Clearly, from the graph of f, we expect limy, ;1f(x) =2, the value that would fill in the 'hole'.
If we were to redefine the function so that f(1) =2, then the function would be continuous.
We do not encounter this type of difficulty frequently in the calculus. But again we write
limX_,l’(;_;ll =2.
When we state the formal definition of limit, we will want to cover both types of problems. Intuitively
lim, - o f(x), if it exists, is the rounded off value of y=f(x) infinitesimally close to x=a.

In both of the previous examples we were able to define or redefine the function at x=1 so that the
'hole' isfilled in, that is, so that the curve is continuous. This suggests the following precise definition of

limit.

Continuity Definition of Limit The limit as x approaches a of f(x) equals b,
written limy  of(x) =b means the function

F(x):{f(x)’ X *a

b, x=a

is continuous at x=a.

F(x) is the same
for the three
versions of f(x)

Note: this definition does not provide general method of finding the limit b although you can some-
times guess it by looking at the graph and answering the question, "When x is infinitesimally close to
a, what real number b is y infinitesimally close to or what value of F(a) would make F(x) continuous
at x=a? In the next section, we will give a hyperreal definition of limit which is more useful in
determining b in all circumstances.

This definition allows us to immediately translate continuity theorems into limit theorems.
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Example 3 Let us find the limit of the previous example using this definition. f( ):{ e X #1
3, =
Y
— X
1
Proof From its graph it looks like lim,,1f(x) =2. To prove this, consider
=1 + 1
F(X) = { x-1"
2, x=1
x—l}x+l!’ X + 1 )
= x-1 factoring
2, x =1
:{ x+1, x#1 can cancelsince x*1
2, x =1
=x+1 in both cases since x+1=1+1=2 when x=1
which from the previous section we know to be a continuous function at x = 1. End of Proof

Note about terminology The notation limy_, 4f(x) =b read 'the limit as x approaches a of f(x) is b’
suggests one finds b by checking the values of f(x) as x gets closer and closer to a. An organized way
of doing this is computing the value of f(x) for a sequence of real number x-values approaching a:

X1, X2, X3, X4, " -+ = a. Then f(x1), f( x2), f(x3), f(x4), - - - — b. The limit exists only if the same result
b is obtained for every for every such sequence.

As a hyperreal literate person, you might wonder why anyone would spend lots of time piddling
around with real numbers when b, if it exists, is just the rounded off value of f(a+i,), say. You are right
of course. However, hyperreal numerical computations are often difficult to do because hyperreal
calculators are not readily available. Also, since limit notation is universally used, we will too. It will
turn out that using sequences of real numbers approaching x=a can actually be a practical way of
finding the approximate value of an otherwise intractable limit.

Limit Theorems There are three basic theorems regularly used for the efficient evaluation of limits. The

first says that the limit of a continuous function is always easy to find. The next two follow directly from this
theorem and the continuity theorems of the previous section.

Limit of a Continuous Function Theorem (Easy Limits Theorem) Suppose f is continuous at x=a.
Then

limy 5 ¢ f(x) = f(a)
Proof

F(x) = {f x), x*a

f(a, x=a

= f(x), which is continuous at x=a. End of Proof

This theorem says if a function is continuous, then finding limits is easy; you just 'plug' the value of
a into f(x).



63

Example
y XC+3x+2 22+32+2 16
im = = —
x22  2x-1 2:2-1 3

Basic Limit Theorems

limysqsc=c¢

limy,ox =a

lim,,_,a'%/_ = W, n a positive integer; a>0 if n even.
limy,,osinx = sina

L

limy_,,cosx = cosa

Proofs These all follow from the ‘Easy Limit Theorem.” Mentally verify this.

General Limit Theorems Suppose limy_ 4f(x) and limy 4g(x) exist.

Then 1. limy,, 4 (fix)+go0) = limy 4f(X) + lim,, og(X).
2. limy, 4 (fx) - goo) = limy, of(x) - limy, 48(x).
3. limy,q (cfix) = c-limy of(X).
4. limy, 4 (foogm) = limy of(x)-lim, ., 4g(x).

. Ax) _ limy,,of(x) H H
5'llmx_,ag(x) = el provided lim,_, ,g(x) 0.

6. limy 4 f(goo) = f(limy, ,80), provided f is continuous at g). limyf(x) need not exist.

Proofs These all follow from the ‘Easy Limit Theorem’. Mentally verify this.

Example 4
x3+4
2x+3

limy s continuous at x=5

= 25.35;:3 Limit of a Continuous Function Theorem

Two Important Trig Limits

. in @
limgoo ™= =1
0
Let us graph the function % is shown below. It looks like the limitis 1. This limit is so important it
deserves a a careful examination.
siné
]
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The usual proof in calculus textbooks is a geometric one using the formula for the area of a circle:
A= rtr2. Unfortunately you were told that formula early in school without proof. You will derive the
formula in second semester calculus. The 'usual proof' is an exercise.

sin 8

We will do a detailed geometric look at what happens to the ratio as 6 0.

Let us go back to the unit circle with the main three trig functions identified.
Y

Can you see what happens to the arc BC as
0> 0?

Answer: it approaches the tan 0 line.

tan 6

A X
0
1-cos @
Next, another look, 3 angles approaching 0.
0.4 radian 0.2 radian 0.1 radian
1.0 10—
0.8 0.8+
N
06F 06F \
04+ 04+
1 0.2+ 0.2+
1
- 0.0 | L L L H | 0.0 | L L
T 0.2 04 0.6 0.8 1 0.2 0.4 0.6 0.8 T
1-cos @ 1-cos @ 1-cos @
1.0

It looks like as 8- 0, both the sin 8 line and the arc 8 approach the tan @ line.
Look at the above graph with 8=0.4,0.2 and 0.1 radians. This type of understanding is
a valuable tool as you go through future calculus.

Example

limx—)O sin(2 x)

. want to use above limit

= 2-limyxso %(j—")- doctoring up

sin

] letting 6=2x

= 2.1
=2
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Anotherimportant trig limitis

1- cos @

lim0—>0 0

Proof

) 1- cosé
limg ¢

1-—cosf® 1+cosf
6 ' 1+ cosé
1— cos?é
O0(1+cosbh)
sin? 6
6(1+cos )
sin 0 sin 6

0 . 1+cosé@

= limgﬁo

= 1i1’1’1940

= limg_,()

= hl’ngﬂo

=1-—— =9 End of Proof

Intuitive Summary Recall that

limysof(x)=b
means that the values of f(x) 'just to the left' and 'just to the right' of x=a are infinitesimally
close to the common value b. A better notation than lim,, sf(x) =b might be NV(f(a)) = b,

the neighboring value of f at x=a is b; butit won’t catch on.
If you know that the limit exists, you need check only one value of x infinitesimally close to

a. If two different values of x infinitesimally close to a round off to different numbers, then
limy S of(x) does not exists.
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Exercises
In exercises 1 to 3, use the definition of limit to prove the limit statement. Model like Example 3.

#1. Prove limx_)32:__36 =2

x2=7x+12 -1

#2. Prove limy_4 o

x2=3x+2
r-sx+s _ 4

#3. Prove limy,1 e

In the following use the Basic Limits Theorem to evaluate each quickly.
#4. limy517=

#5. limy S nSinx=

#6. limy, 1 (2x+1)cosx=

In numbers 7 to 9 use the Limit of a Continuous Function Theorem.
#7. limy S0 (x + 1)%cos(2x) =

#8. limy o \/(X+ 1)?cos(2x) +5 sinx=

X-Tx-12 _
x-3

Note there is no practical difference between using the two Limit Theorems and and the

#9. limX_)4

Limit of a Continuous Function Theorem.

#10. Verify that the Basic Limits Theorem reflects special cases of the Limit of a Continuous Function

Theorem.
In the following evaluate each limit using limg_,o% =1, trigidentities, and the Continuity
Theorems.
#11. a. limX_)Oan(i_Xl b' “mX—)Oﬁz_z}

. tanx H X
#12. a. lim,_ o2 b. lim 0 G eanx
#13. a. limy_ o X cscx b. limyotanx
#14. a. limg_, o 2=<e=24 b. limeaol_;gse

sinh

#15. Prove geometrically that limp_s o =p

Assume the area of a sector formula: A= §r29, Consider the unit circle.

Observe:

Area triangle OAC < area sector OBC < area triangle OBD.

Using this as the starting point, derive the limit formula.

X>=3x+2
X=-2

#16.a. Prove limy.,, *5 by showing the corresponding F(x) is not continuous at x = 2.

b. Discover a way of choosing F(2) so that F is continuous at x=2.
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Solutions

Use the definition of limit to prove each limit statement. Model your solutions after example 3.

#1. Prove limX_,gﬁ =2

Proof Consider
2x—6
F(x):{ i X #3

2, x=3
2(x-3)
:{ 0 X #I factoring
2, =3
= {2’ x#3 can cancelsince x*1
2, x=3
=2
which we know to be a continuous function at x = 3. End of Proof

x2=3x+2
r-sxz _ 4

#3. Prove limy,1 i

Proof Consider

x2-3x+2
F(X) _{ x2—-x x # 1
-1, x =1
=D (x=2) 1
= { - > X * factoring
-1, x =1
X=2
- { r» X *1 can cancel since x £ 1
-1, x=1
= &2 since 2=-1 when x=1
X X
which is a continuous function at x =1. End of Proof

#5. limy_ xSin x =sin 71=0 (Easy Limit)

#7. limy S0 (x + 1)2cos(2x) = (0 + 1)*cos(2:0) = 1 (Easy Limit)

. X2=Tx=12 _ 4>-7-4+2
#9. limysa 3 = a3

#11. a. umHos'—"z(i—")-:f i

X
#13.a. limesoxesex = lims o=
X X20sinX lim,, i 1
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1.4 The Practical Computation of Limits

Finding Limits

The main problem in the previous section with evaluating a difficult limit lim,_, ,f(x,) is that somehow you
must guess the limit b in advance and then use the definition of limit prove that your guess was correct!
Normally the main problem in calculus will be finding the limit number b, notin proving that lim,, ,f(x) = b

f(x), x+#a

is a continuous function at x=a.
b, X=a

by showing that F(x) = {

There are three common ways of evaluating difficult limits, at least one of which will evaluate any given limit:
1. Analytically This is the precise method and therefore preferred. However, often this is not possible.
Hyperreal Style Use the hyperreal (computational) definition of limit below. In theory this method
always works; in practice it often does not.
Limit Style. Reduce, by algebra the function to one which is continuous at x=a, an easy problem.
It is about as limited as the hyperreal method.

2. Geometrically This method is quick and intuitive if you have a CAS or perhaps a graphing calculator.
Just examine the graph very close to x = a. It may only give an approximation to the limit. Zooming in is often
required.

3. Numerically Examine f(x) for a sequence of real values approaching x=a. This method is tedious and
risky; another sequence might give a different result in some difficult problems, which means the limit does not
exist.

The last two methods normally give only an approximation to the limit, however, to as many decimal places
as you wish. The advantage of these last two methods is they work for almost any function you will encounter.

Recall that the limit, if it exists, is the common rounded off value of f(x) infinitesimally close to x=a. This
suggests an alternate definition of limit which is helpful in finding the limit b. All the methods of finding limits
above one way or the other are versions of this alternate definition.

Hyperreal definition of limit limy - of(x) =b means f(a+dx) =>b for every infinitesimal dx * 0.

Y

y =f(x)
l b!! ”””””””””””””” :

at
a+dx
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Limits Analytically - Hyperreal Style

7x2=11x -120 {Q}

Example 1 lim,_5 P x—20 0

Let dx be any nonzero infinitesimal. Then

7 (5+dx)2= 11 (5+dx)-120
(5+dx)%- (5+dx) - 20

= % expanding and simplifying

— dx(59+7 dx)

dx(0+ch) factoring

_ 59+7dx

= can cancel since dx 0
9+dx

=%
9

Limits Analytically - Limit Style

Continuity Definition of Limit The limit as x approaches a of f(x) equals b, written
limyLof(x)=b
means the function

F(x):{f(x)’ X # a

b, x=a
is continuous at x=a.

We adapt the method of the continuity definition and ignore the F notation by agreeing never to allow x to be
equal to a;then if we can convert f(x) algebraically to a function which is a continuous function; we can then
evaluate the limit by setting x=a.

Now, let usillustrate this Example 1 using this concise limit style.

. 7x2—=11x-120
limyss =2 50
- “mX_)SIX(-_SM)%). a non-trivial factorization
X—5) (x+4
=i Ix+24 can cancel since x*5
My 5
x+4
= % limit of a continuous function

-5
D,

The limit style method is to reduce the expression, by canceling equal factors which approach 0, to one for
which the Limit of a Continuous Function (Easy Limits) theorem applies. Most mathematicians use this
method even though the equivalent hyperreal method is sometimes easier because less factoring skill is
required. Nevertheless we will often use the limit style because most mathematicians do.

Still, we will always understand that the limit is essentially the value of f infinitesimally close to x=a; the
limitidea of ~approaching' the answer by looking at real number approximations as “x gets closer and closer'
should seem quite a second rate idea.
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Example 2 Limit of a rational indeterminate form
x2-1

. . 0
I indeterminate form {—}

limy 1 5

Hyperreal Method
(L+dx)*-1
(1+dx)-1
_ 1+2dx+dx?-1
- dx

dx(2+dx)
dx

= 2+dx dx*0

=> ),

Traditional Limit Style

. x2-1

limys 1 1

= limy, XD factoring

= limys1(x+1) can cancel because x # 1 in the limit process
=1+1 Limit of a Continuous Function

=2

0
Note that we removed the cause of the {5} indeterminate form when we canceled the x - 1 factors. The

beauty of these two methods is that not only does it find the limit, but a proof using the definition of limit is
unnecessary; we are sure it is correct because we used correct hyperreal algebra. We note that the limit
method works only if we can algebraically reduce the difficult limit to the easy continuous case.

Example 3 Limit of an algebraic indeterminate form

limx_,o@ indeterminate form {%}

VX+9 -3V x+9 +3
X Vx+9 +3

x+9)-9
x(\/x+9 +3)

= limyso -
X

(VX+9 +3)

= limy5o rationalizing the numerator

= limyso

= limyo g—— can cancel because x#0

VXx+9 +3
1

= a3 Limit of a Continuous Function (Easy Limit)

L
6

Example 4 A limit that cannot be found exactly (at this time)

. 2X-1 [0}

im0 {3)
We have no way of factoring out the troublesome x in the numerator. So we cannot cancel the x's and evaluate
aresulting easy limit.
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Limits Graphically Below are examples of functions whose limits are difficult or impossible to evaluate
analytically because 'factoring and canceling' is not possible. We examine the graph 'close' to the limit point
X=a.

2*-1 0

Example 5 limX_,oT indeterminate form {5}

= N W s oo

-4 2 2 a4

Note: Because of the way the computer graphs (by connecting points with line segments), it looks like the
function is continuous at x=0 even though there must be a 'hole' in the graph at x=0. It looks like limy-g zx%

=0.7. To get a better approximation, zoom in.

-0.010 -0.005 ' 0.005 0.010

limy o % =0.693.

This answer is approximate. The exact answer you will learn in the next calculus course is log,2 = 0.693 - - -,

which one cannot determine graphically.

Example 6 Another indeterminate form
limy - 0 (1 + x)Y*indeterminate form {1°}

We will discuss the use of the limit symbol oo in the next lesson. For now, take it to mean extremely large.
First, why is {1} indeterminate? 1 to any poweris 1; 119 =1, But a number slightly larger than 1 raised to

a very large number can be a large number; 1.011%% = 20,959.2. Likewise a number slightly smaller than 1 raised
to a very large number can be a number close to 0; 0.991%% = 0.0000431712.

y=(1+xVx

L 1 X
-0.001 0.001

limy 5 o(1 +x)Y*¥ = 2.718.
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Note that this answer again is approximate. The exact limit is required in the definition of limit; however, for
many applications 2.718 may be good enough.

Limits Numerically Because you do not have visual cues about the behavior on either side of x =a, you should
be especially careful with this method. This is a crude way of trying to examine the value of f(x) infinitesimally
close to the limit value x=a. The hyperreal definition of limit suggests it is efficient to choose a sequence that

approaches a rapidly. For example if a=0, the sequence

L L L
’ 107 100’ 1000’

is more efficient than

Example 7 lim,_¢sin T
Let us examine this function for two carefully selected sequences approaching 0.
x sin%
1/2
1/4
1/8
N2
0
1
-1/8
-1/4
-1/2

o

O O O 3 .4, &« O O

From the sequences above, one is tempted to deduce that lim,_, ¢ sin = 0. But from the graph below, clearly
limy 0 sin & does not exist.

Be sure that your sequences are not " carefully' selected! (This error cannot happen, of course, if the limit exists.)

To be 100% certain of getting the correct answer, you should check values of the function for every
sequence approaching a. Practically, using one sequence approaching a from the left and one approaching a
from the right should normally be sufficient. In a’tricky' limit, you may wish to graph the function to see if
extra care is required and, of course, do not use carefully selected sequences.
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Example 8 lim,_, oH(x)

H(x)

I I ] X
-3 -2 -1 1 2 3

Using a sequence approaching 0 from the left it looks like limy_,oH(x) =0.
Using a sequence approaching 0 from the right it looks like lim,_oH(x) = 1.
So limy_oH(x) =0 does not exist.

Example 9

4%_ 3x
X

limyso indeterminate form {%}

First we construct a table of values with x - 0 from both sides.

4% _ 3%
X
X
1.00000
.32575
.01 .29128
.001 .28804
.0001 .28772
l l
0 ?
T T
- .0001 .28765
-.1 .25408
-1 .08333
Clearly limX_,o“X;—y =0.2876 (trusting that the function does not have strange behavior between table entries).

If you suspect the limit exists and will settle for a rough approximation of the limit, it is not unreasonable to try
just one value “near' 0 numerically:

40.0001 _ 30.00@1

0.0001 = 0.288

Note: Generally the graphical method is quicker, more intuitive and less error prone than the numerical
sequence method.
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Exercises

In the following, identify the indeterminate form and find the limit algebraically.

#1. a. lim,, Tt b. lim, 5 222
#2. a. limxﬁlj‘;%i b. “mx_)z;%

#3. a. limyo o L2222 b. limeso =
#4. a. limh_,O(thh)z'—4 b. limhao@

In the following, identify the indeterminate form and find the limit graphically. Observe that these may be
difficult to do algebraically.

#5. limyo (1+£)™

. X2 —x
#6. a. limy,5 o -

In the following, identify the indeterminate form and find the limit numerically.

#7. liquo%

#8. lim,_, ; S0

x-1

In the following, identify the indeterminate form and use any method to evaluate.

#9. a. “mx_)4(X22:(_#4)3 b. “mt_>344+tE

#11. Work Example 3 by the hyperreal definition.

#12. f(x) is the function shown below.

Y

N\ 2/\ y =£(x)

p— B 2 N 8 10 X
2
limys 3f(x) = limy _35f(x) = limyof(x) = limesaf(x) = limys6fix) =
limx—)? f(X) = limx—)—z f(X) = limx—)S f(X) = “mx—>2 f(X) = limx—)ZOf(X) =

#13. Evaluate Example 1 taking dx=i,= 0.000 - - - 001,000 - - -.



Solutions
#la. limy o, st {4

X-2

(x=2) (x+3)

X=2

=limy52
=limy_ o x+3
=2+3
=5
. 3—
#2.a. lim1 577 {2}

(x=1) (P+x+1)
(x=1) (X*+ 3+ x2+x+1)

=limy51

X+x+1

=limy Lyt s s x+1

1+1+41
1+1+1+41+1
3

5

#3. b. llmx_,oﬁ {%}
X V4-2x +2
Va—2x -2 Va=2x +2
x!@ﬂ!
(4-2x)-4

V4-2x +2

2

=limyso

=limy5o

limy 0

2+2
-2

=-2

#4. a. limh_>0£2;hi1)2_—4 {g}

_n 4+4 h+h?-4
=limp0 T

h(4+h)
h

= limh_,o 4+h
=4

=limp50

#6.

75



76

#8.
. sin(7tx) 0
limy 1 x-1 {0}
sin (1x)
X x-1
0.9 -3.09017
0.99 -3.14108
0.999 -3.14159
2 \
1 1
T T
1.001 -3.14159
l1.01 -3.14108
1.1 -3.09017

It looks like lim)(_,lsi—r)’((_"f‘)-= -7t

Graphical check:

#9. b. limt_>34ﬁtE not indeterminate (continuous at x =3)

— 4+j3
3
t-4
Vt-2
WT—zH\/Tn)
V-2
= limesa(Vt +2)
=y4+2

=4

#10.a. limss4

= limisa think of t —4 as the difference of squares

#12. 2 25 1 0 -1
=1 1 -1/2 DNE 1.9?
. 7x2=11x-120
#13. Evaluating === "=
6.555 "+ + 555,555 - + ~> 6,555+ -= 2
With the the aid of a hyper-calculator, or www.lightandmatter.com/calc/inf we obtain the same result.

——
5555535 ~ 555555 -

at x=5+i, = 5.000---001,000 - - - by long division we get
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1.5 Extensions of the Limit Idea: One-sided Limits. Infinite Limits
We begin with a full discussion of one-sided limits. Also what happens if on one or both sides the

function attains arbitrarily large values.

One=sided Limits

“mx_)g"’f(x) = b

Hyperreal Definition The limit from the right of f(x) at x=a

means f(a+dx*) => b for every positive infinitesimal dx*.

y = f(x)

Hyperreal Definition The limit from the left of f(x) at x=a

limyso-f(x)=b

means f(a-dx*) =>b fo

r every positive infinitesimal dx*.

y = f(x)

This theorem says that if the limit exists at x = a, the function approaches the same value y=b

from either side and conversely.

We often evaluate easy

one and two-sided limits (those which do not lead to an indeterminate

form) quickly by examining the graph of the function whose limit is being taken near x=a.
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End-Point Agreement We will adopt the convention that a limit exists at the endpoint of the
domain of a function if the appropriate one-sided limit exists. Some mathematicians do not
observe this agreement. We may in some circumstances, with proper warning, do the same.

Example

From the graph:
limyso-vVXx—-2 does not exist

= limy,2VXx=-2 =0 (endpoint agreement)

Example f(x) ={

From the graph:
limyso+ f(x) = 1

= limy, o f(x) does not exist

Example f(x)= x|

1 1
From the graph:
limyso- [X| =0

= lim)(_)() |X| =0
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Infinite Limits Sometimes a function becomes unbounded near x=a. We use the symbols oo to
express certain types of unboundedness.

Hyperreal Definition The limitas x approaches a from the right is plus infinity, written

limy s g+ f(X) = +oo,

means f(a+dx*) => +oo for every positive infinitesimal dx™.

! X

Hyperreal Definition The limit as x approaches a from the left is plus infinity, written
limy s o~ f(X) = +oo,
means

f(a-dx*) => +oo for every positive infinitesimal dx*.

y =1f(x)

0@ —
X

a+dx™

Definition lim,_, f(x) = +c0 means limy_ 4 f(X) = +oo and limy_ o+ f(X) = +oo.

X

|
|
|
:
|
[ y = f(x)
|
|
|
|
|
b |
|

We make similar definitions for limy_ o-f(X) = —co, limy_ o+f(X) = =00 and limy_ o f(X) = -co.
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Definition If lim,_, f(x) = %o or lim,_,- f(x) = Xco, we say that the line x=a is a vertical
asymptote to the curve y = f(x).

|
|
|
|
|
: x-2
| X
2
|
|
|
|
|
|
From the graph:
limx_)z- ﬁ = —00
limx_>2+ )% = +oo
= limy,» f_—z does not exist because the one-sided limits are different
However, x =2 is a vertical asymptoteto y = f_;

Example

From the graph:

1-x

limyss- (57 ==

. X
limy 3+ 32

= limy,3 1;)(2 = -0 because the one-sided limits are the same
(x=3)

1-x
(x=3)*"

x =3 is avertical asymptoteto y=
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Example y =2

or
2.0%
1.05
0.5:
” ) 0 2 s X
From the graph:
limyso- Z‘i_ =+ o0
limy_ o+ 2_i_ =0
= limy 9 2'i_ does not exist because the one-sided limits are not the same

1
x=0 is avertical asymptoteto y= 27x.

Analytical Evaluation of Infinite Limits

The graphical method is often the best way to determine these limits. There is also an informal

analytic method that seasoned math users often employ; they think
1 1
positive infinitesimal negative infinitesimal

= positive infinite number, = negative infinite number

or symbolically

1 e
or = T 0‘—_ = - 0* means a positive infinitesimal
at=a+ 0t a- =a-—0%
When we write £ = +oo, the left side is an infinite hyperreal number and the right side is the result

0+
of rounding it off. This is technically wrong, but everyone writes this and the meaning is clear; the
reason for doing this is that +oo is an extended real number, but 0* is not accepted as one (why do
you think it isn't?)

Example limy_; - Xz_—z = 202 = 20—2 = +oo (mixed real and hyperreal math, but rounding off result is
correct)
limx_)2— )% = 20;_2 = —o0

Therefore, because the two one-sided limits are not equal:

. —X -
limys o f_—z does not exist
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+oo because as x = 0% (from either side), x> - 0*.

1

. 1
Example lim, o057 =57 =

Example f(x) = Xl—zsin2 %

. 1.
hmx -0 sin®l  does not exist because the function oscillates between 0 and + oo near x = 0.
X X

Exercises
In # 1to 5, find the limits analytically using 0%, etc. Check answers with graph provided.
: - x
#1. limy o e
; Vx
Himc e e
lim VX
X208 X
0.5
0.4
0.3
0.2
0.1
0 05 ‘ 05 10
. B 1++/x
#2. 1imy o NS
. 1+\/7
limy o Ix
10
8
6 H
4l
2+




: X
#3 11mx_>2* E

: X
1imye 2 o=

O X
limys2 =
100

50[
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—100L

. 3-X
#4. 1imy o =

. 3-X
limy e =

3- X

limy e =

1.5

0.5

0.4

0.3

0.2

0.1

-1.0 -0.5

3.0
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#6. y=f(x) is the function shown below.

Y
\ ° /\ | y = f(x)
N e N\
" @ l " " " " X
! 10
a. limys o-f(x) = b. limy,o-f(x) = c. limyop-f(x) = d. limy,6-f(x) = e. limys_4f(x)=
limy _o+f(x) = limy— o+f(x) = limy 52+ (x) = limy g+f(x) = limyo 15 f(x) =
limy s, f(x) = lim,o f(x) = limy 5 f(x) = limy s f(x) =

1-x
X

a. Work numerically.

#T7. limX_>0+

b. Work graphically.
c. Plot the graph by computer.

#8. lim, o 31_

a. Work numerically.

b. Work graphically.

c. Plot the graph by computer.

Solutions
#1. DNE, 0,0

#2. DNE, +oo, +oo
#3. -oo, +oo, DNE

#4. +oo, too, +oo

#5. 0,0,0
#6.a. 1 b. 0 c.3 d. -o e. 3 (endpoint of domain agreement)
0 0 3 —o0 2.4
DNE 0 3 —o0
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#7.

-2 -1

X:=1.<10"-16
(1-x"x)/x
36.6374

Explore this some more before you declare an answer.
100 -

80 -

n n n 1 n n n 1 n n n 1 n n n 1 n n n 1
0 2.x10710 4.x10710 6.x 10710 8.x 10710 1.x107°
2 ??

My computer says +oo. In the next calculus course you will learn how to do this
analytically!

#8. b. Hint

-2 -1 1 2
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1.6 Extensions of the Limit Idea. Limits at Infinity

It’s time to review the new ‘near equality’ that will be be useful in doing theory, applications, and
sustain a reasonably good mathematical work style later in your life. It applies to infinitesimal, finite
hyperreal, and infinite number calculations. If A= B, but by mistake write A =B, you would be
hyperreally wrong but still ‘really’ right! The main use of = is to simplify expressions in order to
extract the essence of a hyperreal expression. = will be frequently used later in this course.

A Detailed Review of Asymptotic Equality

Definition Ais asymptotically equalto B written A= B means %z 1+€ where € isan

infinitesimal.
Properties (proofs left as easy exercises)
1. A=A
2. A=B < B=A
3.AB,BC &< A=C

Theorem a=A,bxB < a‘A=b‘B

b

Theorem a=A,bzxB & %zE

Note: A= 0 is never true. Can you see why? This will never be a serious problem in calculus.
The = concept will be especially important when we do applications of integration
Examples Let dx be an infinitesimal, x+dx a finite hyperreal and X a positive infinite number.

Infinitesimal 3 dx+ dx?=3dx
dxrd® _ g Loy Note Eventually you get good at using = t
because =1l+3zdx=1+€ yyougetg g =to

3dx simplify calculations.
.. s With care:
Finite Hyperreal 27 dx=7 Infinitesimals: keep dx,drop dx2
because 7+7dx =1+ % dx2=1+¢€ Finite hyperreals: keep x,drop dxlbr dx?
Infinite numbers: keep X> drop X or x or dx.
Infinite Number 5X3-)X2+ 4=5X3 In applications, it is often obvious
geometrically or physically or otherwise which
terms can be ignored.
5X-X+4 . 5. 4 _
because = 7—=1-7+-7 =1+€
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Limits at Infinity The limitidea can be extended to answer the question, "What is the behavior of

the function when x is a large positive or negative number?" We answer this question by examining the
function for x an infinite number and then rounding off.

Hyperreal Definition The limit of f(x) as x approaches plus infinity is b, written
limX—)+oo f(X) = b

means f(x) ®> b for every positive infinite number x.

Hyperreal Definition The limit of f(x) as x approaches minus infinity is b, written
limy, . f(X)=b

means f(x) => b for every negative infinite number x.

Example limy_; 4o Sin )17: 0 because

L1
sin o
=>sin0 X is a positive infinite number = % is a positive infinitesimal
= 0.
sin(1/x)
o~
1| ‘ ‘ S x
IH“‘ 2 4 6 8 10
|

Definition If limy_..f(X) =b or limy,_.f(x) =b, we say that the line y=b isa
horizontal asymptote to the curve y =f(x).

H 312
Example f(x)=2+2 5'23—),(2

2 4 6 8 10

From the graph, limx_>+°o(2 +2 Sizj/f/z ) = 2. So y=2 isahorizontal asymptote. Note that a function

may cross its horizontal asymptote (unlike a vertical asymptote) any number of times.
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Limits of Rational Functions at Infinity by Analytic Methods

Examples A traditional method for a rational function is to divide the numerator and denominator by
x raised to the degree of the denominator.

5 X2+2x+3 1_+l+3_ 0
. X+2x+3 _ |3 X3 _ 1 x x- ¢ _ 0+0+0 _ 0 _
llmX—)+oo3—_ My 4eo o liMyos oo 5 - =1 =0
x3-5 £5 1-= 1-0
X X

In the above calculation, we needed some more arithmetic for the symbols +co and —oo.

A _ ot A _ o
+o<>_0 —oo_o

At the end of a calculation, the 'exponents' in 0" and 0~ are dropped, of course, because they are not
extended reals.

Quick Method The behavior of a polynomial function at infinity is determined by its leading term.
liMy oo (AnX™ + apoiX"™ L+ 4+ 00) = liMySaoe anx™.

Proof

L+ E) = limysreanx” (%)

limX_)+°°(aan + an_lxn_l +...+ ao) = limx_)+°o Xn(an +

Comment on the quick method For example, x* —2x%>+9x — 7. When x =100, the leading term
x* is 100 million, but 2x? is only 20,000, 9x a mere 900 and 7 barely counts. The graph of this
function in red along with its leading term in blue are graphed below. In the slightly zoomed out
picture on the right the graphs of the polynomial and its leading term are barely distinguishable.
This means that you can ignore any terms other than the leading ones in rational function when
taking the limit at infinity.

Y Y
sof 800000}
60 600000 -
40 [
400000
20
200000 |
1 1 1 1 x F
-3 -2 -1 L—" 1 2 3
TS S ST SR SN S S S X
-20 30 20 -10

A polynomial and its leading term are nearly indistinguishable for x large.

Example

Quick Method Limit Method
. . 2 .
l|mx—)+ooxz;3,2fx;3 = IImX—)+oo)):T = llmX—)+oo%=O

Quickest Method Asymptotically equality

, ) s
R+2x43 o x =%=> 0 atinfinity
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0o

Examples {7} indeterminate forms

oo

. 2x+1 ) 2x o2
Im —— = lim —= lm — =0
X = +00 X2+5X—4 X = 400 X2 X = +00 X
, 2x2+1 2x? '
Im — = lim —= lim 2 =
xo-e0 x245x—4  xo-w x2 X —co
o x2+5x-4 oox? X
Im — = lim— = lim — =+
X = 400 2x+1 X— 00 2 X X—>o0 D

Examples The quick methods often, with care, work well with other limits involving fractions.
(Of course, you must be aware of any indeterminate forms that may occur in the process and

treat them correctly.)

) 2vx +1 o 24/x ) 2
lim = lim = lim — = 0.
x>+ x2 41 5x—4 x> +o0 2 x> +oo x3/2
. 2x2+sinx C2x?
Im ————— = lim —=2
X = +00 X2+5X_4 X = +00 X2

because x? grows much more rapidly than sinx as x = + co.

Using asymptotic thinking the previous example can be written

2x%+sinx ~ 2xX% _
X+ SINX oy £X —
X%+ 5x-4 x2

lim x*-6x+3 - x {o- o}

X = +00

) x2-6x+3 + x S
= lim (\/ x?-6x+3 - x) . rationalizing numerator

X = +c
x2-6xX+3 + X

2 atinfinity.

I

x2-6x+3 - x2

= 1im
X = +
Vx2—-6x+3 + x
. -6X+3 .
~1lim ——— — quick method
X = +@
A/ X% +x
-6 X . -6 X
= lim = lim = -3 quick method, x > 0
X—=>+0 ¥4 X X = +0oo 2X

Caution Never use the methods for limits at infinity for other limits.

2 . 2 . . .
2l — |im 2~ = lim2 = 2 iswrong. The correct answer is -, of course.
x2+5x—4 x>0 X X0 4

limx -0

Final comments Limit notation is preferable because most math users are familiar with it. Hyperreal
thinking is preferable because it tends to be better focused, namely the value of the limitas x > a is
found by examining the values of f infinitesimally close to x = a; it's better than messing around with
not very close real numbers. Of course, if you are doing approximate limits you will use real numbers,
but hyperreal thinking gives you perspective about the process.
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Important Note about Limits

The result of any limit calculation can only be one of the following:

1. An extended real number:
areal number
the symbol +oo or —oco
2. Does not exist.

Calculus includes any topic that involves a limit calculation. So a result in calculus
can only be one of the above two outcomes. When we do calculus, we will always follow
this rule because it is generally meaningful to do so. Some calculus textbooks do not
allow +eo or —co for some calculus computations. Also, we will adopt the
convention that a limit exists at a domain endpoint if the appropriate one-sided limit
exists; again, not all mathematicians agree with this; however, most engineers and
scientists do because the resultsalways have a reasonable interpretation.

Exercises

#1. 1imy ., .o

#2. 1imy o

#3. 1imy ., o

1+

S5k

lim, . o

limy . o

lim,, o
limX - 400 T3

lim,, o, ==

#4. 1imy o (x— x2 - 6x

e

1imX - -
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#5. y =f(x) is the function shown below.

a. “mX_>_2—f(X) = b. “m)(_)()—f(x) = C. limX_)2—f(X) = d. limX_)G—f(X) = e. limxﬁ_mf(x) =
limy - —+f(x) = limy - o+f(x) = limy+f(x) = limy - e+f(x) = limy 5 +oof(X) =
limy_ _, f(x) = limy_o f(x) = limy2 f(x) = limyse f(x) = limyo 4 f(x) =

#6. Verify the proof of Equation (*).
#7. Work each carefully. Check each using the quick method (preferably doing mentally).

) 2x+3 ) 2x3+3x%x% ) 2x%+3
limy , o —— limy , o —— limy , o —
x3-3x+5 x3-3x+7 x3-3x+5
) 2x°+3 ) 2x2+3x3 ) 3-2x+ 3%
llmxa+oo - llmxa+oo - 11mxa +o0 T 5
x>-3x+5 x3-3x+7 x>-3x+5
) 2x°+3 . 2x2-3x3 . 3-2x4
limg, o —— limg, o —— limg, o ————
x3-3x+5 x3-3x+7 x3-3x+5

1

#8. limy . .o 2%

1

limy_ o 2%
Solutions

#1. 1,DNE
#2. 1,1
#3. - 00, +00,0,0

. . . -x, x<0
#4. 3, - co. Hints: rationalize numerator and use v x* = |x| = { x’ <> 0
, >
5t ~—
—%0 —‘5 é 1‘0

#5. a. 1 b. 0 c. 3 d. —oo e. DNE
0 3 —00 =25
DNE 3 -0 3
#7. 0 2 +oo
O 2 —00

+o0 3 +o0

+o0 =3 +oco
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1.7 Application: Graphing Rational Functions

Many students encounter rational functions early in university applied courses. Asymptotes plus a few data
points give a quick way of graphing them fairly accurately. Of course, if you need a completely accurate
graph, you would use a computer graphing utility and in real life coefficients are usually not integers and
numerical factoring is required. But graphing by hand gives you important insights into the behavior of
these functions.

Rational Functions Review

P(x) ap X" + - L
y = = > m and n non-negative integers
Q(x) an X" + .

Vertical Asymptotes
Where Q(x) = ©

Horizontal Asymptotes
degP < degQ = y = 0 isahorizontal asymptote

a
degP = degQ = y = a_m is ahorizontal asymptote
n

degP > degQ = aslantor curved asymptote of degree x" "

In preparation for graphing, it is often helpful to factor the denominator in order to determine the vertical
asymptotes. Factoring the numerator is useful if you wish to know the zeros of the rational function.

If degP>degQ,you will wantto divide P(x) by Q(x) to determine the slant or curved asymptote.

The Method
1. Find all asymptotes and draw them as a dashed curves on a graph.
2. Then find a few well chosen data points to ‘nail down’ the curve. Place them on the graph.
3. Sketch the curve taking into account the above information.

Normally the result is quite good considering the small amount work required. Occasionally there is
a surprise ‘wiggle’ for which you need some calculus information that you will learn in Chapters 2 and 3.

Example y=-2_

x-1
Vertical asymptote: x=1 Choice of points requires
Hori tal tote: v= Y=z o a combination of artistic
orizontal asymptote: y= === 1 atinfinity and mathematics skills.
_ X Y
X Y =34 dr
|
2 3F I
_2 g |
20 1
|
0 777777777 8 O

|

2 ‘ ‘ ‘ X

-4 -2 } 2 4

-1F |
|
2F |
|
|
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X

X24 x=2 - (x=1) (x+2)

Example y=

Vertical asymptote: x=-2,1

. X X 1
Horizontal asymptote: y = =——n == = ~
ymp y Xex=2 e~ X >0
X
X = 1
-3 _%
1
-1 >
0
1
2
2 X2
Example y=

x>-4 - (x=2) (x+2)

Vertical asymptote: x=-2,2

X2 X2
Horizontal asymptote: y=""7—"% = =>1
X-4 x
- X
X ~ x-1
-3 %
L
-1 -3
0 0
_1
3
3 5

See if you can discover the rules for when a rational
function at a vertical asymptote is on the same side
of the x-axis or not.
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Example Slant Asymptote

Vertical asymptote: x=0

By monomial division

~ 1 ] . 1 s
y=X+ . Theslant asymptoteis y=x since ; =>0 for x infinite.

x?+1

-4 -2 - 2 4

Example Curved Asymptote You verify the details.
x4 - x -

y = = -1+x%+ 1-x
x2+1 1+x?

By computer or long division

y=-1+x?+ i;)’(‘z . The curved asymptote is the parabola

y=-1+x* since i;:z =>0 for x = too.

-4 -2

-5L
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Example Curved Asymptote You verify the details.

x*-3x3+2x-4

y:

x2+1
y =-1-3x+x? +%. The curved asymptote is y = -1 -3 x + x?
+
20
15
10
5
-4 22 W 4 6
35
Exercises

For each question
a. Find all vertical, horizontal, slant and curved asymptotes. Graph.
b. Make a short table of test points.
c. Use the above to sketch a good graph.

l.y= ):_z

2. y= 2))((_1 Note égain pn occasion thi_s method

3 y= X can miss anlmportar.\t detallsuch.asa
x-2 low point. Calculus will help you with

4.y= (X+12)fx_2) such problems later.

5. y= 25

6. y=2%

7. y= Xjle

8. y= (x+2))(‘;x—2)

Solutions are not provided as they would make the exercises trivial.
If you wish, graph with Wolfram Alpha for a check on your solutions.
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Chapter2 The Derivative

2.0 We Need (something called) the Derivative

In this section we look at some applications that require a calculation involving limits.
It gives the growth rate of the function. This calculation will be called the derivative
because it is derived from the function under investigation.

We finally made it to the calculus!

Real Numbers
—> Algebra
— Functions
—> Continuity & Limits
—> Calculus!

The Derivative
The Definite Integral

The Instantaneous Growth Rate In high school you used functions to describe the size of a
quantity Q atatime t. Just asimportant may be finding its growth rate at time t.

The average growth rate of Q on theinterval from time t to time t+At is

Fav =

At

(A is the upper case Greek letter delta. At means the changein t and AQ means the corresponding
changein Q. Thisuse of A iscommon in mathematics.)

This formula says that the average growth rate is proportional to the change in the quantity and
inversely proportional to the change in time; a smaller At for the same AQ produces a larger growth
rate, which is reasonable.

t
[ et
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In many applications we are not really interested in this average rate of change over the interval from
t to t+At, but rather the (instantaneous) rate of change r at time t. Unfortunately, we cannot just set
At =0 which implies that AQ =0 because we would get the growth rate at time t
0

r(t) = 0

which is not a defined number (it always requires two distinct time measurements for a rate calculation).
What we must do is start with a non-zero At and let At shrinkto 0 without ever letting At

equal to 0; thatis, we find the limit as At approaches 0 of %2— and write for the instantaneous growth

rate

- A
r(t) = llmAt—wK?-

Example 1 The amount of bacteria in a culture is m =f(t) =1.3'mg, t in hours.
Find the growth rate when t=10 hours.

t
zr t+At

r(10) = limAt»oAA_T

- f(10+At) - f(10)
- lImAt—)O At

T 1_310+At_ 1.310
- llmAt—)O At

If we let At=0, we would get L(M())‘—f@lz {%}, which is not a number.

Let us evaluate this limit numerically (i.e., approximately) by examining the quotient
for a sequence of At's approaching 0.

.01 3.62166

.001 3.61739

.0001 3.61696
" "

0] ?
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It looks like the growth rate after 10 hours is

r(10) = limats o5 = 361725

This means that at time 10 hours you expect the mass to increase by about 3.617 mg
during the next hour.

Velocity from Distance Find the velocity of a particle whose position is given by
x =f(t). (Itisthe rate at which the distance is changing at time t.)

The average velocity of the particle on the interval from time t to time t+At is

AX

\"/ = —=.
av At

t

@ t+At

X X+AX

In many applications we are not really interested in this average velocity over the interval
from t to t+At, but rather the (instantaneous) velocity v at time t. For example, a policeman would

never say, "l clocked your average speed on the interval from 9:45 to 9.46 AM to be 125 hﬁ%,“ but rather,
"Your speed at 9:45 was 130%." Unfortunately, we cannot just set At=0 (which implies Ax=0)

because we would get the velocity at time t to be v(t) = % which is not a number

(it always requires two distinct time measurements for a velocity calculation.)

What we must do is start with a non-zero At and let At shrinkto 0 without ever letting At
equal to zero. Again we write

V(t) = limm_,oﬁ—’t‘.
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Example 2 The distance of a cart moving along the X-axis is given by x=+/t cm, t in seconds. Find the
velocity when t =9 seconds.

V(9) limAt—)Oﬁ_)t(

. f(9+At) - f(9
limpg ., o LEHAL=T0)

VI+At -9

= limAt—)O At

Let us evaluate this is graphically by graphing this quotient against At and see what its value is close to
At=0 on theright.

Vo+At -9

At
0.170 -

0.165
0.160

0.155

It looks like the velocity at 9 seconds is

v(9) = umm_)oﬁ—: = 0.167 .

This means that at time t =9 seconds it looks like the cart will travel about 0.167 cm
during the next second.
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Slope from Height Find the slope m of the curve y=f(x) at the point x.

The average slope of the curve on the interval from x to x+Ax is

Ay

m = .
av AX

y = f(x)

Again we want the slope at x, not the average slope on the interval from x to x+Ax.
Again we cannot just let Ax=0 because we would get
0

m(x) = o

which is not a number (it always requires two distinct points for a slope calculation.)
What we must do is start with a non-zero Ax and let Ax shrinkto 0 without ever letting
Ax equal to zero. We write

. A
m(x) = l”’“Ax—)Oﬁ-

Example 3 Find the slope of the curve y=f(x) =x? at x=1.

. A
m(1) = limaxso

. f(1+Ax)-f(1
= lim peo o A

= i (1+Ax)?-12
= Matso AX
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Let us evaluate this limit analytically.

(142 Ax+Ax%) -1

= llmAX—)O Ax

T Ax(2+Ax)
= limax>0=x,

= limax— o (2+AX) We can cancel because we do not allow Ax=0.

=2 Because when Ax is closeto 0, 2+Ax is closeto 2.

Sotheslopeat x=1 is
m(1) = limAx_,oﬁ—i Assuming distance is measured in meters.

—-om
_2m

=2

This means that at the point (1,1) it looks like if you go one unit to the right, y increases by
about two units.

You are now using limits. So you are doing calculus, the part called derivative calculus.
In the rest of this chapter you will get proficient at derivative calculus. Three equivalent styles according
to the user are given for the definition of derivative.

Definition of Derivative The derivative of the function f at x=a

Hyperreal Version dv - fle+dx) —fla) => f '(a)
dx dx
Pure Math Version f'(a) = limy, _, (Lt~

%1 - fla+dx) —f(a)
X

Rough Applied Version &~ =f'(a)or=1'(a)

Memorize these ASAP!

Exercises Reread this section thoughtfully. Work each of the following using the styles of
the examples. State the units in your answer. Note when a certain style does not work.

1. The mass of a melon is given by m =f(t) =3t? gm, t in weeks. Find its growth rate
when t =10 weeks. Evaluate the limit analytically.

2. The position of a particle moving along the X-axis is given by x=g(t) =2t+1cm,
tin seconds. Find its (instantaneous) velocity when t =3 seconds. Evaluate the limit graphically.

3. Acurveis given by y=k(x) = %. Find its slope when x =2. Evaluate the limit numerically.
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Solutions

1. m=f(t)=t>gm,t in weeks at 10 weeks. Do analytically.
dm _ f10+dt)-1(10) hyperreal style

dt dt
(10 +dt)* - 102
dt
(100 + 20 dt + dt?) - 100
dt

20dt+dt?

dt
420 +dt)

dt
20 +dt

=>20 gram
week

2. x=g(t)=2t+1cm,t inseconds at 3 seconds. Do graphically.

- Q(Ld;?ﬁl hyperreal style
_ (2(3+dt)+1) - (2-3+1)
- dt
§2§3+dtl+1l— 2-3+1l
dt
4.
Note Using the hyperreal variable dt °
2
asarealvariableis poor ascethetics. = |
;
-1C
. . . cm
Looks like the velocity at 3 seconds is 2 55
Note A stupid, but correct way to work this easy problem.
3. y=k(x) = %. Find the slope at x=2. Do numerically.
4 _4
Y _ o2
dx  TTgx
4 _ 4
+dx 2 -4
dx ' =y
5 -
1 -0.66666 o
0.1 -0.95238
0.01 -0.99550 3t
0.001 -0.99950 ol
Il |
0 -1

- dt

Answer: the slopeat x=2 is m=-3.



103

2.1 The Derivative. Starting out

Let us look at the equivalent definitions of derivative again.

Definition of Derivative The derivative of the function f at x=a:

Hyperreal Version % = f(a+d§))( /@ => f'(a),dx # 0
Pure Math Version f'(a) = limh—>0Lh/),_M
Rough Applied Version % - f(a+((11;&)—f(a) * ')

Notes:

The hyperreal definition is preferred for doing proofs. It’s symbol dy/dx says the (pre)derivative
atthe p oint x=a is the ratio of the change in y to the change in x there. The closest real number
to dy/dx gives the derivative f ‘(a). => is a clear, often easy operation which associates a
hyperreal number to the closest real number (more about this later).

In the pure math definition, f ‘(a) is a convenient way of indicating the derivative at a point x=a

and is a more concise notation than %J but fails in indicating the meaning of the derivative.

X=a

The applied version is convenient, user friendly and naturally used by many applied calculus users.
Itis not wrong, but => is more descriptive.

Yes, you may use whichever style of derivative definition you prefer. In mathematics, when doing
theory) we will usually use the hyperreal form.

Finding the derivative by the definition Itis a tradition to require beginning calculus
students to do a few of these. It is just as easy to find the derivative at any point x in the domain as
at a particular point x = a: so we will usually do that. All these are indeterminate forms of the type

{%} if we illegally allowed dx or Ax to be 0.

Example A polynomial function y=x?-3x+2.

dx)?=3 (x+dx)+2] - (x2=3 x+2
dv _ [+ x0?=3 (e +2] - (-3 x4+ )] {Q} definition of derivative

dx dx 0

[+ 2xdx+dx? -3x-3dx+ 2] = [x* -3x + 2] .

= expanding
dx

_ 2xdx=3dx+dx? o 2Xdx-3dx ; T
= LA ETE or ix simplifying
_ dx(2x=3+dx) .
= ™ factoring
= 2x-3+dx can cancel: dx*0

~> 2x-3 (Thereis no f(x), so don’t use the f’(x) notation.)
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Example Arational function y= )17

dy _ 1, 1 1 0
dx ~ dx(x+dx_x) {0}

- L(x—!x+dx!)
dx \ x(x+dx)
— —dx
~dxx(x+dx)
-1
Xx(x+ dx)
1

> -

X2

Example An algebra function y = Jx.

definition of derivative

dy _ Vx+dx =V x {g}
dx dx 0
— v x+dx —\/7 v x+dx +\/7
N v
_ o (erd)-x (a-b)a+b)
dx (\/ Xx+dx + \/7)

multiply by 1

_ 1
V x+dx +\/7

The Power Rule An important derivative formula. Formulas make calculus productive.

The ‘operator notation’ § means ‘take the derivative of what follows.’

d _ -
L (x") = nx-1

n a positive integer.
To do the proof, we need some algebra formulas.

Difference of Powers formula a" -b"

a’-b?>=(a-b)(a+b)
@ -bd=(a-b)(a2+ab +b?)
a*-b*=(a-b)(@®+a?b +ab*+ b

a"-b"=(a-b)(a"1+a"?b + - +ab" %+ b") thereare n+l termsinside the last parentheses

Let us try one for practice with n=5.

a®-b>=(a-b)(a*+ a3b +a?b? +ab®+ b*
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Derivation of the Power Rule

d
5 &)
n_n e . . .
= %)X—X definition of derivative
= de[(X+dx) —XI[(x+dx)™ 4 (x+dx)™2x + (x+dx)"3% + -+ (x+dx) x4 1] Let @ =x+dx, b=x
= :_de [(x+dx)™ 2+ (x4dx)™2x + (x+dx)"3 22 + -+ + (x+dx) X2+ x"1]

S(x+dx)™ T+ (X +dX)"2x # (X +dX)"IK2 4+ (X # dx) X2 4 x

~ n-1, yn-2 n-3 2 n-2 n-1
SEXTTEXTTEOX EXTTIX S+ XXX n equal terms
= px"?

We only proved the power formula for n a positive integer. Will show later it is true for n any real
number. We will allow ourselves to use the power rule for any n now.

Examples
£0)= 2
i (x1°) = 100x%° don’t try this by the definition at home!
)= & 00)= 20
d d _
V)= G ()=
C%(()("): X1
L (t°)= 5t
4 (172) =
dx (T(' )_ 0

Tangent and perpendicular lines to a curve at a point

Tangent lines are an elementary application of derivatives important for understanding the derivative

and for applications the derivative.

The tangent line to the curve y=f(x) at the point (x3, y;) with slope m is
y=y1+mx-Xxo),
where m=f’(x;). Then the tangent line formula is

y="f(a) +f'(a)(x - a)

The perpendicular line to the curve y =f(x) at the point (x1, y1) with slope m is

y= f(a) - fvl(a) (X - a)
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Higher Order Derivatives

In this context, if y=f(x), %f: f‘(x) is called the first derivative. Since it is also a function, you can take

its derivative:

d(d @ » .
ax(ar) = &iﬁ: f”(x), the second derivative (Why did we write d? but dx®?)

and so on. Common alternative notions:

dy &2y &Ey diy dy
y’ dx) dxz) dx3, dx4)"'7 dxni"'
f(x), £'(x), £ (x), (%), FD(x), ..., (D(x), ...
Others are

Dy, Dyy, ¥' and y usedin some applications.

Exercises
1. Use the definition of derivative to find
a. i(x2 +5x+3)=
b. £ (%)=
d
C. &(
d
d. ™ (
e. L(mx+b)=

2. Harder ones, by the definition of derivative.

2 5 ()=
b. %(xzil):

d (3 _
c. &(\/7) =
3. What does the word mnemonic mean? How do you pronounce it.

4. Work using the Power Rule.

a. %(ﬂ) =
b. %(x\/?) =

&)~

5. a. Find the tangent line and perpendicular line to y =f(x) =x* at x=2.
b. Graph and discuss the result.

6. Find the second derivative of each function in #1.
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Solutions

a2
La g (x*+5x +3)
_ [(x+dx)24+5 (x+dx) +3]-[x2+ 5x+ 3]
- dx

- X2+ 2xdx+dx® +5x+5dx+3 -x*-5x-3
dx

— dx(2 x+dx+5)
dx

R>2x+dx+5

b. 5 (7)

= il T ew)
T dx L2 (erdx)+3)  2x+3)

[\/77 x+dx_ \/7+\/m} (a-b)(a+b)=a?- b?

1
dx b W/xedx +/x /X +/xedx

1 X - (x+dx)
dx [mﬁ (VX + Vxrdx ) ]
_ 1 - dx
Cdx x+dxx/7(\/7+m)]
B -1
VX VX (VX sV xrdx |
~— 1
"V (V)
=2;i/2
d. 0
e m
2a. 4x3
1-x2
’ ()(2+l)2

C. Hint: (a=b) (a®+ab+b?) = a*- b3

3. Seedictionary.

4. a.7x°
b. \/?Xﬁ_l
1
C.

3x23
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#5. a. Tangent line:
f(2)=22=4
f’(2)=2-2=4

y=4+4(x-2)
Perpendicular line:
m= -}

y=4-7(x-4)

N A O

_2 L
-4

Comments: The graph is correct. But the tangent line, while looking like a tangent line, does not look
like it has slope 4. The perpendicular line does not look perpendicular.
The cure is to make sure the scales on both axes are the same.

When doing geometry, we usually want the scales on both axes to be the same. But in other
applications we do not care (for example, in a motion problem, why would we want the distance axes
with units in meters to have the same scale as the time axes with units in seconds?).

Y
6

1 2 3

It looks good now.
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2.2 Understanding the Derivative

Definition of the Derivative The derivative function f'(x) is

% = —()H'd):j—)X_Jﬁ => f’(x) NOTE The => f’(x) is considered superfluous.

provided the result of rounding off is the same for every infinitesimal dx # 0.

Possible Outcomes Since there are two possible outcomes of rounding off, the same

outcomes apply to derivatives.

1. f’(x) isareal number.
f‘(x) is +oo or -oco
2. f¢(x) Does Not Exist (DNE)

} extended real number

f‘(x) is called the derivative of f(x). f is said to be differentiable at x if f‘(x) is an extended real
number because it is meaningful in applications to do so (most mathematicians do not include oo).
The process of deriving f‘(x) from f(x) is called differentiation.

Examples
f(x) =x? f(x) = x*3 f(x) = x5
£(x) = 2x f(x) = 3X12,3 fé(x) = 35—1/3
f(1) = 2, exists f(0) = gr = +oo f¢(0) DNE
Y Y
1.0F
0.5
05
-1.0-0.5 05 1.0 15 2.0X
f (1) =2 f2(0)=+o f’ (0) DNE

When does a function have a derivative? The following statements are equivalent.
. f isdifferentiable at x=a
. f’(a) exists

1

2

3. f islocally linearat x=a

4. f hasatangentlineat x=a
5

. f issmoothat x=a Thanks to Harvard Consortium Calculus. 2
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Itis a good exercise on occasion to look a point on a curve where it has a derivative and think about the
five equivalent properties. Lets look at one in particular, local linearity.

X sin1
X

0.1185

0.1180 |
1
X sin
X
1.0 0.1175}
0.8
170 F
06 0.1170
04l
0.1165
0.2}
‘H&z/m 06 08 10X 0.1160 |
-0.2

0.1155 -

0.1150

0.1225 0.123 X

The ‘line’ on the right graph above is a magnification of about 1000 of the left graph near the red dot.
So why is local linearity so important for the existence of its derivative?
Look at the graphs below.

1

a a
The problem in finding the slope at x =a is this. If you take dx to be an infinitesimal, then
The slope ratios depend on the size of Ax: the slope ratios are still not equal, but:
Ay, , Ay dvi  dv,
AXl AXZ ’ Xm dX2 ’
Limit people have to go through a complicated infinitesimally close. So for either calculation,
of letting Ax approach 0 in order to find the slope ratio yields

F(a). L 2> f(a).
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When does a function not have a derivative? Let us think in terms of smoothness.

S

a a dab

f is discontinuous at x=a f hasacuspat x=a f highly oscillatoryat x=a  r1actile
wood planer wood scraper sandpaper thinking'
Applications

For mathematicians, finding the slope and tangent line to a curve y=f(x) at x=a is a favorite
application.

the slopeis m=f’(a)

the tangent lineis y=f(a) +f’(a)(x - a)
the slope of the perpendicular lineis m, = —# = flm
1
f'(a)

the perpendicular lineis y=f(a) - (x-a)

Note below the relationship between the slope of a line (red) and the slope of a line perpendicular to
it (blue).

lJ.
-m
‘ !
1
m
1
. . Ay _m _

Slope of theline [ is 7=="=m
Slope of the perpendicular line [ is m, = i—z= j= —#.

For scientists, finding the growth rate (or rate of change) of a quantity is perhaps the most important
application.

For example, suppose the mass of a growing melon is M =t gm, t in weeks. What is its growth rate
when t=5 weeks?
Answer: Its growth rate then is

dMm _ _ grams
dt =2t t=5 =10 week

which means during the next week, you expect its mass to increase by about* 10 grams.
*about because the curve is not completely straight.
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Exercises When the exercise set is small, make sure you spend extra time on the lesson readings!

1. Invent graphical examples of your own that illustrate
1. (1) isareal number.
2. f41) is -o0
3. (1) does not exist
2. a. Use a graphing calculator to draw the curve y=x3 for 0Sx<2.
Zoom in about x=1 until the curve there looks like a straight line. What was the
magnification?
b. Find the approximate slope at x=1 using a suitable Ax. Compare with the exact answer.

3. Invent graphical examples of your own that illustrate
a. adiscontinuity at x=0.
b. acuspat x=0.
c. highly oscillatory x=0.

4. Consider the graphs below. Which are differentiable at x=0?

o1 o1 2 i L
sin— X sin— X2sin—
X 5% X
05F /
1 e S . 1 1 X
-1.0 -10 -0 = 05 1.0
-0.5
10 X

5. Use the definition of derivative to find the derivative of f(x) = i/? at x=0.

> f(x) = y1-x°

a. f?(_1+) — 1 1 X

b. P(17) = Think graphically. You soon will learn how to find f'(x) analytically.

Note:

(-1, the 'derivative from the right means taking dx >0 at x = -1.
f “(17), the 'derivative from the left means taking dx <0 at x = I.

Solutions
4. No, No, Yes

6. +00, -00
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2.3 Basic Derivative Rules

You know the Power Rule; ‘;Lx(x”) =nx""1. Next we learn how to differentiate many algebraic combinations
of powers of x.

Let u=u(x) and v=v(x) be differentiable.

I. Constant Multiple Rule £-(cu) = cﬂ—)‘:

Il. Sum Rule Jix(u+v) = 3’—)‘(’+ ‘é—)‘:

lll. Product Rule Lv) = Fv+uP
du dv

. d
IV. QuotientRule dx.

Note: The Quotient Rule seems to be the hard one to remember. If you memorize the the Product Rule

as shown above, the numerator of the Quotient rule is the same as the Product Rule but with a minus
sign in front of the second term. That minus sign makes sense because when a denominator increases,
the fraction decreases.

Proofs Using Symmetric Applied Function Notation This notation is often used by scientists and
engineers because it is useful and intuitive when analyzing problems (and doesn't waste letters).

Let u=u(x) and v=v(x) be differentiable functions

U

u = u(x)

U +du
u

u(x+dx) =u+du

Note that there should be no confusion between the dependent variable u and the function u(x).

I. Constant Multiplier Rule i(cu) =c :—:

d dx) - . A
Proof o (cu)= c_u(x-v-ﬁ)g)x&(ﬁ definition of derivative

- . .
= Clutdu) - (cu) ""'d: cu applied notation
X

cu+cdu—-cu

dx
du

dx

=C
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d du , dv
— = — =
Il. Sum Rule dX(u +V) ax T dx

Proof % (+v)= (u(x+dx) + v(x+dx)) = u(x) + v(x))

dx
((u+du)+(v+dv))=(u+v)
- dx
_ du+dv
dx
_du  dv
dx  dx

d du dv
— = =y + -
lll. Product Rule =(uv) el rm

Proof i (u u(x+dx) v(x+dx) = u(x) v(x)

_ (u+du)(v+dv)-uv

dx
_ (uv+udv+duv+dudv) —uv
- dx

d d d
_uv + u_v + _udv
dx dx dx
du . dv

dx dx

vtu

. fix+ Ax) glx+ Ax) = f(x) g(x
Textbook Proof (f(x) g(x))’ = limaxo Ax

fix+ Ax) g(x+ Ax) = f(x+ Ax) g(x) + f(x+ Ax) g(x) = f(x) g(x

= limaxso A Explain this step.
X
. gx+Ax) = 9g(X)  fixe Ax) - f
= limpy s o flx+ax ) =y ———+ [xrAx)=flx) o g(x)

= f(x)g’(x) + () g(x)

du dv
. dfuy_ sV~ Us
IV. Quotient Rule dx(V)_ st
ulxrdx) _ ulq)
d (u) - M v
Proof = (V) = ™
— 1l fu+du U
B dx(v+dv v)

1 (u+du)v-u(v+dv)
dx (v+dv) v

_ 1 _uv+ —uv=—

dx (v+dv)v

1 duv—udv
dx (v+dv)v

- dx dx
(v+dv)v
du 4
dx dx

Q
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Examples
C‘ij_X(X3 -3x*+5)=3x>-3-2x

c?—X((Zx+ 1) G +2x2+5)) =203 +2x2 +5) + (2x + 1)(3x% = 2-2x)

d (a2 T\ _ (2642) (AX=9) - (424 7) (4)
dX( 4x-9 )_ (4x-9)?

You can now differentiate all polynomial and rational functions quickly!

How do you differentiate the product of three factors? Think of it as two factors.
JLX[X(XZ +1) (3 +2)]

= %[x {02 +1) (3 +2)}]
= H{(x* +1) (0 + 2)} + x{2x(x3 + 2) + (x* + 1)3x%}

Another way to remember the product rule is to write the sum of uv twice, uv + uv, and then take the
derivative of u in the first term and then the derivative of v in the second term. Trying that for uvw we
d _ du dv

N du dv dw
would get GIX(uvw)— o YW T U Wt UV

Good Derivative Notation Style for y=f(x). Various notations are
&~ f(x) =Dy =Df(x) = Dy =Df(x) =y ="
The first is preferred by applied mathematicians. The second by pure mathematicians. The others are

for special applications or are out of style. y’ is for the poorly motivated (it does not tell you what the
independent variable is). The over-dot notation is usually used when the independent variable is t.

Examples
Form Preferred Style
) dy —

y=3x“+2, ol
f(x) = x°, f¢(x) =5x*

— dy _¢1
y =f(x), o -1 (x)
X3 +5x, %(x3+5x):3x2+5

Theory Exercises

1T. Use the definition of = to prove %(" + U% + :_idv = j_l:(v+ u%.
:—"v- u :—" :—:V- u :—:
2T. Use the definition of = to prove —("“dv)v" = I
d dv

— du dv dw
3T. Prove dx(uvw)— YW T U W+ uv e
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Exercises Do not simplify*

1. y=x' 2. f(x)=x"2
3. G%([x”] 4, JLX[JTX]
5. 349 6. L-7y/x]
3

7. Licyx] 8. 4[2]

4 dr.2
o. dX[3x+2] 10. dX[ax +bx -]
11. C%([)(3—3)(2—5)(+2] 12. :—X[x7—3x6]
13. Z[2/x -5%/x] 14. Llx/x -1]

d d
15. 4[t-3] 16. E[[ﬁ +2p]
17. i[(x2 +5)(3x3=7x+5)] 18. i[(ax +b) (cx? + dx +e)]
19. jx [(x+1)(x2 +2) (x3 + 3)] 20. L[(x+1)(x? +2) (0 +3) (x* +4)]
21 4 dx X+5] 22. &[m]

d[_ax+b a ﬂ
23. dx Lx2+cx+d 24. dp[p+2

d [ (2+3)(2X3-Tx+4) (t+1) (t+2)
25. dx[ X2+ 5 ] 26. dt[ (t=3) (t=4) (t- 5)]

27. Use the Quotient Rule to prove the Power Rule for n a negative integer. Recall we proved the Power
Rule for n a positive integer. Hint: write Jix(x‘”).

28. Write the formula for the derivative of uvwz.

Solutions
. Tx8
o
15x4
[C\/_]‘_ x13] = %cx‘zl3

1

o N0 W e

3
11. 3x* -6 X -5
13. [2\/_ 5+¢/x 1= 2)(1/2 xM3]=x72. —x_2/3
15. 1
17. 2x(3X3 = Tx+5) + (x> +5)(9x* = 7)
19. 102 +2) (3 +3) + (x+1)(2x) (x3 + 3)]+ (x + 1) (x? + 2) (2 x?)]
2L o5
a(x2+cx+d)—(ax+b)(2x+c)
(x+cxd)?
[2X(23-7 x+4)+{(x2 + 3) (62 = 7)]-[(x® + 3) (23 - 7 x+ 4)](2X)
(x2+5)

23.

25.

* Normally it is not necessary to simplify unless you want to check the 'answer at the back of the book' or you are

going to use it for further work or you are compulsive. If you do not simplify, you can see how the answer was
calculated when looking at the solutions (depending on the author).


Bill
Typewritten text
3
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2.4 The Derivatives of Some Transcendental Functions

Today we derive the rest of the formulas for derivatives of functions every beginning calculus student
should know.

General Derivative Formulas

I. %(cu)=cd—” [cf(x)]'=cf’(x)

. i(u+v) Ly de [f(z) + g(x)]'=f"(x) +g"(x)

M. f£wv)=Lv+u 31 [f(x) g(x)1" =f"(x) g(x) + f(x) g" (x)
u\_ Sv-ue f'(x) g(x) = fix) 9" (x)

V. L( )‘ v2 [g(X)] g*(x)

Note: remember the numerator of the quotient rule by observing it’s the same as the product
rule but with a minus sign. The second term is negative because a fraction decreases when its
denominator increases.

Special Derivative Formulas

d(c)=0 (x")'=nx""

£ (sinx) = cos x (cosx)'=-sinx

4 (tanx) = sec2x (cotx)'=-csc’x

£ (secx) = secx tanx (cscx)'=-cscx cot x
=1

Jix(ex)=ex (Inx)"= X

That’s all folks! (for now)

The bottom row is not universally taught in first semester calculus. However, some disciplines
require it. For the rest of us, it gives us more opportunity to practice doing derivatives even for
unfamiliar functions. We will only do a quick and dirty introduction to them now. Next semester
we will do a careful study of these very important functions.

The Trig Functions
Finding a derivative normally leads to a {0/0} type limit. In section 1.3, we looked at the limits

. sinh
llmh_>0 h =1

. l-cosh =0
limpso=p

To reinforce these limits look at the graphs below

sin@ l—cosd Hint: Observe values
e P near 6 =0.
- M 2 fa) L ! I/_\ZH 0




or, better yet, see if you can read these limits off of the unit circle.

c D
1 tan@
sin | ¢
0 cosf 1
ATB
1-cosf

You will also have to recall some identities:

sin(Ax B)=sinAcosB x cosAsinB

cos(A*B)=cosAcosBFsinAsinB

tanA= 204 cotA= <=4
CosA SinA

=1 -1
secA= p— cscA= SnA

Proof Let y=sinx
dy _ sin(x+dx)-sinx

Observe that as 0 approaches 0, sin 0 and
0 both approach tan 0 =

Observe that as 0 approaches 0,
1 - cos 0 is very small compared to 0

= 1- ceos(-) )

definition of derivative

dx dx
— sinxcosdx-cosxsindx-sinx
dx
— _l-cosdx sin x + sindx COS X
dx dx
=> -0-sinx + 1-cos X the trig limits above
= COSX

Proofs Let y=cos x. Exercise for you.

Proof Let y=tanx

d. _ 1( sinx) _ COSXCOSX—Sinx(=sinx)
dxtanx_ dx \ cosx cos2 x
= ——=sec’
cos? x

Proof Let y=cotx. Exercise for you.

Proof Let y=secx
isecx: 1( 1 ) — 0-1(-sinx)
dx dx \ cosx cos? x

_ 1 sinX:
= Cosx cosx secx tanx

Proof Let y=cscx. Exercise foryou.
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The Natural Exponential and Logarithmic Functions
Exponential functions, y = b*, often are uses to model growth (if b> 1) or decay (if 0<b<1).

In advanced applications the base called e is chosen because it has a simple derivative. That base
e= 2.718 -* is called Euler’s constant. The natural exponential function is

y=eX.
Its graph lies between the graphs of y= 2¥ and y= 3*.

Y X

30¢ If we did more with this topic now,

this book would be called
Apex Infinitesimal Calculus,
Early Transcendentals.
Some disciplines require this function in
the first semester.

251

20F

2 = 0 1 2
Its derivative formula is derived next semester.

d
L(e)=e

The inverse function for y=€* is obtained by solving for x in terms of y. This cannot be done by
elementary algebra. So we give this function a name and let calculators tell us its values. Then

x=lny < y =¢
In is pronounced ‘natural logarithm’ or ‘ell-en’ or ‘lon’ (rhymes with Ron). In advanced math In

is often written log. To study this function we interchange x and y and write y=Inx.

6 -

ol y=Inx

The derivative of y=Inx < x=¢' is

dy__1 _1_1
dx_ax/dy_ey_x’

c;Lx(lnx) =

You will also need some properties of the natural logarithmic function.
1. In(uv)=Ilnu+Inv

2. In %:Inu+lnv

3. Inu=vinu

Note: there are thousands of advanced named functions, some of which you may use
without a full understanding of them, like eX and Inx now. Get used to that!
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Terms and Concepts

d
1. T/F: The Product Rule states that ™ (x2 sinx) = 2xcosx.
x

d 2
2. T/F: The Quotient Rule states that — X— = cosx.
dx \ sinx 2x

3. T/F: The derivatives of the trigonometric functions that

“w_n

start with “c” have minus signs in them.

4. What derivative rule is used to extend the Power Rule to
include negative integer exponents?

5. T/F: Regardless of the function, there is always exactly one
right way of computing its derivative.

6. Inyour own words, explain what it means to make your an-
swers “clear.”

Problems

In Exercises 7 — 10:
(a) Use the Product Rule to differentiate the function.

(b) Manipulate the function algebraically and differenti-
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.
7. f(x) = x(x* + 3x)
8. g(x) = 2(5x%)
9. h(s) = (25 — 1)(s + 4)
10. f(x) = (X +5)(3 — x°)

In Exercises 11 — 14:
(a) Use the Quotient Rule to differentiate the function.

(bJ*Manipulate the function algebraically and differenti-
ate without the Quotient Rule.

(c) Show that the answers from (a) and (b) are equivalent.

*Not recommended. Typically

43
11. f(x) = yields an ugly looking answer.
X =2
12. = ——
9() = 5
3
13. h(s) = —
(s) 4s3
2 —
14, ft) = L1

In Exercises 15 — 36, compute the derivative of the given func-
tion.

15. f(x) = xsinx
16. f(x) = x* cos x

17. f(x) = e*Inx

18. f(t) = tiz(csct _4)

x+7
19. =
9(x) X—5
tS
20. g(t) = ——
9(t) cost — 2t2

21. h(x) = cotx — €
22. f(x) = (tanx) Inx
23. h(t) =7 +6t—2

X e

24. f(x) 2

25. f(x) = (3x* + 8x + 7)€"

26. g(t) =

7x—1

27. = (16X +24x* +3x)—— =~
flx) = (16x" + 24x" + 3x) 16x3 + 24x% + 3x

28. f(t) = t(sect +e')

sinx
29 ) = o3
3 . sin6
cos X X
31. = — 4+ —
fx) X + tanx

32. g(x) = €*(sin(w/4) — 1)
33. g(t) = 4te' —sintcost

t?sint+ 3
34. h(t) = t2cost + 2

35. f(x) = x*¢tanx

36. g(x) = 2xsinxsecx
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In Exercises 37 — 40, find the equations of the tangent and Review
normal lines to the graph of g at the indicated point.
In Exercises 49 — 50, use the graph of f(x) to sketch f'(x).

37. g(s) = e°(s> + 2) at (0, 2). y

38. g(t) =tsintat (3, —3)

39. g(x) = x)i at (2,4)
cosf — 86
40. g(d) = —— at (0,1
9(0) = 251 at(0.1)
y
64
In Exercises 41 — 44, find the x—values where the graph of the 4t

function has a horizontal tangent line. /\z
50. ‘ \

3 /2 Ll 1 2\3\ g
41. f(x) = 6x* — 18x — 24 -
4l

42. f(x) = xsinxon [—1,1]

43. f(x) = Xi -
2
44. f(x) = xil

In Exercises 45 — 48, find the requested derivative.

45. f(x) = xsinx; find f” (x).
46. f(x) = xsinx; find £ (x).
47. f(x) = cscx; find £ (x).

48. f(x) = (X* — 5x +2)(xX* + x — 7); find £ ® (x).
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Solutions 2.4

1 F 27.
2. F 28.
3T 29.

4. Quotient Rule

5 F 30
6. Answers will vary. 31
7. (a) f/(x) = (x* +3x) +x(2x + 3) 32
(b) f'(x) = 3x* + 6x 33
(c) They are equal. 34
8. (a) g'(x) = 4x(5x3) + 2x*(15x%)
(b) g'(x) = 50¢* =
(c) They are equal. 36
9. (a) W(s)=2(s+4)+ (25— 1)(1)
(b) (s)=4s+7 37
(c) They are equal.
38
10.  (a) f'(x) = 2x(3 — x3) + (x® 4+ 5)(—3x?)
(b) f'(x) = —5x* — 15x* + 6x
(c) They are equal. 39.
11. (a) f’(x) = W 40
b) f/)=1-3%
(c) They are equal. 41.
_22(3¢% =40 — (* —2%) (%) 42.
12. (a) g’(x) — (3« X 4X4x X X
(b) ¢'(x) =1/2 -
(c) They are equal. 44.
300y 2 45,
13, (a) H(s) = O30 i
b) h'(s) =—9/4s=%
(b) '(s) = ~8/4s -
Th I.
(c) They are equa 2 "
1. (@) f'(t) = —““)(Z(tfjl(fflm)
(b) f(t) =t—1whent# —1,s0f'(t) = 1.
(c) They are equal.
15. f'(x) = sinx + xcosx
16. f’(x) = 2xcosx — x? sinx
17. f'(x) = eXInx+ e’(%
18. f'(t) = :—f(csct74)+ 7 (—cscteott) 49.
19. ¢'(x) = %
942 AN 5V ein b
20. g’(t) _ (cos t—2t )((55517;2%2 sin t—4t)
21. h'(x) = —csc? x — e
22. f'(x) = (sec?x) Inx + (tanx)1
23. W(t) = 14t + 6
X X3 X2 — X4 X3
2. (@) f/(n) = DO
(b) f(x) = x* when x # —2,s0 f'(x) = 3x°.
(c) They are equal.
25. f/(x) = (6x+ 8)e* + (32 + 8x + 7)e*
to5t4 32 ) (5 —3)et
26. g'(t) = W

i) =7
f/(t) = 5t*(sect + ef) + t>(secttant + ef)
_ sin®(x)+cos? (x)+3 cos(x)
fl) = (cos(x)+3)2
3 " 2
. f9) = 362sinf + 63 cos § + 07 cos 6= (sin ) (30”) cmg*g?" 0)(367)
yciny— _ 2

. f/(X) — )(Sln):(2 COs X + tanXtanXZS:C X
.gd(x)=0
. g'(t) = 12¢%et + 4t3et — cos? t + sin’ t

fl( ) _ (t% cos t42) (2t sin t+t% cos t) — (2 sin t4-3) (2t cos t—t? sin t)
' X) = (2 cos t+2)2
. f/(x) = 2xe*tanx = x?e* tan x + x?e* sec? x

. g'(x) = 2sinxsecx + 2xcosxsecx + 2xsinxsecxtanx =
2tanx + 2x 4+ 2xtan?x = 2tanx + 2xsec? x

. Tangentline:y = 2x + 2
Normal line: y = —1/2x + 2
. Tangentline:y = —(x — 37”) - 37” = —x
ine: 31 3
Normalline: y = (x — ) — 5f =x — 37
Tangent line:y = 4
Normal line: x = 2
Tangentline: y = —9x + 1
Normal line:y =1/9x + 1
x=3/2
x=0
f'(x) is never 0.
x=-=2,0
f"(x) = 2cosx — xsinx
f® (x) = —4cosx + xsinx
f"(x) = cot? xcscx + csc x
f® =0
y
6 4
4]
+ + + + + + X
-3 -2 -1 12 3
2
4
6 |
y
6 4
4]
—_ 0
2 ]
+ + + + + X
-3 -2 o133 3
ol
4]
6 |
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2.5 The Chain Rule

In applications you rarely meet a simple function like cos x. Its more likely to look like cos(2.34x +7.29)
or cos(2rtft), the composition of the cosine function with another function.

Suppose y=f(g(x)). Takingitapart: y=f(u), u=g(x)

V. The Chain Rule dy _ dy du
dx du dx

Proof The chain rule proves itself by hyperreal algebra. One possible problem. By the definition of

dy

d
derivative, in d—u, dx cannot be 0. But du could be. Then the first factor p would have an illegal
X u

denominator, 0. The cure: disallow, as required by the definition of derivative, the dx thatyields du=0.

Example y=(2x + 4)3. Think y=u3,u=2x+4.Then
L((2x + 45 =3(2x + 4)*2

Often with y =f(g(x)) we think of the chain rule as the derivative of a composite function as the
derivative of the outside function times the derivative function. Some prefer the pure math version

[f(g(x))]’=f’(g(x))-g’(x) thinking (outside fn)’ - (inside fn)’

Whence the name ‘Chain Rule’?

Suppose y=f(g(h(x))) e y=f(u),u=g(v),v=h(x)?
Then

dy _dy du dv

dx  du dv dx’
the terms being connected in a chainlike way.

Example

dd—x (cos®*(x? +5)); y=u?,u=cosv,v=x2+5

=3-cos{x? + 5)- (=sin(x? +5)- 2x

Special Derivative Formulas in Chain rule form Itis a good idea to memorize
these formulas in this form.

Let u=u(x) and v=v(x) be differentiable functions. Then

&(c)=0 dx(um) =numig
&(sinu)=cosu & &(cosu) =-sinu &
&(tanu) = sectu & &(cotu) =-csc?u &
i(secu)=secutan ude de(cscu) =-cscu cot u j_::
NG ER - Z(lnu) = 14

d < =_1 du
(") = a'lna ﬂ_: dx(logau) ulnadx
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Readings: The Chain Rule

We have covered almost all of the derivative rules that deal with combinations
of two (or more) functions. The operations of addition, subtraction, multiplica-
tion (including by a constant) and division led to the Sum and Difference rules,
the Constant Multiple Rule, the Power Rule, the Product Rule and the Quotient
Rule. To complete the list of differentiation rules, we look at the last way two (or
more) functions can be combined: the process of composition (i.e. one function
“inside” another).

One example of a composition of functions is f(x) = cos(x?). We currently
do not know how to compute this derivative. If forced to guess, one would likely
guess f'(x) = —sin(2x), where we recognize — sin x as the derivative of cos x
and 2x as the derivative of x2. However, this is not the case; f/(x) # — sin(2x).
In Example 2.5.4 we’ll see the correct answer, which employs the new rule this
section introduces, the Chain Rule.

Theorem The Chain Rule

Let g be a differentiable function on an interval /, let the range of g be a
subset of the interval J, and let f be a differentiable function on J. Then
y =f(g(x)) i s a differentiable function on /, and

Example 2.5.1 Using the Chain Rule
Find the derivatives of the following functions:

1. y =sin2x 2.y=In(4¢—-2x*) 3 y=e~¥

SOLUTION

1. Consider y = sin2x. Recognize that this is a composition of functions,

where f(x) = sinx and g(x) = 2x. Thus

y' =f'(g(x)) - g'(x) = cos(2x) - 2 = 2 cos 2x.

2. Recognize that y = In(4x® — 2x?) is the composition of f(x) = Inx and

g(x) = 4x3 — 2x%. Also, recall that

%(Inx) = %

This leads us to:

, 1 5 12x* —4x  4x(3x—1) 2(3x—1)

y' = ——— (12" — 4x) = = = .
43 — 2x? 43 —2x*  2x(2x% — x) 2% — x

3. Recognize thaty = e is the composition of f(x) = e* and g(x) = —x*.

Remembering that f'(x) = €*, we have

2 2

y ' =e ™ . (=2x) = (—2x)e™*.
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Example 2.5.2 Using the Chain Rule to find a tangent line
Let f(x) = cos x%. Find the equation of the line tangent to the graph of fatx = 1.

soruTion The tangent line goes through the point (1, f(1)) = (1, 0.54) with
slope f(1). To find f/, we need the Chain Rule.

f'(x) = —sin(x?) - (2x) = —2xsinx?. Evaluated at x = 1, we have f'(1) =
—2sin1 ~ —1.68. Thus the equation of the tangent line is

y = —1.68(x — 1) + 0.54.
The tangent line is sketched along with fin Figure 2.5.1.
The Chain Rule is used often in taking derivatives. Because of this, one can

become familiar with the basic process and learn patterns that facilitate finding
derivatives quickly. For instance,

d 1 (anything)’
In(anythin ) ———— - (anything) = ———>.
dx ( (anything) anything - (anything) anything
Example 2.5.3 Using the Chain Rule multiple times
Find the derivative of y = tan®(6x® — 7x).
SOLUTION Recognize that we have the g(x) = tan(6x®> — 7x) function

“inside” the f(x) = x® function; that is, we have y = (‘tan(6x —7x))5. We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
derivative. Rather, we are approaching this step—by-step.

y’ = 5(tan(6x’ — 7x))4 g’ (x).
We now find g’(x). We again need the Chain Rule;
g'(x) = sec?(6x® — 7x) - (18x* — 7).
Combine this with what we found above to give
y' = 5(tan(6x® — 7x)) -sec?(6x® — 7x) - (18x* — 7)
= (90x* — 35) sec?(6x®> — 7x) tan*(6x> — 7x).

This function is frankly a ridiculous function, possessing no real practical
value. It is very difficult to graph, as the tangent function has many vertical
asymptotes and 6x> — 7x grows so very fast. The important thing to learn from
this is that the derivative can be found. In fact, it is not “hard;” one can take
several simple steps and should be careful to keep track of how to apply each of
these steps.

X

-1 |

Figure 2.5.1: f(x) = cos x* sketched along
with its tangent line at x = 1.
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Terms and Concepts

1. T/F: The Chain Rule describes how to evaluate the deriva-
tive of a composition of functions.

d
2. T/F: The Generalized Power Rule states that o (g(x)") =
x

n(g(x)"".

d 2 1
d
4. T/F —(3) =113
/R (3) =11-3%
dx dx dt
5. T/F:— = — - —
/ dy dt dy

6. f(x) = (Inx—|—x2)3

Problems

In Exercises 7 — 36, compute the derivative of the given func-
tion.

7. f(x) = (4 — x)¥°

8. f(t) = (3t —2)°

9. g(#) = (sinf + cos 6)?
10. h(t) = &+t
11 f(x) = (Inx +x2)°
12. f(x) = 2>
13. f(x) = (x+ 1)*
14. f(x) = cos(3x)
15. g(x) = tan(5x)
16. h(0) = tan (6% + 40)
17. g(t) =sin (£ + 1)

18. h(t) = sin*(2t)

19. p(t) = cos®(* + 3t + 1)
20. f(x) = In(cosx)
21. f(x) = In(x?)

22. f(x) = 2In(x)

23. g(r)=4"

24. g(t) = 5"

25. g(t) = 157
3W
26. m(w) = >w
2'+3
27. h(t) =
® 3t+2
Y41
28. m(w) = 3t
2W
5 _ 3 4 x
9. £ = >

30. f(x) = x*sin(5x)

31 f(x) = (¢ +x)°(3x" + 2x)°
32. g(t) = cos(t® + 3t) sin(5t — 7)
33. f(x) = sin(3x + 4) cos(5 — 2x)

34. g(t) = cos(%)eSrz

35. f(x) = STSE:‘%;)
_ (Ax+1)?
36. f(x) = “an(sx)

In Exercises 37 - 40, find the equations of tangent and normal
lines to the graph of the function at the given point. Note: the
functions here are the same as in Exercises 7 through 10.

37. f(x) = (4 —x)Patx =0

38. f(t) = (3t—2)°att=1

39. g() = (sin@ + cosh)® atf = /2
40. h(t) = et 1att = —1

41. Compute %(In(kx)) two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule In(ab) = Ina + Inb,
then taking the derivative.

42. Derivative of sin x, x in degrees.

43. Find the second derivative chain rule.
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Solutions 2.5

10.
11.

12.
13.
14.
15.
16.

17.

18.
19.
20.
21.
22.
23.
24,
25.
26.

27.

28.

29.

30.
31.

32.

33.

34,

f') =

flx) =

(5x—9)®

tan2(5x)

8 tan(5x) (4x-+1) —5(4x+1)Zsec?(5x

(
g’(t) = cos (° +

DICEE)

dy _

h'(t) = 8sin3(2t) cos(2t) dx
p'(t) = —3cos?(t* 4 3t + 1) sin(t> + 3t + 1)(2t + 3) %132‘
f'(x) = —tanx
£ = 2/x &
flx) =2/x dx?
g'(r)=1In4-4"
g'(t) = —In5-5%tsint
g'(t) =
m’(W) =1In(3/2)(3/2)"
Fx) = (3 +2)((|n2)23)t;2()22+3)((|n3)3t)
i (w) = zW(|n3-3W;2|:2»(3W+1))

Jrn 22 (10337 20k 1) — (3° 4x) (I 2-27 2x)
fx) = P

f'(x) = 5x? cos(5x) + 2xsin(5x)
)=

. T, 2.F, 3.F, 4T,5T 35,
P = 3(Inx+ xz)z( o+ 2x) 36,
(%) = 10(43 — x)° - (12x% — 1) = (120x*> — 10)(4x® — x)° 37
f/(t) =15(3t — 2)*
g’ (0) = 3(sin 0 + cos 0)?(cos § — sin 6) 38.
W (t) = (6t + 1)e3 +t-1
F(x) =3(Inx+x?)2(% + 2x) 39.
£160 = (n2)(2* 932 +3) "
Fo)=a(c+3)° (1= %)
f'(x) = —3sin(3x) 41.
g'(x) = 5sec?(5x) 2.
h’(0) = sec? (6% + 46) (26 + 4) 43,

Py _

sy _

Tangentline:y =0
Normal line: x =0

Tangent line:y =15(t — 1) + 1
Normal line:y = —1/15(t — 1) + 1

Tangent line:y = —3(0 —7/2) + 1
Normal line:y =1/3(0 — 7/2) + 1

Tangentline:y = —5e(t+ 1) + e

Normal line: y = 1/(5e)(t +

1)+e

4(5x—9)3 cos(4x41) —15 sin(4x+1) (5x—9)?

In both cases the derivative is the same: 1/x.

Hint: convert x to radians.

y=f(g(x)) & y=f(u),u=gx)

dy du

~ du dx

_ d (dy\du, dy

- dx(d )dx+ dx dx
d_ui(im) 4 dy ?u
dx du \du/dx dx dx?
pve b Il vy
du? \dx dx dx?

50 4+x)*(2x 4 1) (3x* +2x)3 +302 +x)° (3x* 4+ 2x)2 (123 4 2)
g’ (t) = 5cos(t?+3t) cos(5t—7) — (2t+3) sin(t? +3t) sin(5¢t—7)

f'(x) = 3cos(3x + 4) cos(5 — 2x) + 2 sin(3x + 4) sin(5 — 2x)

g'(t) = 10tcos(%)est2 + 3 sin(%)esr2

Chain Rule
Product Rule

Hyperreal algebra
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2.6 Implicit Differentiation

In the previous sections we learned to find the derivative, %, ory’, when yis

given explicitly as a function of x. That is, if we know y = f(x) for some function
f, we can find y’. For example, given y = 3x?> — 7, we can easily find y’ = 6x.
(Here we explicitly state how x and y are related. Knowing x, we can directly find
y.)

Sometimes the relationship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that x> — y = 4. This equality defines a
relationship between x and y; if we know x, we could figure out y. Can we still
find y’? In this case, sure; we solve for y to get y = x> — 4 (hence we now know
y explicitly) and then differentiate to get y’ = 2x.

Sometimes the implicit relationship between x and y is complicated. Sup-
pose we are given sin(y) + y*> = 6 — x3. A graph of this implicit function is given
in Figure 2.6.1. In this case there is absolutely no way to solve for y in terms of
elementary functions. The surprising thing is, however, that we can still find y’
via a process known as implicit differentiation.

Implicit differentiation is a technique based on the Chain Rule that is used to
find a derivative when the relationship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be functions of x. Then

d

a(f(g(x))) =f'(g(x)) - g’ (x).

Suppose now that y = g(x). We can rewrite the above as

L) =F0) v o S()=fw- L @

These equations look strange; the key concept to learn here is that we can find
y’ even if we don’t exactly know how y and x relate.

We demonstrate this process in the following example.

Example 2.6.1 Using Implicit Differentiation
Find y’ given that sin(y) + y® = 6 — x°.

SOLUTION We start by taking the derivative of both sides (thus main-
taining the equality.) We have :

%(sin(y) + y3) = %(6 —x3).

Example

]
-
w

Wil x
+
Nl

(Xy3)

Yields two functions

yl:—EVQ—xz ; yZ:E 9-x?

Yields one function

)

Figure 2.6.1: A graph of the implicit func-
tionsin(y) +y> =6 — x°.

Compact Theory

y =f(g(x)) =y="f(u),u=g(x)

by hyperreal algebra.
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The right hand side is easy; it returns —3x2.
The left hand side requires more consideration. We take the derivative term—
by-term. Using the technique derived from Equation 2.1 above, we can see that

d(s'n )7cos !
(i _ s
dx y vy

We apply the same process to the y term.
d/; d 3) 2
- = — =3 -yl
o (y ) - ((y) )y
Putting this together with the right hand side, we have

cos(y)y’ + 3y?y’ = —3x%.

Now solve for y’.

cos(y)y’ + 3y*y’ = —3x%.
(cosy +3y*)y’ = —3x°
, —3x2
~ cosy + 3)2

This equation for y’ probably seems unusual for it contains both x and y
terms. How is it to be used? We’'ll address that next.

Implicit functions are generally harder to deal with than explicit functions.
With an explicit function, given an x value, we have an explicit formula for com-
puting the corresponding y value. With an implicit function, one often has to
find x and y values at the same time that satisfy the equation. It is much eas-
ier to demonstrate that a given point satisfies the equation than to actually find
such a point.

For instance, we can affirm easily that the point (\3/57 0) lies on the graph of
the implicit function siny 4y = 6 — x3. Plugging in 0 for y, we see the left hand
side is 0. Setting x = V6, we see the right hand side is also 0; the equation is
satisfied. The following example finds the equation of the tangent line to this
function at this point.

Example 2.6.2 Using Implicit Differentiation to find a tangent line
Find the equation of the line tangent to the curve of the implicitly defined func-
tion siny + y* = 6 — x° at the point (v/6,0).

SOLUTION In Example 2.6.1 we found that
, . —3x
cosy + 3y?’
Example F(x,y) =0
Y

_y= fa(x) )

y= 5(x) F(x,y) = 0 yields four functions.

. y=f2(x)

-y_; f;{;t)__l_ X
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We find the slope of the tangent line at the point (\%, 0) by substituting V6 for
x and O for y. Thus at the point (v/6,0), we have the slope as

y = -3(v6)2  —3V/36
cos0+ 3 - 02 1 =991

Therefore the equation of the tangent line to the implicitly defined function

3
siny 4+ y*>= 6 — x3at the point (1/6, 0) is
37 37

y=—3V36(x — v6) + 0 = —9.91x + 18.
The curve and this tangent line are shown in Figure 2.6.2.

This suggests a general method for implicit differentiation. For the steps be-
low assume y is a function of x.

1. Take the derivative of each term in the equation. Treat the x terms like
normal. When taking the derivatives of y terms, the usual rules apply
except that, because of the Chain Rule, we need to multiply each term
by y'.

2. Get all the y’ terms on one side of the equal sigh and put the remaining
terms on the other side.

3. Factor out y’; solve for y’ by dividing.

Practical Note: When working by hand, it may be beneficial to use the symbol
% instead of y/, as the latter can be easily confused for y or y*.

Example 2.6.3 Using Implicit Differentiation
Given the implicitly defined function y* + x?y* = 1 + 2x, find y'.

SOLUTION We will take the implicit derivatives term by term. The deriva-
tive of y3 is 3y2y’.

The second term, x?y#, is a little tricky. It requires the Product Rule as it is the
product of two functions of x: x? and y*. Its derivative is x*(4y®y’) + 2xy*. The
first part of this expression requires a y’ because we are taking the derivative of a
y term. The second part does not require it because we are taking the derivative
of x°.

The derivative of the right hand side is easily found to be 2. In all, we get:

3%y  + aPyy’ + 2xy® = 2.

Move terms around so that the left side consists only of the y’ terms and the
right side consists of all the other terms:

3y%y' + axPyy’ =2 — 2xy*.

Devil's Curve y*(y*-4) = x*(x*-5)

Example

i - FYVE*

2k

Figure 2.6.2: The function siny + y* =
6 — x> and its tangent line at the point

(v/6,0).

For Your Viewing Enjoyment
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Figure 2.6.3: A graph of the implicitly de-
fined function y* + x*y* = 1 + 2x along
with its tangent line at the point (0, 1).

Figure 2.6.4: A graph of the implicitly de-
fined function sin(x*y?) + y* = x + y.

Example

FYVE*
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Factor out y’ from the left side and solve to get
) 2- 2xy*
3y? + 4x?y3’

To confirm the validity of our work, let’s find the equation of a tangent line
to this function at a point. It is easy to confirm that the point (0, 1) lies on the
graph of this function. At this point, y’ = 2/3. So the equation of the tangent
lineisy = 2/3(x—0)+ 1. The function and its tangent line are graphed in Figure
2.6.3.

Notice how our function looks much different than other functions we have
seen. For one, it fails the vertical line test. Such functions are important in many
areas of mathematics, so developing tools to deal with them is also important.

Example 2.6.4 Using Implicit Differentiation
Given the implicitly defined function sin(x?y?) + y® = x +y, find y'.

SOLUTION Differentiating term by term, we find the most difficulty in
the first term. It requires both the Chain and Product Rules.

%(sin(x2y2)> = cos(x%y?) - (x y )
= cos(xy?) - ( 2(29y") + 2xy°)
=2(xyy’ + xy?) cos(x’y).

We leave the derivatives of the other terms to the reader. After taking the
derivatives of both sides, we have

20y’ 4+ xy*) cos(X’y?) + 3y’y' = 1+y'.

We now have to be careful to properly solve for y’, particularly because of
the product on the left. It is best to multiply out the product. Doing this, we get

2%y cos(x*y?)y’ + 2xy? cos(x*y?) + 3y*y =1 +y'.
From here we can safely move around terms to get the following:

23y cos(x*y?)y’ +3y%y" —y’ =1 — 2xy? cos(x*y?).
Then we can solve for y’ to get

, 1 —2xy*cos(x’y?)
v = 2x2y cos(x2y?) +3y2 — 1’

Tschirnhausen Cubic (Christian Symbol) y* =x* + 3x%

-3.0 -25 -2.0 -1.5 -1.0 -05 0.0 05
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A graph of this implicit function is given in Figure 2.6.4. It is easy to verify
that the points (0,0), (0,1) and (0, —1) all lie on the graph. We can find the
slopes of the tangent lines at each of these points using our formula for y’.

At (0,0), the slope is —1.

At (0,1), the slope is 1/2.

At (0,—1), the slope is also 1/2.

The tangent lines have been added to the graph of the function in Figure
2.6.5.

Quite a few “famous” curves have equations that are given implicitly. We can
use implicit differentiation to find the slope at various points on those curves.

We investigate two such curves in the next examples.

Example 2.6.5 Finding slopes of tangent lines to a circle
Find the slope of the tangent line to the circle x> 4-y? = 1atthe point (1/2,1/3/2).

SOLUTION Taking derivatives, we get 2x+2yy’ = 0. Solving for y’ gives:
y'=—"
y

This is a clever formula. Recall that the slope of the line through the origin and
the point (x,y) on the circle will be y/x. We have found that the slope of the
tangent line to the circle at that point is the opposite reciprocal of y/x, namely,
—x/y. Hence these two lines are always perpendicular.
At the point (1/2,/3/2), we have the tangent line’s slope as
T2 Tl o5

GERRVETF RV

A graph of the circle and its tangent line at (1/2,+/3/2) is given in Figure
2.6.6, along with a thin dashed line from the origin that is perpendicular to the
tangent line. (It turns out that all normal lines to a circle pass through the center
of the circle.)

This section has shown how to find the derivatives of implicitly defined func-
tions, whose graphs include a wide variety of interesting and unusual shapes.
Implicit differentiation can also be used to further our understanding of “regu-
lar” differentiation.

One hole in our current understanding of derivatives is this: what is the
derivative of the square root function? That is,

i _ d 1/2 )
dX(\/;()idX(X )7
Example | __Evolution Symbol. Evol(x,y})=0
FYVE

-3.0 -25 -2.0 -15 -1.0 -05 0.0 05

Figure 2.6.5: A graph of the implicitly de-
fined function sin(x*y*) +y* = x +y and
certain tangent lines.

(1/2,V3/2)

Figure 2.6.6: The unit circle with its tan-
gent line at (1/2,+/3/2).
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We allude to a possible solution, as we can write the square root function as
a power function with a rational (or, fractional) power. We are then tempted to
apply the Power Rule and obtain

9 pary = bep 2 L

dx 2 2/x

The trouble with this is that the Power Rule was initially defined only for
positive integer powers, n > 0. While we did not justify this at the time, gen-
erally the Power Rule is proved using something called the Binomial Theorem,
which deals only with positive integers. The Quotient Rule allowed us to extend
the Power Rule to negative integer powers. Implicit Differentiation allows us to
extend the Power Rule to rational powers, as shown below.

Lety = x™/", where m and n are integers with no common factors (som = 2
and n = 5is fine, butm = 2 and n = 4 is not). We can rewrite this explicit
function implicitly as y” = x™. Now apply implicit differentiation.

Z0m) =2 bm)

n

n_y—l.y/:m_xm—l

m—1
’ mXx

y

m/n

(now substitute x™/" for y)

; ynfl
m Xm—l
— - W (apply lots of algebra)

_ M (m=n)/n
n

m _
— 7Xm/n 1
n

The above derivation is the key to the proof extending the Power Rule to ra-
tional powers. Using limits, we can extend this once more to include all powers,
including irrational (even transcendental!) powers, giving the following theo-
rem.

Theorem 2.6.1 Power Rule for Differentiation

Let f(x) = x", where n # 0O is a real number. Then fis differentiable on
its domain, except possibly at x = 0, and f'(x) = n - x" 1.

Four Le‘af Rose

Example
FYVE

05

0.0

L R L
-1.0 -0.5 0.0 0.5 1.0

(2 +y2)* = ax2y?
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This theorem allows us to say the derivative of x™ is 7x™ 1.

We now apply this final version of the Power Rule in the next example, the
second investigation of a “famous” curve.

Example 2.6.6 Using the Power Rule
Find the slope of x*/3 + y?/3 = 8 at the point (8, 8).

SOLUTION This is a particularly interesting curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling around
inside of a larger circle, as shown in Figure 2.6.7.

To find the slope of the astroid at the point (8, 8), we take the derivative
implicitly.

2 2
SxV3 L Zy18

3 3
2 13, 2 a3
— = ——X
3/ TV T3
y_ X
y = y—1/3
N G |
y x1/3 X

Plugging in x = 8 and y = 8, we get a slope of —1. The astroid, with its
tangent line at (8, 8), is shown in Figure 2.6.8.

Implicit Differentiation and the Second Derivative

We can use implicit differentiation to find higher order derivatives. In theory,
this is simple: first find %, then take its derivative with respect to x. In practice,
it is not hard, but it often requires a bit of algebra. We demonstrate this in an
example.

Example 2.6.7 Finding the second derivative
d2
Given x* + y? = 1, find —g =y,
dx’
SOLUTION We found thaty’ = % = —x/yin Example 2.6.5. To find y”,

Example Example

TangentLineto xX*+y°=9 at (2,1)

FYVE

Figure 2.6.7: An astroid, traced out by a
point on the smaller circle as it rolls inside
the larger circle.

Figure 2.6.8: An astroid with a tangent
line.
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Logarithmic Differentiation Preview There is still one type of function we cannot handle.

y = f(x) 8¥)

The solution is to use Property 3 of logarithms:
In(AB) = BIn(A)

Logarithmic differentiation is an important tool in areas of applications.

For now we content ourselves with an interesting mathematics example.

Example 2.6.8 Using Logarithmic Differentiation
Given y = x*, use logarithmic differentiation to find y’.

SOLUTION As suggested above, we start by taking the natural log of

both sides then applying implicit differentiation.

y=x*
In(y) = In(x¥) (apply logarithm rule)
In(y) = xInx (now use implicit differentiation)
d
5 (0) = o)
x( n(y) o (xInx
!/
1
Y _ Inx +x-—
y
y/
—=Inx+1
y
y' =y(Inx+ 1) (substitute y = x")
y’ :xx(lnx+ 1).

To “test” our answer, let’s use it to find the equation of the tangent line at x =
1.5. The point on the graph our tangent line must pass through is (1.5, 1.51%) (1.5,
1.837). Using the equation for y’, we find the slope as

y'=15"°(In1.5+1) = 1.837(1.405)=2.582.

Thus the equation of the tangent line is y = 1.6833(x — 1.5) + 1.837. Figure
2.6.10 graphs y = x*along with this tangent line.

Implicit differentiation proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of functions. In particular, it extended the
Power Rule to rational exponents, which we then extended to all real numbers.
In the next calculus course, implicit differentiation will be used to find the

derivatives of inverse functions, such as y = sin"1x.

1 2

Figure 2.6.9: A plot of y = x*.

1¢
1 2

Figure 2.6.10: A graph of y = x* and its

tangent line at x = 1.5. X
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Example ~__Generalized Circles 1x1"+1y17=1
1.0: n=100 |
051 B
00 -
—0.5: B
-1.01 g
—1‘ 0 —0‘.5 0.‘0 0‘5 1‘0
Fortabletops:
n =1/2 intimate butdangerous corners
Scientific Ameri "
centific American 1 square, still dangerous
circa 1975
n=2 circle, wheretosit?

n=246 perfect (Scandinavian designer)
nz3 too square.

Tangent‘Line to x"+¥‘- 3xy? =5 at (1, 2)

[2)
T

Example
FYVE
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Terms and Concepts

1. Inyour own words, explain the difference between implicit
functions and explicit functions.

2. Implicit differentiation is based on what other differentia-
tion rule?

3. T/F: Implicit differentiation can be used to find the deriva-
tive of y = v/x.

4. T/F: Implicit differentiation can be used to find the deriva-
tive of y = x*/*.
Problems

In Exercises 5 — 12, compute the derivative of the given func-
tion.

1
5. 100 = VA + —

7
6. f(x) = /x + x>
7. ft)=v1-—-1¢

8. g(t) = Vtsint

10. f(x) =x" + x4t

11. g(x)

12. f(t) = vt(sect +€")
. ody -
In Exercises 13 — 25, find pm using implicit differentiation.

13. X*+y +y=7
14. X5+ /5 =1
15. cos(x) + sin(y) =1

X

16. - =10

17. Y =10
X

18. x*e? +2/ =5
19. x¥*tany = 50

20. (3% +2y°)* =2

21.

22.

23.

24.

25.

26.

(y* + 2y — x)* = 200

2

XY gy
X+ y?

sin(x) +y 1
cos(y) +x
In(x*+y*) =e

INOE +xy+y*) =1

Show that d—i is the same for each of the following implicitly
defined functions.

(@) xy=1

(b) ¥*y* =1
(c) sin(xy) =1
(d) In(xy) =1

In Exercises 27 — 32, find the equation of the tangent line to
the graph of the implicitly defined function at the indicated
points. As a visual aid, each function is graphed.

27. X5+ 5 =1

(a) At(1,0).

(b) At (0.1,0.281) (which does not exactly lie on the
curve, but is very close).

y

(0.1,0.281)




29. (xX* +y* —4)® =108y’

(a) At(0,4).
(b) At (2,—+/108).

y

3. (x—2)*+(y—3)*=9

(a) At
Example
(b) At

(35, 5242)

(52

22)
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3. X+ +2xy =0

(a) At(-1,1).
(b) At( 12(- 1+f))
(c) At (—1,%( 1—[5)).

In Exercises 33 — 36, an implicitly defined function is given.

dzy

Find —. Note: these are the same problems used in Exer-

cises 13 through 16.
3B+ Hy=7

34 Xy =1
35. cosx+siny=1

36. =10
y
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Solution 2.6

1. Answers will vary.
2. The Chain Rule.
3. T
4. T
Iy — 1,—1/2 _ 1,-3/2 _ _1 1
5. f'(x) = 3x / — 35X / =55 s
I(y) — 1,—2/3 4 2,—1/3 _ _1 2
6. f'(x) = 3x + 3x _3\3/72+3%
7. f'(t) = —=L
'(¢) = sint
8. g'(t) = Vtcost+ NG
9. h'(x) = 1.5x%5 = 1.5\/x
10. f/(x) = mx™ 1 + 1.9x09
) — V=A@ 1 7
1L g0 x T e
12. f'(t) = 1x7%/5(sect + e') + V/t(secttant + ef)
dy __ —a
13. o = 241
dy _ _y*/8
14 ¥ =Y
d) .
15. 2 =sin(x) sec(y)
dy _y
6. ;=1
dy _y
17. =1
dy _  ex(x+2)27Y
18 %=~ g
19. ¥ — _ 2sin(y) cos(y)
T odx X
dy __ X
dy _
21. o= 2
22. If one takes the derivative of the equation, as shown, using the
Quotient Rule, one finds & = Liay—y
’ dx T 2Ry—x+y?”
If one first clears the denominator and writes x* +y = 17(x + y?)
then takes the derivative of both sides, one finds % = =17
X 34y—1
These expressions, by themselves, are not equal. However, for
values of x and y that satisfy the original equation (i.e, for xand y
2
such that 1_:;{ = 17), these expressions are equal.
23. If one takes the derivative of the equation, as shown, using the
. . dy _ — cos(x) (x4-cos(y))+sin(x)+y
Quotient Rule, one finds & = TS0 (SN0 ) xFcos(y)
If one first clears the denominator and writes
sin(x) + y = cos(y) + x then takes the derivative of both sides,
X dy __ 1—cos(x)
one finds & = TEen(y)
These expressions, by themselves, are not equal. However, for
values of x and y that satisfy the original equation (i.e, for xand y
sin()+y) _ .
such that oSy 1) = 1), these expressions are equal.
dy __ X
2% F=-
dy _ _ 2x+ty
25. dx 2y+x
26. Ineach, ? =Y
X X
27. (a) y=0
(b) y=—1.859(x — 0.1) + 0.281
28. (a) x=1

29.

30.

31.

32.

33.

34.

35.

36.

(b)
()
(a)
(b)
(a)
(b)

(a)

y=—28(x—6) + V8~ —0.65(x — 0.775) + 0.894

y=1

y=4

y = 0.93(x — 2) 4 +/108

y=—-1/3x+1

y =3v3/4

y=—t(x-1)+ 588
- 4433 3

y=V3(x— )+ 3

y=1

y=—2(x+1) + L(-1+5)

Z+1)+3(-1-V5)

y:5

S

3
(2y+1)(—122) +4x3 (2 ;yjfl )
(2y+1)?

355 3 1

=55 T 567

__ COS X COos ersin2 xtany

cos?y
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3: THE GRAPHICAL BEHAVIOR OF FUNCTIONS

3.1 The Extreme Value Theorem

This section presents some very important properties shared by continuous functions. Their hyperreal
proofs are easy (Their real number based proofs are quite difficult and are normally omitted in a
beginning calculus course). While these theorems may seem obvious and unexciting, they form a basis
for further important results in the calculus and as an expert you will want to see their proofs and
understand their importance.

The main result we need now is the Extreme Value Theorem. The other theorems in this section
should be a part of your general background knowledge of continuous functions.

An important preliminary note A pertinent observation follows. In the proof we will calculate the

value of a continuous function f at a finite hyperreal number h infinitesimally close to a real number r*;
then h=>r and since f is a continuous function, f(h) =>f(r).
Y

y =1(x)

f(r)
f(h)

Another important preliminary note
Closed Sequence Principle Every mathematical question which can be answered for a finite sequence
r,r, *+,rn canbeanswered for a closed (infinite terminating) sequence hy, hy, - -+, hy.
For example
27* is the least element of the finite sequence {1,271,272,273 274}
2V is the greatest element of the infinite sequence {1, 2,22, - - - 2/},
But this cannot always be done for a non-terminating sequence:
{1,271,272,273 - - -} does not have a least element!

The Extreme Value Theorem Finding the maximum and minimum value of a function is important
in many applications. For example, a manufacturer normally wants to maximize the income function I(x) or
minimize the cost function C(x) for manufacturing x items. The following theorem gives an important case
where the maximum and minimum values are guaranteed to exist. Calculus will then be very useful in finding
these values.

(This important theorem is stated in Apex, Section 3.1, without proof.)
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Extreme Value Theorem Let f be continuous on the closed interval a<x < b. Then f has a maximum and
a minimum on the interval.

Y

y=1x)

First let us look at how the proof works approximately using real numbers to find the approximate
minimum value of f shown above on the interval a <x<b. Subdivide the interval into 9 equal finite
parts by the numbers xq, x1, X2, * * -, Xo. Then compute the sequence of values f(xo), f(x1), f(x2), - - -, f(xo).
The minimum value of the sequence is f(x;). So the minimum value may occur at x,, = x; and the minimum
value may be about f(xy,) = f(x7). One problem is, of course, that the solution is only approximate; in fact, this
solution may be extremely bad because the function could behave very badly between the calculated values.

Proof Subdivide the interval a <x<b into an infinite number N of subdivisions of infinitesimal length bea
N

by the sequence xo, X1, X2, ", Xn.
a Xm b
< 1 1 1 e0. ¢ — — 1 @' —0 0 4 1 1 1 1 > X
Xo X1 X2 Xi-1 Xi Xis1 XN-3 XN-2 XN-1 XN
Then compute the sequence of values {f(xo), f(x1), f(x2), - - -, f(xn)}. Suppose the minimum value of this sequence

occurs at x;. By the continuity of f, x;=> x,,, areal number. Then f(x;) => f(x;;), a real number which is the
minimum value of f on the interval.
End of Proof

The proof of the existence of a maximum at is similar and is left as an exercise.
Note that this theorem is so difficult to prove using -6 methods that it is omitted from many textbooks.

Example Find the extreme values of f(x)=1+(x -1 )? ontheinterval 0 <x<3.

Since f is continuous on the interval, the extreme values are guaranteed to exist. From the graph, the
minimum value y =1 occurs at the vertex of the parabola, x = 1. The maximum value y=5 occurs at the
endpoint x = 3. (Without the theorem which guarantees the existence of a maximum, you might forget to
look at end-points or not be sure that the extreme values actually exist.)
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Example Find the extreme values of f(x) =x?on the interval -1 <x<2.

Y

-2 -1 0 1 2 3

f is continuous, but the interval is not closed. So there are no guarantees. f has a minimum at x =0. But there
is no maximum.

Theory Exercises (Optional- but read thoughtfully)

Prove each using a variation of the Extreme Value Theorem proof.

Existence of Zeros Finding the zeros of a function is important in almost any area of mathematics.

This theo-rem says that a continuous function has zeros where you expect them, based on your knowledge of
its graph. The theorem guarantees the existence of a zero, but does little to help you find it. You know a few
methods of finding zeros such as the quadratic formula for quadratic equations. Calculus will provide a good
method

(Newton's Method) of finding zeros as accurately as you wish for a wide variety of functions. What this theorem
does is tell you when it is guaranteed worth while spending time looking for a zero.

Existence of a Zero Theorem Let f be continuous on the closed interval a <x<b. Suppose f(a)

and f(b) have opposite signs. Then there exists a number ¢, a<c<b, such that f(c) =0.

i y = f(x)

Intermediate Value Theorem This theorem is a generalization of the Existence of a Zero Theorem.

It says a continuous function on the closed interval a <x<b takes on all values between f(a) and f(b).

L N -

fa) F-—----—-+
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This theorem is a generalization of the Existence of a Zero Theorem. It says a continuous function on the
interval a<x<b takeson all values between f(a) and f(b). The proofis very similar to the proof of the
previous theorem and is left as an exercise.

Intermediate Value Theorem Let f be continuous on the closed interval a <x<b. Suppose d is
a number between f(a) and f(b). Then there exists a number ¢, a<c<b, such that f(c) =d.

Proof Subdivide the interval a<x<b into an infinite number N of subdivisions of infinitesimal length %"

by the sequence xo, X1, X2, ", Xu.

&0
[ Nl
o

L L o0 L L L L »X

Xo X1 X2 Xi-1 Xis1 XN-3 XN-2 XN-1 XN

Suppose f(a) > 0. Then compute the sequence of values f(a), f(x1), f(xz), - - - until f(x;) <0
(Closed Sequence Principle). Then by the continuity of f, recalling the first preliminary note, there is a real
number c such that
x;=>c and f(x;) =>f(c)=0.
So we have found the real zero ¢ exactly by a hyperreal calculation.
The proof of the existence of ¢ in the case where f(a) <0 is similar and is left for you.
End of Proof

The Mean Value Theorem The next sectionin many calculus textbooks is The Mean Value

Theorem (for Derivatives). It is used to prove theorems later in calculus. We will not need it for this
textbook. Most students find the theory tedious and hard to understand its use in proofs; an intuitive
understanding or other approach is better. So we will simply state it. If you need in a later calculus based
course, the instructor will review it because it will have been totally forgotten by most students.

The Mean Value Theorem Let f be continuous for agx<b.
Let f be differentiable for a<x<b. Thenthereisa ¢, a<c<b,suchthat

o =200, Y

Note This theorem is also called the '"Mean Value Theorem
for Derivatives.'

It states that under the hypotheses, 'There is at least one
point c in the interval where the slope of the curve is the
same as the slope of the line joining the endpoints.'
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3.2 The Extreme Values of a Function

Given any quantity described by a function, we are often interested in the
largest and/or smallest values that quantity attains. For instance, if a function
describes the speed of an object, it seems reasonable to want to know the

fastest/slowest the object traveled. If a function describes the value of a stock,

we might want to know the highest/lowest values the stock attained over the
past year. We call such values extreme values.

In Section 3.1, in the Extreme Value Theorem, we talked about the extreme
values of a function, namely its maximum and minimum. But in the process of
finding these extreme values, we will see that the situation is somewhat
complicated and we need to further clarify the terms maximum and minimum.
Let us look at an example.

Example

The minimum value of the function f is clearly at x=a.
We will call the minimum at x = a the global minimum
of the function.

But there is some kind of minimum at x=c even
though it is not the least value on the domain of f.
However, it is the minimum over values of x
infinitesimally close to c. We will call this minimum a

y = f(x)

local minimum of f. a
Note that x=a is also a local minimum of f.

f has a local maximum at x=b. It does not have global
maximum.

NOTE Some applied mathematicians say f hasa
global maximum at x = +e0, We will not.

Definition 3.2.1 Extreme Values

Let f be defined on an interval / containing c.
1. f(c) i s the global minimum of fon I if f(c) < f(x) forall xin .

2. f(c) i s the global maximum of fon I if f(c) > f(x) forall xin .

The function displayed in (a) has a maximum, but no minimum, as the interval
over which the function is defined is open. In (b), the function has a minimum,
but no maximum; there is a discontinuity in the “natural” place for the
maximum to occur. Finally, the function shown in (c) has both a maximum and
a minimum; note that the function is continuous and the interval on which it is
defined is closed.

It is possible for discontinuous functions defined on an open interval to
have both a maximum and minimum value, but we have just seen examples
where they did not. On the other hand, continuous functions on a
closed interval always have a maximum and minimum value.

L

X
y
L
\ I
-2 -1 1 2
y
(b)
4
2
L
L 1
-2 -1 1 2
y
L
L 1
-2 -1 1 2

Figure 3.2.1: Graphs of functions with
and without extreme values.
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In most applications we are interested in finding the Global Extreme Values, not the Local Extreme

Values.
The importance of local extrema is they are relatively easy to find using calculus methods. Then, in a

very important case, it is easy to find the global extreme values. In other cases graphical methods
work rather well.

Note: The extreme values of a function

Local Extreme Values are “y” values, values the function attains,
not the "x" values.

Locating Theorem for Local Extrema Proof

They may occur only: 1. f'(x) exists. If f'(x) 20, then fis
' — increasing or decreasing < no

1. where fl(x) =0 . local extremum. So f'(x) = 0.
2. where f'(x) does not exist.

3. at endpoints. Il. f'(x) DNE < 2 or 3 (ignoring any

endpoint agreement).

Apex calls 1 and 2 critical values. y
1t

Note: f'(a) = 0 does not not necessarily mean
thereis a local extreme value at x=0.

y
3 y=9(x)
ol
Note: g'(2) DNE does not not necessarily mean
thereis a local extreme value at x=2. 1t
- 1 2 3 4 X
-1
y
P
Yy =h(x)
Note: there usually is a local extreme value at
an endpoint. However, there is no local i
extreme value at x =0 in this example. A X
KAV 1

Extreme Values Finding Extrema of a Continuous Function on a Closed Interval

1. Find all local extrema on the interval using the Locating Theorem.
2. The least value is the global minimum.
The greatest value is the global maximum.

This is because the Extreme Value Theorem says the extreme values exist.
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We practice the above ideas in the next examples.

Example 3.2.4 Finding extreme values
Find the extreme values of f(x) = 2x* + 3x*> — 12x on [0, 3], graphed in Figure
3.1.6(a).

SOLUTION
We follow the steps outlined above. We first

evaluate f at the endpoints:

f(0)=0 and f(3)=45.

Next, we find the critical values of fon [0, 3]. f/(x) =6x* + 6x — 12 = 6(x + 2)
(x — 1); therefore the critical values of f are x = —2 and x = 1. Since x = —2
does not lie in the interval [0, 3], we ignore it. Evaluating f at the only critical
number in our interval gives: f(1) =7.

The table in Figure 3.2.6(b) gives f evaluated at the “important” x values in

[0, 3]. We can easily see the maximum and minimum values of f: the maximum
value is 45 and the minimum value is —7.

Note that all this was done without the aid of a graph; this work followed
an analytic algorithm and did not depend on any visualization. Figure 3.2.6
shows f and we can confirm our answer, but it is important to understand that
these answers can be found without graphical assistance.

We practice again.

Example 3.2.5 Finding extreme values Find the maximum and minimum

Values of fon [—4, 2], where
) 2(x—1
f/(X) — { ( 1 )

x<0
x>0

graphed in Figure 3.2.7(a).

SoLuTioN Here f is piecewise—defined, but we can still apply Key Idea
3.1.1as it is continuous on [—4, 2] (one should check to verify that lim  f(x)=f(0)).
x—0

Evaluating f at the endpoints gives:

f(—4) =25 and f(2)=3.

We now find the critical numbers of f. We have to define f’ in a piecewise
manner; it is

£(x) { 2 -1)

Note that while fis defined for all of [—4, 2], f'is not, as the derivative of f
does not exist when x = 0. (From the left, the derivative approaches —2; from
the right the derivative is 1.) Thus one critical number of fis x = 0.

We now set f'(x) = 0. When x > 0, f'(x) is never 0. When x < 0, f(x) is
also never 0, so we find no critical values from setting f'(x) = 0.
So we have three important x values to consider: x = —4, 2 and 0. Evaluating
f at each gives, respectively, 25, 3 and 1, shown in Figure 3.2.7(b). Thus the

x<0
x>0

40 |

20 +

(a)
x  f(x)
0 0
1 —7
3 45
(b)

Figure 3.2.6: Finding the extreme values
of f(x) = 2x*+3x* —12x in Example 3.1.4.

4 2 2
(a)
x  fx)
-4 25
0 1
2 3

(b)

Figure 3.2.7: Finding the extreme values
of a piecewise—defined function in
Example 3.2.5.



0.5 |
+ t t t X
-2 -1 1 2
—0.5 |
—1
(a)
X f(x)
-2 —0.65
—\/T -1
0 1
N -1
2 —0.65
(b)

Figure 3.2.8: Finding the extrema
of f(x) = cos(x*) in Example 3.2.6.

x )
-1 0
o 1
1 0
(b)

Figure 3.2.9: Finding the extrema of the
half—circle in Example 3.2.7.

Note: We implicitly found the derivative
of x> + y> = 1, the unit circle, in Ex-
ample 2.6.5 as % = —x/y. In Exam-
ple 3.1.7, half of the unit circle is given as
y = f(x) = V1 — x2. We found f'(x) =

—X__. Recognize that the denominator

1-x2
of this fraction is y; that is, we again found
f') =3 =—x/y.
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absolute minimum of fis 1, the absolute maximum of fis 25, confirmed by the
graph of f.

Example 3.2.6 Finding extreme values
Find the extrema of f(x) = cos(x?) on [—2, 2], graphed in Figure 3.2.8(a).

SOLUTION Evaluating f at the endpoints of
the interval gives: f(—2) = f(2) = cos(4) & —0.6536. We now find the critical
values of f.

Applying the Chain Rule, we find f'(x) = —2xsin(x?). Set f’(x) = 0 and
solve for x to find the critical values of f.

We have f’(x) = 0 when x = 0 and when sin(x?) = 0. In general, sint = 0
whent= ... — 27 —x, 0 7, .. Thussin(x’) = 0whenx* =0, 27, ... (x%is
always positive so we ignore —, etc.) Sosin(x?) = Owhenx = 0, +/T, ++/27,
etc. The only values to fall in the given interval of [—2, 2] are 0 and +/7, where

J7 = 1.77.

We again construct a table of important values in Figure 3.2.8(b). In this example

we have 5 values to consider: x = 0, 42, &/
From the table it is clear that the maximum value of fon [—2, 2] is 1; the
minimum value is —1. The graph of f confirms our results.

We consider one more example.

Example 3.2.7 Finding extreme values
Find the extreme values of f(x) = v/1 — x?, graphed in Figure 3.2.9(a).

SOLUTION A closed interval is not given, so we find the extreme values
of f on its domain. fis defined whenever 1 — x> > 0; thus the domain of fis
[—1,1]. Evaluating f at either endpoint returns 0.

Using the Chain Rule, we find f'(x) = % The critical points of f are

found when f’(x) = 0 or when f’ is undefined. It is straightforward to find that
f’(x) = 0 when x =0, and f’ is undefined when x = +1, the endpoints of the
interval. The table of important values is given in Figure 3.2.9(b). The maximum
value is 1, and the minimum value is 0. (See also the marginal note.)

We have seen that continuous functions on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next section, we further our study of the information we can
glean from “nice” functions with the Mean Value Theorem. On a closed interval,
we can find the average rate of change of a function (as we did at the beginning
of Chapter 2). We will see that differentiable functions always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.

Global Extreme Values. Other Cases

1. Find all local extrema using the Locating Theorem.
2. Graph by hand or a CAS.
3. Choose the global extreme values from 1.
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Exercises 3.2

Terms and Concepts In Exercises 9 — 16, evaluate f'(x) at the points indicated in
the graph.
2
i “« ” . P 9. f(X) =5

1. Describe what an “extreme value” of a function is in your x> +1

own words. y

©.2)
2

2. Sketch the graph of a function fon (—1, 1) that has both a

maximum and minimum value. 1l
3. Describe the difference between absolute and relative - g

maxima in your own words.

10. f(x) = X*vV6 — x2
4. Sketch the graph of a function f where f has a relative max- y
imum at x = 1 and f'(1) is undefined. 5T 2.av3)

5. T/F: If cis a critical value of a function f, then f has either a

relative maximum or relative minimum at x = c. 2 |
+ + X
6. Fill in the blanks: The critical points of a function f are -2 ©0 2
found where f’(x) is equal to or where f'(x) is
11. f(x) =sinx
y
(7/2,1)
1
Problems | )
2 4
In Exercises 7 — 8, identify each of the marked points as being -1
an global maximum or minimum, a local maximum or (@r/2,-1)
minimum, or none of the above. .
12. fx) = #vA—x Solutions 3.2

. Answers will vary.
. Answers will vary.

. Answers will vary.

. F

1
2
3
4. Answers will vary.
5
6

. Where f'(x) is equal to 0 or where f’(x) is
undefined.

7. A:none; the function isn’t defined here. B:
abs. max & rel. max C: rel. min D: none; the
function isn’t defined here. E: none F: rel.
min G: rel. max

8. A: abs. min & rel. min B: none C: abs. max
& rel. max D: none E: rel. min

9. f/(0) =0
10. £/(0) = 0f"(2) =0
11. f/(x/2) =0f'(37/2) =0
12. f/(0) =0f'(3.2) =0f'(4) is undefined

21
2 ; > % 13. f’(2)is not defined f/(6) =0

14. Both f/(—1) and f/(1) are undefined.
15. £/(0) =0
16. f'(0) is not defined

>

17. min: (—0.5, 3.75)
max: (2, 10)
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14. f(x) = Vx* —2x + 1 In Exercises 17 — 26, find the extreme values of the function
on the given interval.

3 17. fx) =X +x+4 on [-1,2].
3 9 2
18. f(x) =x" — 5% —30x+3 on [0,6].

19. f(x) =3sinx on [r/4,27/3].

20. f(x) =xXV4—x on [-2,2].

21. f(x):x—l—; on [1,5].

XZ

f 22. f(x) = wirs O [-3,5].

23. f(x) = €"cosx on [0,m].

24. f(x) = €"sinx on [0,m].

In
25. f(x) = X on [1,4].
—0.5 X
26. fx) =x**—x on [0,2].
2
x> x<0
16. f(x)—{ x x>0
Review
y
H 27. Find £, where Xy — y’x = 1.
051 28. Find the equation of the line tangent to the graph of x* +
y* + xy = 7 at the point (1, 2).
-t 0 ©.9 o5 ! 29. Letf(x) = X + x.
—05 Evaluate lim w
s—0 S
30. Identify approximately the global extreme values of each.
Y Y
1.0¢ 1.0¢
0.8} 08}
0.6} 06}
0.4} 04}
0.2} 02}
10 T ‘t(\ al\
(\:70,4 06 08 1.0 : (\2/04 06 0.8 1.0
-0.2¢} -0.2}




Figure 3.3.1: A graph of a function f used
to illustrate the concepts of increasing
and decreasing.

How can you tell an uphill hill from an
downhill hill? Answer: it depends which
way you are walking. In mathematics we
make the determination by walking to
the right.

(a, f(a))
t t t f X
a 1 b 2

Figure 3.3.2: Examining the secant line of
an increasing function.

150

3.3 Increasing and Decreasing Functions

Our study of “nice” functions f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f'(x) = 0 or f’ does
not exist, and points ¢ where f’(c) is the average rate of change of f on some
interval.

In this section we begin to study how functions behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuitive concept. Given the graph in Figure 3.3.1, where
would you say the function is increasing? Decreasing? Even though we have
not defined these terms mathematically, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

Definition 3.3.1 Increasing and Decreasing Functions

Let f be a function defined on an interval /.
1. fisincreasing on | if for every a < bin I, f(a) < f(b).

2. fis decreasing on / if for every a < b in I, f(a) > f(b).

Informally, a function is increasing if as x gets larger (i.e., looking left to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such information should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was accelerating vs. decelerat-
ing). If f describes the population of a city, we should be interested in when the
population is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing,
differentiable function on an open interval /, such as the one shown in Figure
3.3.2,and let a < b be given in I. The secant line on the graph of ffrom x = a
to x = b is drawn; it has a slope of (f(b) — f(a))/(b — a). But note:

f(b) — f(a) numerator > 0
= -
b—a denominator >0

Average rate of
= change of fon
[a,b]is > 0.

slope of the
secant line > 0
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By considering all such secant lines in /, we strongly imply that f/(x) > Oon /. A
similar statement can be made for decreasing functions.

Our above logic can be summarized as “If fis increasing, then f’ is probably
positive” Theorem 3.3.1 below turns this around by stating “If f/ is positive,
then fis increasing.” This leads us to a method for finding when functions are
increasing and decreasing.

Theorem 3.3.1 Test For Increasing/Decreasing Functions

Let f be a continuous function on [a, b] and differentiable on (a, b).
1. Iff’(c) > Oforall cin (a, b), then fis increasing on [a, b].
2. Iff’(c) < Oforall cin (a, b), then fis decreasing on [a, b].

3. Iff’(c) =0forallcin (a,b), then fis constant on [a, b].

Let f be differentiable on an interval  and let a and b be in / where f/(a) > 0
andf’(b) < 0. If f’is continuous on [a, b], it follows from the Intermediate Value
Theorem that there must be some value ¢ between a and b where f/(c) = 0. (It
turns out that this is still true even if f" is not continuous on [a, b].) This leads us
to the following method for finding intervals on which a function is increasing or
decreasing.

Key Idea 3.3.1 Finding Intervals on Which f is Increasing or
Decreasing

Let f be a differentiable function on an interval I. To find intervals on
which fis increasing and decreasing:

1. Find the critical values of f. That is, find all ¢ in / where f'(c) = 0
or f’ is not defined.

2. Use the critical values to divide / into subintervals.
3. Pick any point p in each subinterval, and find the sign of f'(p).

(@) Iff'(p) > 0O, then fis increasing on that subinterval.
(b) If f'(p) < 0, then fis decreasing on that subinterval.

We demonstrate using this process in the following example.

Note: Parts 1 & 2 of Theorem 3.3.1 also
hold if f/(c) = 0 for a finite number of
values of cin /.



Figure 3.3.4: A graph of f(x) in Example
3.3.1, showing where f is increasing and
decreasing.
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Example 3.3.1 Finding intervals of increasing/decreasing
Let f(x) = x> + x> — x + 1. Find intervals on which f is increasing or decreasing.

SOLUTION Using Key Idea 3.3.1, we first find the critical values of f. We
have f/(x) = 3x* + 2x — 1 = (3x — 1)(x + 1), so f'(x) = 0 when x = —1 and
when x = 1/3. f’ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
tire domain of f which is (—o00,00). We thus break the whole real line into
three subintervals based on the two critical values we just found: (—oo, —1),
(—=1,1/3) and (1/3, c0). This is shown in Figure 3.3.3.

f’ > 0 incr f’ < 0 decr f' > 0 incr

-1 1/3

A
Y

Figure 3.3.3: Number line for fin Example 3.3.1.

We now pick a value p in each subinterval and find the sign of f'(p). All we
care about is the sign, so we do not actually have to fully compute f'(p); pick
“nice” values that make this simple.

Subinterval 1, (—co, —1): We (arbitrarily) pick p = —2. We can compute
f'(—=2) directly: f'(=2) = 3(=2)? +2(—2) — 1 = 7 > 0. We conclude that fis
increasing on (—oo, —1).

Note we can arrive at the same conclusion without computation. For in-
stance, we could choose p = —100. The first term in f'(—100), i.e., 3(—100)? is
clearly positive and very large. The other terms are small in comparison, so we
know f’(—100) > 0. All we need is the sign.

Subinterval 2, (—1,1/3): We pick p = O since that value seems easy to deal
with. f/(0) = —1 < 0. We conclude fis decreasing on (—1,1/3).

Subinterval 3, (1/3,00): Pick an arbitrarily large value for p > 1/3 and note
that f(p) = 3p? + 2p — 1 > 0. We conclude that fis increasing on (1/3, cc).

We can verify our calculations by considering Figure 3.3.4, where fis graphed.
The graph also presents f’; note how f/ > 0 when fis increasing and f' < 0
when fis decreasing.

One is justified in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = —1 and x = 0.3, but we cannot determine exactly where from
the graph.
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One could argue that just finding critical values is important; once we know
the significant points are x = —1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relationship between increasing/decreasing and the
sign of f/. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the critical points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f’ is straightforward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has options for finding needed information. We are
working to develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. Solutions are tractable only through the use of computers to do many
calculations for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a function to a computer and have it return maximum and
minimum values, intervals on which the function is increasing and decreasing,
the locations of relative maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

In Section 3.1 we learned the definition of relative maxima and minima and
found that they occur at critical points. We are now learning that functions can
switch from increasing to decreasing (and vice—versa) at critical points. This new
understanding of increasing and decreasing creates a great method of determin-
ing whether a critical point corresponds to a maximum, minimum, or neither.
Imagine a function increasing until a critical point at x = ¢, after which it de-
creases. A quick sketch helps confirm that f(c) must be a relative maximum. A
similar statement can be made for relative minimums. We formalize this con-
ceptin a theorem.

Theorem 3.3.2 First Derivative Test

Let f be differentiable on an interval / and let ¢ be a critical number in /.

1. If the sign of f’ switches from positive to negative at c, then f(c) is
a relative maximum of f.

2. If the sign of f switches from negative to positive at ¢, then f(c) is
a relative minimum of f.

3. If " is positive (or, negative) before and after ¢, then f(c) is not a
relative extrema of f.

Case 3, such as the function y=x3 at x=0,
is sometimes referred to as stationary point

Everyone should understand this
theorem even though it is not very
efficient in determining the nature
of a critical point.

since the y-value does not change much near >
the point.
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Figure 3.3.5: A graph of f(x) in Example
3.3.2, showing where f is increasing and
decreasing.
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Example 3.3.2 Using the First Derivative Test
Find the intervals on which f is increasing and decreasing, and use the First
Derivative Test to determine the relative extrema of f, where

X +3
X) = .
floy = =5
SOLUTION We start by noting the domain of f: (—o00, 1) U (1, 00). Key

Idea 3.3.1 describes how to find intervals where f is increasing and decreasing
when the domain of f is an interval. Since the domain of f in this example is
the union of two intervals, we apply the techniques of Key Idea 3.3.1 to both
intervals of the domain of f.

Since fis not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a critical value of
f, but we will include it in our list of critical values that we find next.

Using the Quotient Rule, we find

X —2x-3

0 ="t

We need to find the critical values of f; we want to know when f'(x) = 0 and
when f’ is not defined. That latter is straightforward: when the denominator
of f/(x) is O, f’ is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f’(x) = 0 when the numerator of f'(x) is 0. That occurs when x?> —2x — 3 =
(x—3)(x+ 1) =0;i.e.,whenx = —1,3.

We have found that f has two critical numbers, x = —1,3,andatx = 1
something important might also happen. These three numbers divide the real
number line into 4 subintervals:

(=o00,-1), (-1,1), (1,3) and (3,00).

Pick a number p from each subinterval and test the sign of f’ at p to determine
whether fis increasing or decreasing on that interval. Again, we do well to avoid
complicated computations; notice that the denominator of f’ is always positive
so we can ignore it during our work.

Interval 1, (—oo, —1):  Choosing a very small number (i.e., a negative number
with a large magnitude) p returns p> — 2p — 3 in the numerator of f’; that will
be positive. Hence fis increasing on (—oo, —1).

Interval 2, (—1,1): Choosing 0 seems simple: f'(0) = —3 < 0. We conclude
fis decreasing on (—1,1).

Interval 3, (1,3): Choosing 2 seems simple: f'(2) = —3 < 0. Again, fis
decreasing.

If you think this page and the following two are interesting,
get a life.

If you need it to distinguish a mountain top from a valley bottom,
don't take up hiking.
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Interval 4, (3,00): Choosing an very large number p from this subinterval will
give a positive numerator and (of course) a positive denominator. So fis increas-
ing on (3, 00).

In summary, fis increasing on the intervals (—oo, —1) and (3, c0) and is de-
creasing on the intervals (—1,1) and (1,3). Since at x = —1, the sign of f’
switched from positive to negative, Theorem 3.3.2 states that f(—1) is a relative
maximum of f. At x = 3, the sign of f’ switched from negative to positive, mean-
ing f(3) is a relative minimum. At x = 1, fis not defined, so there is no relative
extrema at x = 1.

rel. rel.
f'>0incr M §/ <0 decr f'<odecr MM £/ 0incr
< \ \ \ .
) \ \ \ "
—1 1 3

Figure 3.3.6: Number line for fin Example 3.3.2.

This is summarized in the number line shown in Figure 3.3.6. Also, Figure
3.3.5 shows a graph of f, confirming our calculations. This figure also shows
f’, again demonstrating that f is increasing when f’ > 0 and decreasing when
f' <o.

One is often tempted to think that functions always alternate “increasing,
decreasing, increasing, decreasing,...” around critical values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was not
technically a critical value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 3.3.3 Using the First Derivative Test
Find the intervals on which f(x) = x3/3 — 4x?/3 is increasing and decreasing and
identify the relative extrema.

SOLUTION We again start with taking a derivative. Since we know we
want to solve f'(x) = 0, we will do some algebra after taking the derivative.

\h
—~
x
~—
Il




10 |

Figure 3.3.8: A graph of f(x) in Example
3.3.3, showing where f is increasing and
decreasing.
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8 1.,
=-x3(x -1
32 )
8
:Ex*%(x—l)(er 1).

This derivation of f’ shows that f'(x) = 0 when x = +1 and f’ is not de-
fined when x = 0. Thus we have 3 critical values, breaking the number line into
4 subintervals as shown in Figure 3.3.7.

Interval 1, (0o, —1): We choose p = —2; we can easily verify that f/(—2) <
0. So fis decreasing on (—oo, —1).
Interval 2, (—1,0): Choose p = —1/2. Once more we practice finding the sign
of f/(p) without computing an actual value. We have f'(p) = (8/3)p~'/3(p —
1)(p + 1); find the sign of each of the three terms.

f/(p)zg.p\—’i-(p—l)([?—ﬁ-l)-

<0 <0 >0

We have a “negative x negative X positive” giving a positive number; f is in-
creasing on (—1,0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

We have 2 positive factors and one negative factor; f/(p) < 0 and so fis de-
creasing on (0, 1).

Interval 4, (1, c0): Similar work to that done for the other three intervals shows
that f/(x) > 0 on (1, ), so fis increasing on this interval.

rel. rel. rel.
f'<odecr ™N > 0iner MX  f<odecr ™M £/ 0 iner

- ‘ ‘ ‘ g

-1 0 1

Figure 3.3.7: Number line for fin Example 3.3.3.

We conclude by stating that fis increasing on the intervals (—1, 0) and (1, co0)
and decreasing on the intervals (—oo, —1) and (0,1). The sign of f’ changes
from negative to positive around x = —1 and x = 1, meaning by Theorem 3.3.2
that f(—1) and f(1) are relative minima of f. As the sign of f’ changes from pos-
itive to negative at x = 0, we have a relative maximum at f(0). Figure 3.3.8
shows a graph of f, confirming our result. We also graph f’, highlighting once
more that fis increasing when f’ > 0 and is decreasing when f’ < 0.

We have seen how the first derivative of a function helps determine when
the function is going “up” or “down.” In the next section, we will see how the
second derivative helps determine how the graph of a function curves.
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If you work all the exercises, you
might not finish before graduation.

Exercises 3.3

Terms and Concepts 14. f(x) = %
X

1. In your own words describe what it means for a function to In Exercises 15 — 24, a function f(x) is given.
be increasing. Do one or two
(a) Give the domain of f. of these.
2. What does a decreasing function “look like”? (b) Find the critical numbers of f.

(c) Create a number line to determine the intervals on
3. Sketch a graph of a function on [0, 2] that is increasing, which fis increasing and decreasing.
where it is increasing “quickly” near x = 0 and increasing

“slowly” near x = 2 (d) Use the First Derivative Test to determine whether

each critical point is a relative maximum, minimum,

. . o . . or neither.
4. Give an example of a function describing a situation where

it is “bad” to be increasing and “good” to be decreasing. 15. f(x) = X 2x—3
5. T/F: Functions always switch from increasing to decreasing,

; A ) . i 16. f(x):x3+3x2+3
or decreasing to increasing, at critical points.

) 17. fx) =23 + X —x+3

6. A function f has derivative f'(x) = (sinx 4+ 2)e* **, where
f’(X) > 1forall x. Is fincreasing, decreasing, or can we not 18. f(x) = X -3¢ +3x—1
tell from the given information?

1
19. = -
fx) X2 —2x+2
Problems
X —4
20. =
In Exercises 7 — 14, a function f(x) is given. feo x2—1
a) Compute f’(x).
() p f() 21'f(x):27; 3
(b) Graph fand f’ on the same axes (using technology is X — X
permitted) and verify Theorem 3.3.1.
(X _ 2)2/3

7. fx) =2x+3
23. f(x) = sinxcosxon (—m, ).
8. f(x) =x* —3x+5
24. f(x) = x> — 5x

9. =
fix) = cosx 25. Give a graphical of a function for which

1. f'(c) =0, no extreme value
2. f'(c) DNE, no extreme value
3. ¢ an endpoint, no extreme value.

10. f(x) =tanx
11 f(x) =x* —=5¢ +7x— 1
12. fx) =2¢ = +x—1

13. f(x) = x* —5x% + 4
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Solutions 3.3

1. Answers will vary. 23. domain=(—o0, c0)

2. Answers will vary. c.p.atc= —3w/4, —m/4, /4,31 /4;

3. Answers will vary; graphs should be steeper near x = 0 than near decreasing on (—3m/4, —m/4) and (7 /4, 37 /4);
X =2. increasing on (—m, —37/4), (—7/4, 7/4) and (37/4, 7);

4. Answers will vary. rel. min at x = —7/4, 37/4;

5. False; for instance, y = x® is always increasing though it has a rel. max at x = —3m/4, 7/4.
critical point at x = 0. 24. domain = (—o0, 00);

6. Increasing cp.atc=-1,1;

7. Graph and verify. decreasing on (-1, 1);

8. Graph and verify. increasing on (—oo, —1) and (1, c);

9. Graph and verify. rel. minatx = 1;

rel. maxatx = —1
10. Graph and verify.

11. Graph and verify.

12. Graph and verify.

13. Graph and verify.

14. Graph and verify.

15. domain: (—oo, 00)
c.p.atc=—1;
decreasing on (—oo, —1);
increasing on (—1, 00);
rel. minatx = —1.

16. domain=(—o0, 00)
c.p.atc=—2,0;
increasing on (—oo, —2) and (0, c0);
decreasing on (—2,0);
rel. minatx = 0;
rel. maxatx = —2.

17. domain=(—o00, c0)
cp.atc= %(71 +/7);
decreasing on (%(—1 —/7), %(—1 +V7));
increasing on (—oo, %(—1 —+/7)) and (%(—1 +/7),00);
rel. minatx = %(—1 +/7);
rel. max atx = %(71 —V7).
18. domain=(—o0, 00)
cp.atc=1;
increasing on (—oo, 00);
19. domain=(—o0, 00)
cp.atc=1;
decreasing on (1, co)
increasing on (—oo, 1);
rel. maxatx = 1.
20. domain=(—o00, —1) U (—1,1) U (1, 00)
cp.atc=0;
decreasing on (—oo, —1) and (—1,0);
increasing on (0, 1) and (1, 00);
rel. minatx = 0;
21. domain=(—o00, —2) U (—2,4) U (4, c0)
no c.p.;
decreasing on entire domain, (—oo, —2), (—2,4) and (4, o)
22. domain=(—o00,0) U (0, c0);
c.p.atc = 2,6;
decreasing on (—o00, 0), (0, 2) and (6, c0);
increasing on (2, 6);
rel. minatx = 2; rel. maxatx = 6.
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3.4 Concavity and the Second Derivative

Our study of “nice” functions continues. The previous section showed how the
first derivative of a function, f’, can relay important information about f. We
now apply the same technique to f itself, and learn what this tells us about f.

The key to studying f’ is to consider its derivative, namely f”, which is the
second derivative of f. When f” > 0, f’ is increasing. When f”/ < 0, f' is
decreasing. f’ has relative maxima and minima where f” = 0 or is undefined.

This section explores how knowing information about f” gives information
about f.

Concavity

We begin with a definition, then explore its meaning.

Definition 3.4.1 Concave Up and Concave Down

Let f be differentiable on an interval /. The graph of f is concave up on /
if f is increasing. The graph of fis concave down on / if f’ is decreasing.
If f is constant then the graph of fis said to have no concavity.

The graph of a function fis concave up when f’ is increasing. That means as
one looks at a concave up graph from left to right, the slopes of the tangent lines
will be increasing. Consider Figure 3.4.1, where a concave up graph is shown
along with some tangent lines. Notice how the tangent line on the left is steep,
downward, corresponding to a small value of f/. On the right, the tangent line
is steep, upward, corresponding to a large value of f'.

If a function is decreasing and concave up, then its rate of decrease is slow-
ing; it is “leveling off.” If the function is increasing and concave up, then the rate
of increase is increasing. The function is increasing at a faster and faster rate.

Now consider a function which is concave down. We essentially repeat the
above paragraphs with slight variation.

The graph of a function fis concave down when f is decreasing. That means
as one looks at a concave down graph from left to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.4.2, where a concave down graph is
shown along with some tangent lines. Notice how the tangent line on the left
is steep, upward, corresponding to a large value of f’. On the right, the tangent
line is steep, downward, corresponding to a small value of .

If a function is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the function is decreasing and concave down, then the
rate of decrease is decreasing. The function is decreasing at a faster and faster
rate.

t } X
-2 2

Figure 3.4.1: A function f with a concave
up graph. Notice how the slopes of the
tangent lines, when looking from left to
right, are increasing.

Note: We often state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admittedly terrible, but it
works.

t } X
-2 2

Figure 3.4.2: A function f with a concave
down graph. Notice how the slopes of the
tangent lines, when looking from left to
right, are decreasing.



f! > 0, increasing f! < 0, decreasing

f” < 0,c. down f” < 0, c. down

f! < 0, decreasing £’ > 0, increasing
£ > 0,cup £ > 0,cup

Figure 3.4.3: Demonstrating the 4 ways
that concavity interacts with increas-
ing/decreasing, along with the relation-
ships with the first and second deriva-
tives.

Note: Geometrically speaking, a function
is concave up if its graph lies above its tan-
gent lines. A function is concave down if
its graph lies below its tangent lines.

15 +

10 +

Figure 3.4.4: A graph of a function with
its inflection points marked. The inter-
vals where concave up/down are also in-
dicated.

NOTE In Figure 3.4.5, f"(0) =0, but x=0

is not an inflection point because it does not
connect concave up with concave down.
Thus the may in the Locating Theorem.

RELATED NOTE The word 'inflection’ literally
means not bending. In old calculus textbooks,
that was the meaning of inflection point. This
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Our definition of concave up and concave down is given in terms of when
the first derivative is increasing or decreasing. We can apply the results of the
previous section and to find intervals on which a graph is concave up or down.
That is, we recognize that f’ is increasing when f” > 0, etc.

Theorem 3.4.1 Test for Concavity

Let f be twice differentiable on an interval /. The graph of fis concave up
if f > 0on |/, and is concave down if f”/ < 0 on /.

If knowing where a graph is concave up/down is important, it makes sense
that the places where the graph changes from one to the other is also important.
This leads us to a definition.

Definition 3.4.2 Point of Inflection

A point of inflection is a point on the graph of f at which the concavity
of f changes.

Figure 3.4.4 shows a graph of a function with inflection points labeled.

If the concavity of f changes at a point (c,f(c)), then f’ is changing from
increasing to decreasing (or, decreasing to increasing) at x = c¢. That means that
the sign of f” is changing from positive to negative (or, negative to positive) at
x = c. This leads to the following theorem.

Theorem 3.4.2 Locating Theorem for Inflection Points

Points of inflection of a function f may occur only where
1. f'(c)=0

2. f"(c) does not exist..

We have identified the concepts of concavity and points of inflection. It is
now time to practice using these concepts; given a function, we should be able
to find its points of inflection and identify intervals on which it is concave up or
down. We do so in the following examples.

idea is still relevant. Near a point where the _1 _05 0.5 1
second derivative is 0, as in Figure 3.4.5, a

curve is straighter than the usual local

Figure 3.4.5: A graph of f(x) = x*. Clearly

linearity possessed by a differentiable curve. fis always concave up, despite the fact

that f “(x) = 0 when x = 0. It this
example, the possible point of inflection
(0,0) is not a point of inflection.
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Example 3.4.1 Finding intervals of concave up/down, inflection points Let f(x)
= x3 — 3x + 1. Find the inflection points of f and the intervals on which it is
concave up/down.

SOLUTION We start by finding f/(x) = 3x* — 3 and f”/(x) = 6x. To find
the inflection points, we use Theorem 3.4.2 and find where f”(x) = 0 or where
f'"is undefined. We find f” is always defined, and is 0 only when x = 0. So the
point (0, 1) is the only possible point of inflection.

This possible inflection point divides the real line into two intervals, (—oo, 0)
and (0, 00). We use a process similar to the one used in the previous section to
determine increasing/decreasing. Pick any ¢ < 0; f”(c) < 0 so f is concave
down on (—o00,0). Pickany ¢ > 0; f”(c) > 0so fis concave up on (0, cc). Since
the concavity changes at x = 0, the point (0, 1) is an inflection point.

The number line in Figure 3.4.6 illustrates the process of determining con-
cavity; Figure 3.4.7 shows a graph of f and f ", confirming our results. Notice
how fis concave down precisely when f"/(x) < 0 and concave up when f”(x) >

0.

Example 3.4.2 Finding intervals of concave up/down, inflection points Let f(x)
= x/(x* — 1). Find the inflection points of f and the intervals on which it is
concave up/down.

SOLUTION We need to find f" and f”. Using the Quotient Rule and sim-

plifying, we find

=1+

f'lx) = (x2 —1)2 2Ot )

and f’(x) = Sy

To find the possible points of inflection, we seek to find where f”/(x) = 0 and
where f” is not defined. Solving f”/(x) = 0 reduces to solving 2x(x*> + 3) = 0;
we find x = 0. We find that f” is not defined when x = =+£1, for then the
denominator of f” is 0. We also note that f itself is not defined at x = =+1,
having a domain of (—oo, —1) U (—1,1) U (1, 00). Since the domain of fis the
union of three intervals, it makes sense that the concavity of f could switch across
intervals. We technically cannot say that f has a point of inflection at x = £1 as
they are not part of the domain, but we must still consider these x-values to be
important and will include them in our number line.

The important x-values at which concavity might switcharex = —1,x =0
and x = 1, which split the number line into four intervals as shown in Figure
3.4.7. We determine the concavity on each. Keep in mind that all we are con-
cerned with is the sign of f” on the interval.

Interval 1, (—oco, —1): Select a number c in this interval with a large magnitude
(for instance, ¢ = —100). The denominator of "/ (x) will be positive. In the
numerator, the (c? + 3) will be positive and the 2¢ term will be negative. Thus
the numerator is negative and f/(c) is negative. We conclude fis concave down
on (—oo, —1).

Figure 3.4.6: A number line determining
the concavity of fin Example 3.4.1.

f” <0cdown f” >0cup

Figure 3.4.7: A graph of f(x) used in Ex-
ample 3.4.1. y
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Chapter 3 The Graphical Behavior of Functions

+ ) \ 7

—~10 |

Figure 3.4.8: A graph of f(x) and f”(x) in
Example 3.4.2.

20 7

S(t)

15

10 +

Figure 3.4.9: A graph of S(t) in Example
3.4.3, modeling the sale of a product over
time.

Interval 2, (—1,0): For any number c in this interval, the term 2c in the numer-
ator will be negative, the term (c* + 3) in the numerator will be positive, and
the term (c2 — 1)3 in the denominator will be negative. Thus f”/(c) > 0 and fis
concave up on this interval.

Interval 3, (0, 1): Any number cin this interval will be positive and “small.” Thus
the numerator is positive while the denominator is negative. Thus f”(c) < 0
and fis concave down on this interval.

Interval 4, (1, 00): Choose a large value for c. It is evident that f”/(c) > 0, so we
conclude that fis concave up on (1, c0).

f” < 0 c. down f” >0c up f” <0 c. down f” >0c up

h ‘ ‘ ‘ g

-1 0 1

Figure 3.4.8: Number line for fin Example 3.4.2.

We conclude that f is concave up on (—1,0) and (1, c0) and concave down
on (—oo, —1) and (0, 1). There is only one point of inflection, (0,0), as fis not
defined at x = £1. Our work is confirmed by the graph of fin Figure 3.4.8. No-
tice how fis concave up whenever f” is positive, and concave down when f” is
negative.

Recall that relative maxima and minima of f are found at critical points of
f; that is, they are found when f’(x) = 0 or when f’ is undefined. Likewise,
the relative maxima and minima of f are found when f”/(x) = 0 or when f" is
undefined; note that these are the inflection points of f.

What does a “relative maximum of f’ ” mean? The derivative measures the
rate of change of f; maximizing f’ means finding where fis increasing the most —
where f has the steepest tangent line. A similar statement can be made for min-
imizing f'; it corresponds to where f has the steepest negatively—sloped tangent
line.

We utilize this concept in the next example.

Example 3.4.3 Understanding inflection points

The sales of a certain product over a three-year span are modeled by S(t) =
t* — 8t% + 20, where t is the time in years, shown in Figure 3.4.9. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.

SOLUTION We want to maximize the rate of decrease, which is to say,
we want to find where S’ has a minimum. To do this, we find where S”i s 0. We
find S'(t) = 4t> — 16t and S”(t) =12t> — 16. Setting S”’(t) =0 and solving, we get

t = \/4/3 = 1.16 (we ignore the negative value of t since it does not lie in
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the domain of our function S).

This is both the inflection point and the point of maximum decrease. This
is the point at which things first start looking up for the company. After the
inflection point, it will still take some time before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S’(t) is given in Figure 3.4.10. When S'(t) < 0, sales are
decreasing; note how at t = 1.16, $’(t) is minimized. That is, sales are decreas-

ing at the fastest rate at t = 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “leveling off.”

Not every critical point corresponds to a relative extrema; f(x) = x* has a
critical point at (0, 0) but no relative maximum or minimum. Likewise, just be-
cause f”(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflection” since we
needed to check to see if the concavity changed. The canonical example of f”
(x) = 0 without concavity changing is f(x) = x*. At x = 0, f/(x) = 0 but fis
always concave up, as shown in Figure 3.4.11.

The Second Derivative Test

The first derivative of a function gave us a test to find if a critical value cor-
responded to a relative maximum, minimum, or neither. The second derivative
gives us another way to test if a critical point is a local maximum or minimum.
The following theorem officially states something that is intuitive: if a critical
value occurs in a region where a function f is concave up, then that critical
value must correspond to a relative minimum of f, etc. See Figure 3.4.12 for a
visual-ization of this.

Theorem 3.4.3 The Second Derivative Test

Let ¢ be a critical value of f where "/ (c) is defined.
1. If f”(c) > 0, then f has a local minimum at (c, f(c)).

2. If f”(c) < 0, then f has a local maximum at (c, f(c)).

The Second Derivative Test relates to the First Derivative Test in the following
way. If f”(c) > 0, then the graph is concave up at a critical point ¢ and f itself
is growing. Since f'(c) = 0 and f is growing at ¢, then it must go from negative
to positive at ¢. This means the function goes from decreasing to increasing, in-
dicating a local minimum at c.

NOTE The Second Derivative Test is quite easy to apply.
It has been used in physics and other applications.

3.4 Concavity and the Second Derivative

s()

10 +

—10 | s'(t)

Figure 3.4.10: A graph of S(t) in Example
3.4.3 along with §'(t).

Figure 3.4.11: A graph of f(x) = x"
Clearly fis always concave up, despite the
fact that f”/(x) = 0 when x = 0. It this
example, the possible point of inflection
(0,0) is not a point of inflection.

c. down
=rel. max \5

-2 -1 1

N v

-5 + c. up
=> rel. min

—10

Figure 3.4.12: Demonstrating the fact
that relative maxima occur when the
graph is concave down and relative min-
ima occur when the graph is concave up.



f7(10) >0

Figure 3.4.13: A graph of f(x) in Example
3.4.4. The second derivative is evaluated
at each critical point. When the graph is
concave up, the critical point represents
a local minimum; when the graph is con-
cave down, the critical point represents a
local maximum.
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Example 3.4.4 Using the Second Derivative Test
Let f(x) = 100/x + x. Find the critical points of f and use the Second Derivative
Test to label them as relative maxima or minima.

SoLuTioN We find f/(x) = —100/x* + 1 and f”(x) = 200/x>. We set
f'(x) = 0 and solve for x to find the critical values (note that f' is not defined at
x = 0, but neither is f so this is not a critical value.) We find the critical values
are x = £10. Evaluating f” at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. Evaluating f”(—10) = —0.1 < 0, determining a relative maximum
at x = —10. These results are confirmed in Figure 3.4.13.

We have been learning how the first and second derivatives of a function
relate information about the graph of that function. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locations of relative extrema and inflection points. In Chapter 1
we saw how limits explained asymptotic behavior. In the next section we com-
bine all of this information to produce accurate sketches of functions.
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Terms and Concepts

1. Sketch a graph of a function f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a function f(x) that is:

(a) Increasing, concave up on (0, 1),
(b) increasing, concave down on (1, 2),
(c) decreasing, concave down on (2, 3) and

(d) increasing, concave down on (3, 4).

3. Is is possible for a function to be increasing and concave
down on (0, co) with a horizontal asymptote of y = 1? If
so, give a sketch of such a function.

4. lIsis possible for a function to be increasing and concave up
on (0, co) with a horizontal asymptote of y = 1? If so, give
a sketch of such a function.

Problems

In Exercises 5 — 14, a function f(x) is given.
(a) Compute f”(x).

(b) Graph fand f" on the same axes (using technology is
permitted) and verify Theorem 3.4.1.

5. f(x) = —7x+3

6. f(x) = —4xX +3x—8

7. f(x) = 4x +3x—8

8 f(X)=x* =3 4+x—1
9. f(x) = =X +x —2x+5
10. f(x) = sinx

11. f(x) =tanx

1
12. f(x) = i
13. flx) = %
14, fx) = =

In Exercises 15 — 28, a function f(x) is given.
(a) Find the possible points of inflection of f.

(b) Create a number line to determine the intervals on
which fis concave up or concave down.

15. f(x) =x" —2x+1
16. f(x) = —x* —5x+7
17. fx) =x —x+1

18. f(x) = 2 —3x +9x +5

19. f(x) = 4+ = —2x+3

IN K

x
3

20. f(x) = —3x* +8x° + 6x° — 24x 42
4 3 2
21 f(x) =x" —4x +6x" —4x+1

22. f(x) = secxon (—37/2,37/2)

1
24. f(x) = xz)i -

25. f(x) = sinx + cosxon (—m, )

26. f(x) = x€"

27. f(x) =X Inx

28. f(x) =e™ "
In Exercises 29 — 42, a function f(x) is given. Find the critical
points of f and use the Second Derivative Test, when possi-
ble, to determine the relative extrema. (Note: these are the
same functions as in Exercises 15 — 28.)

29. fx) =xX —2x+1

30. f(x) = —x* —5x+ 7

3L f(x) =x* —x+1

32, f(x) =2 =38 +9x+5

33. f(x) = —2x+3

X

3

34, f(x) = —3x* + 8%’ + 6x* — 24x + 2
4 3 2

35. f(x) =x" —4x +6x" —4x+1

36. f(x) =secxon (—3w/2,37/2)



1
38. f(x) = ﬁ
39. f(x) = sinx+ cosxon (—m, )

42.

In Exercises 43 — 56, a function f(x) is given. Find the x val-
ues where f'(x) has a local maximum or minimum. (Note:
these are the same functions as in Exercises 15 — 28.)

43, f(x) =x* —2x+1

—x2—5x—|—7

44. f(x) =

45. f(x) =X —x+1

46. f(x) =2x* =3¢ +9x+5

166

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57

X

f(X): Z+§—2X+3
f(x) = —3x" 4+ 8x° + 6x" — 24x + 2
fx) =x*—a +6x —4x+1
f(x) = secxon (—37/2,37/2)

1
fix) = x2+1

X
fx) = 2_1
f(x) = sinx 4 cosxon (—7, )
flx) = e
fx) =X Inx

. Give a graphical of a function for which
1. f"(c) =0, no inflection point
2. f"(c) DNE, no inflection point.



Solutions 3.4

Jany

N e N =
N oo A WN B O

18.

19.

20.

21.
22.

23.

24.

25.

. Answers will vary.
. Answers will vary.

. Yes; Answers will vary.

No.

. Graph and verify.

. Graph and verify.

. Graph and verify.

. Graph and verify.

. Graph and verify.

. Graph and verify.

. Graph and verify.

. Graph and verify.

. Graph and verify.

. Graph and verify.

. Possible points of inflection: none; concave up on (—oo, 00)
. Possible points of inflection: none; concave down on (—oo, 00)

. Possible points of inflection: x = 0; concave down on (—o0, 0);

concave up on (0, co)

Possible points of inflection: x = 1/2; concave down on
(—00,1/2); concave up on (1/2, c0)

Possible points of inflection: x = —2/3, 0; concave down on
(—2/3,0); concave up on (—oo, —2/3) and (0, co)

Possible points of inflection: x = (1/3)(2 #+ 1/7); concave up on
((1/3)(2 = V/7), (1/3)(2 4+ +/7)); concave down on
(=00, (1/3)(2 = V7)) and ((1/3)(2 + V/7), 0)

Possible points of inflection: x = 1; concave up on (—o0, 00)

Possible points of inflection: f'/(x) is not defined (nor is f) at
x = —7/2,7/2; concave down on (—37/2, —7/2) and
(m/2,3m/2) concave up on (—7/2,m/2)

Possible points of inflection: x = :I:l/\@; concave down on

(—1/+/3,1/+/3); concave up on (—oo, —1/+/3) and (1/+/3, o)
Possible points of inflection: x = 0, £1; concave down on
(—o0,—1) and (0, 1) concave up on (—1,0) and (1, co)

Possible points of inflection: x = —7 /4, 37 /4; concave down on
(—m/4,3m/4) concave up on (—m, —7/4) and (37/4, )
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26.

27.

28.

29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
41.
42.
43,
44,
45.
46.
47.

48.

49.
50.
51.
52.
53.
54,

55.
56.

Possible points of inflection: x = —2 =+ v/2; concave down on
(=2 — /2, -2+ /2) concave up on (—o0, —2 — v/2) and
(=24 V2, 00)

3/2.

Possible points of inflection: x = 1/e3/2; concave down on
(0,1/€3/2) concave up on (1/e3/2, c0)

Possible points of inflection: x = :tl/ﬁ; concave down on
(—=1/+/2,1/+/2) concave up on (—oo, —1/+/2) and (1/v/2, c0)
min: x =1

max: x = —5/2

max: x = —1/+/3 min: x = 1/4/3

min: x =1

max: x = —1,2; min:x =1
min: x =1

max: atx = 7 min: atx =0

max: x =0

critical values: x = —1, 1; no max/min
max: X = 7/4; min: x = —37/4

max: x = —2; min: x =0

min: x = 1//e

max: x =0

£/ has no maximal or minimal value.

£’ has no maximal or minimal value
£’ has a minimal value at x = 0

£’ has a minimal value at x = 1/2

Possible points of inflection: x = —2/3, 0; f/ has a relative min
at: x = 0; relative max at: x = —2/3
f has a relative max at: x = (1/3)(2 + +/7) relative min at:

x=(1/3)(2-V7)

£ has no relative extrema

f'(x) has no relative extrema

£/ has a relative max at x = —1/\/§; relative min at x = 1/\/§

£/ has arelative maxat x = 0

f' has a relative min at x = 37/4; relative max atx = —7 /4
f’ has arelative maxatx = —2 — \/f; relative min at
X=-2+4 \/i

f’ has a relative min atx = 1/V/e3 = e=3/2

£’ has a relative max at x = —l/ﬂ; arelative minatx = 1/\5



168

3.5 Curve Sketching

We have been learning how we can understand the behavior of a function based
on its first and second derivatives. While we have been treating the properties
of a function separately (increasing and decreasing, concave up and concave
down, etc.), we combine them here to produce an accurate graph of the function
without plotting lots of extraneous points.

Why bother? Graphing utilities are very accessible, whether on a computer,
a hand-held calculator, or a smartphone. These resources are usually very fast
and accurate. We will see that our method is not particularly fast — it will require
time (but it is not hard). So again: why bother?

We are attempting to understand the behavior of a function f based on the
information given by its derivatives. While all of a function’s derivatives relay
information about it, it turns out that “most” of the behavior we care about is
explained by f” and f”. Understanding the interactions between the graph of f
and f’ and f” is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to stating that one understands how an engine works after looking only at
pictures. It is true that the basic ideas will be conveyed, but “hands—on” access
increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of functions and gives a framework for putting that
information together. It is followed by several examples.

Key Idea 3.5.1 Curve Sketching

To produce an accurate sketch a given function f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
entire real line then find restrictions, such as where a denominator
is 0 or where negatives appear under the radical.

2. Find the critical values of f.
3. Find the possible points of inflection of f.

4. Find the location of any vertical asymptotes of f (usually done in
conjunction with item 1 above).

5. Consider the limits f(x) and lim f(x) to determine the end
X X— 00

lim
——00
behavior of the function.

(continued)
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Key Idea 3.5.1 Curve Sketching — Continued

6. Create a number line that includes all critical points, possible
points of inflection, and locations of vertical asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

7. Evaluate f at each critical point and possible point of inflection.
Plot these points on a set of axes. Connect these points with curves
exhibiting the proper concavity. Sketch asymptotes and x and y
intercepts where applicable.

Example 3.5.1 Curve sketching
Use Key Idea 3.5.1 to sketch f(x) = 3x3 — 10x*> + 7x + 5.

SOLUTION We follow the steps outlined in the Key Idea.

1. The domain of fis the entire real line; there are no values x for which f(x)
is not defined.

2. Find the critical values of f. We compute f’(x) = 9x*> — 20x + 7. Use the
Quadratic Formula to find the roots of f':

L 20+ \/(—g?;; —409)@) _ % (10 + x/ﬁ) = x= 0.435, 1.787.

3. Find the possible points of inflection of f. Compute f”(x) = 18x — 20. We
have
f"(x)=0=x=10/9=1.111.

4. There are no vertical asymptotes.

5. We determine the end behavior using limits as x approaches *infinity.

Xj@ f(x) = —o0 XILm f(x) = 0.

We do not have any horizontal asymptotes.

6. We place the values x = (10 4+ +/37)/9 and x = 10/9 on a number
line, as shown in Figure 3.5.1. We mark each subinterval as increasing or

N.B. Short Version
If you need a high quality graph, use a computer graphing utility. For a
hand drawn graph:
Locate the local extreme points with a short tangent line
Locate possible points of inflection
Determine the behaviors at infinity:
vertical asymptotes
other asumptotes
Sketch the curve.

If in doubt, plot a few test points.
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decreasing, concave up or down, using the techniques used in Sections

3.3and 3.4.
f’ >0 incr f’ < 0 decr f' < 0 decr f’ >0 incr
f” < 0 c. down ‘ f” <0 c. down ‘ f" >0cup ‘ f” <0cup
(10— /37) T =111 $(10+v37)
= 0.435 =1.787

Figure 3.5.1: Number line for fin Example 3.5.1.

7. We plot the appropriate points on axes as shown in Figure 3.5.2(a) and
connect the points with straight lines. In Figure 3.5.2(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at

y = 5 and crosses the x axis near x = —0.424. In Figure 3.5.2(c) we show
a graph of fdrawn with a computer program, verifying the accuracy of our
sketch.

Example 3.5.2 Curve sketching

Xt —x—2

Sketch f(x) = ———.

fx) X2 —x—6
SOLUTION We again follow the steps outlined in Key Idea 3.5.1.

1. In determining the domain, we assume it is all real numbers and look for
restrictions. We find that at x = —2 and x = 3, f(x) is not defined. So the
domain of fis D = {real numbers x | x # —2,3}.

2. To find the critical values of f, we first find f/(x). Using the Quotient Rule,

we find
f’(x)— —8x+4 . —8x+4
T (@ 4+x—62  (x—32(x+2)2

f'(x) = 0when x = 1/2, and f’ is undefined when x = —2, 3. Since f’
is undefined only when fis, these are not critical values. The only critical
valueis x = 1/2.

3. To find the possible points of inflection, we find f”(x), again employing
the Quotient Rule:

noon 24X —24x +56
P = 6 5per

We find that f” (x) is never O (setting the numerator equal to 0 and solving
for x, we find the only roots to this quadratic are imaginary) and f” is

(a)

10 +

(b)

(c)

Figure 3.5.2: Sketching fin Example 3.5.1.
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Figure 3.5.4: Sketching fin Example 3.5.2.

(c)
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undefined when x = —2,3. Thus concavity will possibly only change at
x=—2andx = 3.

. The vertical asymptotes of fare at x = —2 and x = 3, the places where f
is undefined.
. Thereisahorizontal asymptoteofy = 1,as lim f(x) = 1and lim f(x) =
X—r—00 X—r 00
1.
. We place the values x = 1/2, x = —2 and x = 3 on a number line as

shown in Figure 3.5.3. We mark in each interval whether fis increasing or
decreasing, concave up or down. We see that f has a relative maximum at
x = 1/2; concavity changes only at the vertical asymptotes.

f’ >0 incr f' >0 incr
f” >0c up ‘ f” < 0 c. down

f’ < 0 decr f' < 0 decr
f” <0 c. down ‘ f”" >0cup

2 3

Nl ——

Figure 3.5.3: Number line for fin Example 3.5.2.

. In Figure 3.5.4(a), we plot the points from the number line on a set of

axes and connect the points with straight lines to get a general idea of
what the function looks like (these lines effectively only convey increas-
ing/decreasing information). In Figure 3.5.4(b), we adjust the graph with
the appropriate concavity. We also show f crossing the x axisat x = —1
and x = 2.

Figure 3.5.4(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch.

Example 3.5.3 Curve sketching
5(x—2)(x+1
Sketch f(x) = w
X2+ 2x+4
SOLUTION We again follow Key Idea 3.5.1.

1. We assume that the domain of fis all real numbers and consider restric-

tions. The only restrictions come when the denominator is 0, but this
never occurs. Therefore the domain of fis all real numbers, R.

2. We find the critical values of f by setting f'(x) = 0 and solving for x. We

find
15x(x + 4)

P00 =Gasorap — f()=0whenx=-40
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3. We find the possible points of inflection by solving f”/(x) = 0 for x. We
find
30x° + 180x* — 240
(x®+2x+4)3
The cubic in the numerator does not factor very “nicely.” We instead ap-
proximate the roots at x = —5.759, x = —1.305 and x = 1.064.

f”(X) — _

4. There are no vertical asymptotes.

f(x) = lim f(x) =5.

5. We have a horizontal asymptote of y = 5,as |im
X—r— 00 X—r 00

6. We place the critical points and possible points on a number line as shown
in Figure 3.5.5 and mark each interval as increasing/decreasing, concave
up/down appropriately.

f’>0incr f'>0incr f’<0decr f’<0decr f/>0incr f’>0decr
' >0cup f" < o0cdown f'" < 0c down ' >0cup " >0cup f'" < 0 c down
< | | | .
I I I I I
—5.579 —4 —1.305 0 1.064

Figure 3.5.5: Number line for fin Example 3.5.3.

7. In Figure 3.5.6(a) we plot the significant points from the number line as
well as the two roots of f, x = —1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
3.5.6(b), we add concavity. Figure 3.5.6(c) shows a computer generated
graph of f, affirming our results.

In each of our examples, we found a few, significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? Itis not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
puting than we are. In general, computers graph functions much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connecting lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate noticeable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as

(c)

Figure 3.5.6: Sketching fin Example 3.5.3.
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Mathematica, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 3.5.7, a graph of y = sinx is given, generated by Mathematica.
The small points represent each of the places Mathematica sampled the func-
tion. Notice how at the “bends” of sin x, lots of points are used; where sin x is
relatively straight, fewer points are used. (Many points are also used at the end-
points to ensure the “end behavior” is accurate.) In fact, in the interval of length
0.2 centered around 7/2, Mathematica plots 72 of the 431 points plotted; that
is, it plots about 17% of its points in a subinterval that accounts for about 3% of
the total interval length.

10F

05

-05+

-10+

Figure 3.5.7: A graph of y = sin x generated by Mathematica.

How does Mathematica know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
derivatives of a function work together to provide a measurement of “curvi-
ness.” Mathematica employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this section is not “How to graph a function when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a function is largely determined by understanding the behavior of the
function at a few key places.” In Example 3.5.3, we were able to accurately sketch
a complicated graph using only 5 points and knowledge of asymptotes!

There are many applications of our understanding of derivatives beyond curve
sketching. The next chapter explores some of these applications, demonstrat-
ing just a few kinds of problems that can be solved with a basic knowledge of
differentiation.
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Terms and Concepts

1. Why is sketching curves by hand beneficial even though
technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of functions, it is useful to find
the critical points.

4. T/F: When sketching graphs of functions, it is useful to find
the possible points of inflection.

5. T/F: When sketching graphs of functions, it is useful to find
the horizontal and vertical asymptotes.

6. T/F: When sketching graphs of functions, one need not plot
any points at all.
Problems

In Exercises 7 — 12, practice using Key Idea 3.5.1 by applying
the principles to the given functions with familiar graphs.

7. f(x) = 2x+ 4

8 f(x) = —x+1

9. f(x) =sinx
10. f(x) =€*
11, f(x) = %
12. f(x) = Xlz

In Exercises 13 — 26, sketch a graph of the given function us-
ing Key Idea 3.5.1. Show all work; check your answer with
technology.

13. f(x) =x> —2X" +4x+1

14. f(x) = —x* + 55" —3x+2

15. f(x) =x +38 +3x+ 1
16. fx) =x =X —x+1
17. f(x) = (x —2)In(x — 2)

18. f(x) = (x—2)*In(x — 2)

X —4
19. f(x) = "

X —4x+3
20. f(x) = P

X —2x+1
2L ) = et s

22, f(x) =xvx+1
23. f(x) = x*e"

24. f(x) = sinxcosxon [—m, 7]

25. f(x) = (x—3)*> 42
a\2/3
26. f(x) = %

In Exercises 27 — 30, a function with the parameters g and b
are given. Describe the critical points and possible points of
inflection of f in terms of a and b.

_a
x2 + b?

27. f(x) =
28. f(x) = ax* +bx+1
29. f(x) = sin(ax + b)
30. f(x) = (x —a)(x — b)

31. Given x> +y* = 1, use implicit differentiation to find £
and %. Use this information to justify the sketch of the

unit circle.
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o8}

21.
22.
23.
24.
25.
26.
27.
28.

29.

30.
31.

N W e

. Answers will vary.

Found everywhere.
T
T
T
F

. A good sketch will include the x and y intercepts and draw the

appropriate line.

. A good sketch will include the x and y intercepts..
. Use technology to verify sketch.

10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.

Use technology to verify sketch.
Use technology to verify sketch.
Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Use technology to verify sketch.

Critical point: x = 0 Points of inflection: :i:b/\/§
Critical point: x = —b/(2a) No points of inflection

Critical points: x = '”T/Tz_b

Critical point: x = (@ + b)/2 Points of inflection: none

dx

quadrants, decreasing in the first and third quadrants.

dy _
dx® .

quadrants.

, where n is an odd integer Points of
inflection: (nm — b)/a, where n is an integer.

@ — —x/y, so the function is increasing in second and fourth

—1/y — x?/y3, which is positive when y < 0 and is
negative when y > 0. Hence the function is concave down in the
first and second quadrants and concave up in the third and fourth
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4: APPLICATIONS OF THE
DERIVATIVE

In Chapter 3, we learned how the first and second derivatives of a function influ-
ence its graph. In this chapter we explore other applications of the derivative.

4.1 Newton’s Method

Solving equations is one of the most important things we do in mathematics,
yet we are surprisingly limited in what we can solve analytically. For instance,
equations as simple as x> + x4 1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar functions. Fortunately, there are methods that
can give us approximate solutions to equations like these. These methods can
usually give an approximation correct to as many decimal places as we like. In
Section 1.5 we learned about the Bisection Method. This section focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an initial guess about roughly where the
root is. Call this xy. (See Figure 4.1.1(a).) Draw the tangent line to the graph at
(x0,f(x0)) and see where it meets the x-axis. Call this point x;. Then repeat the
process —draw the tangent line to the graph at (x1, f(x1)) and see where it meets
the x-axis. (See Figure 4.1.1(b).) Call this point x,. Repeat the process again to
get x3, X4, etc. This sequence of points will often converge rather quickly to a
root of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x;. We started with the tangent line to the graph at (xo, f(xo)).
The slope of this tangent line is f/(xo) and the equation of the line is

y = f'(xo0)(x — Xo) + f(xo)-

This line crosses the x-axis when y = 0, and the x—value where it crosses is what
we called x;. So let y = 0 and replace x with x;, giving the equation:

0 =f"(x0)(x1 — Xo) + f(xo).

Now solve for x;:
f(Xo)
f'(x0)

X1 = Xpo —

A
I
I
0.5 + I
I
I
I

—0.5 +

é_
05 \
1 . !
Xo X2 X
|
—05 | |
|

0.5 +

x
S
x L __
9
X
@
x
s

—0.5 +

(c)

Figure 4.1.1: Demonstrating the geo-
metric concept behind Newton’s Method.
Note how x3 is very close to a solution to

f(x)=0.



Note: Newton’s Method is not infallible.

The sequence of approximate values may
not converge, or it may converge so slowly
that one is “tricked” into thinking a certain
approximation is better than it actually is.
These issues will be discussed at the end of
the section.
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Since we repeat the same geometric process to find x, from x;, we have

flx)
flia)

X2 = X1 —

In general, given an approximation x,, we can find the next approximation, x,+1
as follows:

f(xn)

Xn+1 = Xn _f'(X )
n

We summarize this process as follows.

Key Idea 4.1.1 Newton’s Method

Let f be a differentiable function on an interval / with a root in /. To ap-
proximate the value of the root, accurate to d decimal places:

1. Choose a value xq as an initial approximation of the root. (This is
often done by looking at a graph of f.)

2. Create successive approximations iteratively; given an approxima-
tion x,,, compute the next approximation x,, 41 as

f(xn)
f'(xa) '

Xn4+1 = Xn —

3. Stop the iterations when successive approximations do not differ
in the first d places after the decimal point.

Let’s practice Newton’s Method with a concrete example.

Example 4.1.1 Using Newton’s Method
Approximate the real root of x> — x> — 1 = 0, accurate to the first 3 places after
the decimal, using Newton’s Method and an initial approximation of xo = 1.

SOLUTION To begin, we compute f’(x) = 3x?> — 2x. Then we apply the
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Newton’s Method algorithm, outlined in Key Idea 4.1.1.

1 ’-12-1
x3=1-— ) _ - =2
(1) 3-12-2-1
2 2-22-1
X3 =2— f2) =2— ———— =1.625,
(2 3.22-2.2
f(1.625) 1.625% — 1.6252 — 1
x3=1.625— = ——— =1.625— = 1.48579.
f/(1.625) 3-1.6252—2-1.625
(1.48579)
Xs = 1.48579 — f = 1.46596
f'(1.48579)
(1.46596)
Xs = 1.46596 — I = 1.46557

£'(1.46596)

We performed 5 iterations of Newton’s Method to find a root accurate to the
first 3 places after the decimal; our final approximation is 1.465. The exact value
of the root, to six decimal places, is 1.465571; It turns out that our xs is accurate
to more than just 3 decimal places.

A graph of f(x) is given in Figure 4.1.2. We can see from the graph that our
initial approximation of xo = 1 was not particularly accurate; a closer guess
would have been xo = 1.5. Our choice was based on ease of initial calculation,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate initial approximation.

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calculation. Start by pressing 1 and then Enter.
(We have just entered our initial guess, xo = 1.) Now compute

f(Ans)
f'(Ans)

by entering the following and repeatedly press the Enter key:

Ans —

Ans-(Ans~3-Ans~2-1)/(3*Ans~2-2*Ans)

Each time we press the Enter key, we are finding the successive approximations,
X1, X2, ..., and each one is getting closer to the root. In fact, once we get past
around x; or so, the approximations don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
pretty confident that we have found an accurate approximation.

Using a calculator in this manner makes the calculations simple; many iter-
ations can be computed very quickly.

0.5 +

—0.5 +

—1.5

Figure 4.1.2: Agraphof f(x) = X —x* —1
in Example 4.1.1.



Figure 4.1.3: A graph of f(x) = cosx — x
used to find an initial approximation of its
root.
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Example 4.1.2 Using Newton’s Method to find where functions intersect
Use Newton’s Method to approximate a solution to cosx = x, accurate to 5
places after the decimal.

SOLUTION Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equations like f(x) = g(x). However, this is
not a problem; we can rewrite the latter equation as f(x) — g(x) = 0 and then
use Newton’s Method.

So we rewrite cosx = x as cosx — x = 0. Written this way, we are finding
a root of f(x) = cosx — x. We compute f'(x) = —sinx — 1. Next we need a
starting value, xo. Consider Figure 4.1.3, where f(x) = cosx — x is graphed. It
seems that xo = 0.75 is pretty close to the root, so we will use that as our xg.
(The figure also shows the graphs of y = cosx and y = x, drawn with dashed
lines. Note how they intersect at the same x value as when f(x) = 0.)

We now compute X3, X, etc. The formula for x; is

cos(0.75) — 0.75

- = 0.7391111388.
—sin(0.75) — 1

x; =0.75 —

Apply Newton’s Method again to find x;:

cos(0.7391111388) — 0.7391111388

X, = 0.7391111388 — :
—sin(0.7391111388) — 1

= 0.7390851334.

We can continue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing 0.75, then Enter, inputting
our initial approximation. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

Repeatedly pressing the Enter key gives successive approximations. We
quickly find:

x3 = 0.7390851332
xs = 0.7390851332.

Our approximations x; and x3 did not differ for at least the first 5 places after
the decimal, so we could have stopped. However, using our calculator in the
man-ner described is easy, so finding x4 was not hard. It is interesting to see
how we found an approximation, accurate to as many decimal places as our
calculator displays, in just 4 iterations.
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Read and understand only. The following material
discusses how Newton's Method can fail.

Convergence of Newton’s Method

What should one use for the initial guess, xo? Generally, the closer to the
actual root the initial guess is, the better. However, some initial guesses should
be avoided. For instance, consider Example 4.1.1 where we sought the root to
flx) = x3 — x? — 1. Choosing xo = 0 would have been a particularly poor choice.
Consider Figure 4.1.4, where f(x) is graphed along with its tangent line at
x = 0. Since f(0) = 0, the tangent line is horizontal and does not intersect the
x—axis. Graphically, we see that Newton’s Method fails.

We can also see analytically that it fails. Since

f(0)
f'(0)

and f’(0) = 0, we see that x; is not well defined.

This problem can also occur if, for instance, it turns out that f'(xs) = 0.
Adjusting the initial approximation xo by a very small amount will likely fix the
problem.

Itis also possible for Newton’s Method to not converge while each successive
approximation is well defined. Consider f(x) = x1/3, as shown in Figure 4.1.5. It
is clear that the root is x = 0, but let’s approximate this with x, = 0.1. Figure
4.1.5(a) shows graphically the calculation of x;; notice how it is farther from the
root than xq. Figures 4.1.5(b) and (c) show the calculation of x, and x3, which are
even farther away; our successive approximations are getting worse. (It turns
out that in this particular example, each successive approximation is twice as far
from the true answer as the previous approximation.)

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

While Newton’s Method does not always work, it does work “most of the
time,” and it is generally very fast. Once the approximations get close to the root,

X1:0—

Newton’s Method can as much as double the number of correct decimal places
with each successive approximation. A course in Numerical Analysis will
introduce the reader to more iterative root finding methods, as well as give
greater detail about the strengths and weaknesses of Newton’s Method.

Figure 4.1.4: Agraph of f(x) = x* —x*—1,
showing why an initial approximation of
Xo = 0 with Newton’s Method fails.

(c)

Figure 4.1.5: Newton’s Method fails to
find a root of f(x) = x/*, regardless of
the choice of xo.

Note In the modern world, one would normally use a scientific calculator or a computer algebraic systems to

solve equations. Life is too short or time too valuable to do otherwise.

However, it is good to understand how the equation solver on your calculator or computer works. If you are
writing a computer program to solve another problem and need to solve equations, you might wish to write a

routine including Newton's Method.
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Terms and Concepts

1. T/F: Given a function f(x), Newton’s Method produces an
exact solution to f(x) = 0.

2. T/F: In order to get a solution to f(x) = O accurate to d
places after the decimal, at least d + 1 iterations of New-
tons’ Method must be used.

Problems

In Exercises 3 — 8, the roots of f(x) are known or are easily
found. Use 5 iterations of Newton’s Method with the given
initial approximation to approximate the root. Compare it to
the known value of the root.

3. f(x) = cosx, xo = 1.5

4. f(x) =sinx,xo =1

5. f(x) =xX* +x—2,% =0

6. fx) =x*—2,x0 =15

7. f(x) =Inx,xo =2

8 fX)=x - +x—1,%=1

In Exercises 9 — 12, use Newton’s Method to approximate all
roots of the given functions accurate to 3 places after the dec-

Solutions 4.1

1. F
2. F

3. x0=1.5,x1=1.5709148, x = 1.57018. The approxima ons
alternate between x =1, x = 2 and x = 3.7963, x3 = 1.5707963,
x4 =1.5707963, x5 = 1.5707963

4. xo=1, x1=-0.55740772, x, = 0.065936452,
x3 = —0.000095721919, X4 = 2.9235662 + 10713, x5 = 0

5. x0=0,%1 =2,% =12, x3 = 1.0117647, x4 = 1.0000458, x5 =
1

6. xo = 1.5, x1 = 14166667, x, = 1.4142157, x3 = 1.4142136,
x4 = 1.4142136, x5 = 1.4142136

imal. If an interval is given, find only the roots that lie in
that interval. Use technology to obtain good initial approx-
imations.

9. fX) =X +5¢ —x—1
10. f(x) =x"+2¢ —7x¥* —x+5

11. f(x) = x — 2x™® —10x® + 10 0n (-2,2)

12. f(x) = x¥* cosx + (x — 1) sinx on (3, 3)

In Exercises 13 — 16, use Newton’s Method to approximate
when the given functions are equal, accurate to 3 places af-
ter the decimal. Use technology to obtain good initial approx-
imations.

13. f(x) = x*, g(x) = cosx

14. f(x) = x* — 1,9(x) = sinx

2

15. f(x) = €, g(x) = cosx
16. f(x) = x, g(x) = tanxon [—6, 6]

17. Why does Newton’s Method fail in finding a root of f(x) =
X —3x* + x4+ 3whenx, = 1?

18. Why does Newton’s Method fail in finding a root of f(x) =
—17x* + 130x* — 301x* 4 156x + 156 when xo = 1?

7. Xo = 2,x1 = 0.6137056389, x, = 0.9133412072,
x3 = 0.9961317034, x4 = 0.9999925085, x5 = 1

8 xo=1,x1=1,x=1,x3=1,x4=1,x5=1
9. roots are: x =-5.156, x = -0.369 and x = 0.525
10. roots are: x =-3.714,x=-0.857,x=1and x=1.571
11. rootsare: x=-1.013, x=0.988, and x = 1.393
12. roots are: x=-2.165,x=0,x=0.525and x = 1.813
13. x = #0.824,
14. x=-0.637,x=1.410
15. x =#0.743
16. x=44.493,x=0
17. The approximations alternate between x = 1 and x = 2.

18. The approximations alternate between x =1, x = 2and x = 3.
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Asymptotic Equality

It’s time to review the new ‘near equality’ that will be be useful in doing theory and applications
in the next few chapters and sustain good calculus style later in your work life. It applies to
infinitesimal, finite hyperreal, and infinite number calculations.

Definition Ais asymptotically equal to B written A= B means % = 1+ € where € isan

infinitesimal.
Properties (proofs left as easy exercises)

1. A=A
9 A%B = BxA NOTE again that- = is' an excel!ent
3. A=B,B%C & A%C hyperreal approximation but yields an

exact extended real; it's really a 'real ='!
Theorem a=A b=B < a‘A=b‘B

Theorem a=A b=B < <= %
Note: A= 0 is never true. This will never be a serious problem in calculus. We can ignore this case
there because the final answer will never be affected.

Examples in detail. Examine each graph carefully. Understand.

Infinitesimal Case 2dx-dx? = 2dx

— 2 - . . . .
Proof MZ"—dx"x =1- dz—x = 1+ € where € is aninfinitesimal.

Next we illustrate the above with approximations of dx by ‘small’ real numbers.
Graphically, compare the ratio with 1:
2 dx=dx?

1
2dx

20¢ 20¢ 20¢

1.5 / 15F 15F
— 18 46

0.5F 0.5F 0.5F

= X X X
-1 1 -0.1 0.1 -0.01 0.01
05t 05N » 05E

Graphically, compare individually:
2dx - dx?, 2dx

2 0.2 0.02
1 0.1 0.01

L L X

-1 1 . - X : :
21Ny -0.1 0.1 ~0.01 o.o1X
I 204 F o 20.01 F o
-3 -0.2 -0.02
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Finite Hyperreal Case 9+6dx+dx* = 9 because

9 +6 dx + dx?

9

_ 2 dx* _
'1+§dX+T‘

Graphically, compare ratio with 1:

l+e.

9 +6 dx + dx?
9

I

1 N ax 1 X -0 N ax 0.4 ~0.01 dx 0.01
Graphically, compare individually:
9 +6dx+dx?, 9
9
1‘ L 1‘ X —6.1 R Ot1 —0‘.01 LN 0.61
dx dx dx

Infinite Case X?-3X+2 = X2 because

X2=3X+2
XZ

Graphically, compare ratio with 1:

20
1.5
1.0

0.5 ///”,,_————-"'
‘ X

10

X2=3 X+ 2

20¢
15F

1.0

XZ

05F

Graphically, compare individually:

100
80
60
40
20

X2-3X+2, X2

10000
8000
6000
4000
2000

100

100

20¢
15¢F
1.0

=1- f—(+ ;—2 = 1+ € for X a positive infinite number.

0.5 r—fi

1x108
800000
600000
400000
200000

1000

1000
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4.2 Related Rates

When two quantities are related by an equation, knowing the value of one quan-
tity can determine the value of the other. For instance, the circumference and
radius of a circle are related by C = 27r; knowing that C = 6min determines
the radius must be 3in.

The topic of related rates takes this one step further: knowing the rate
at which one quantity is changing can determine the rate at which another
changes.

We demonstrate the concepts of related rates through examples.

Example 4.2.1 Understanding related rates
The radius of a circle is growing at a rate of 5in/hr. At what rate is the
circumference growing?

sowution The circumference and radius of a circle are related by C = 27r.
We are given information about how the length of r changes with respect to

time; that is, we are told % = 5in/hr. We want to know how the length of C
changes with respect to time, i.e., we want to know ‘;—f.

Implicitly differentiate both sides of C = 2zr with respect to t:

C=2nur

d d
dc_, o
at

As we know Z—: = 5in/hr, we know

dc .
i 275 = 107 =31.4in/hr.

Consider another, similar example.

Example 4.2.2 Finding related rates
Water streams out of a faucet at a rate of 2in3/s onto a flat surface at a constant
rate, forming a circular puddle that is 1/8in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?
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SOLUTION

1. We can answer this question two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 2in3/s, where

volume of puddle = area of circle x depth.

Since the depth is constant at 1/8in, the area must be growing by 16in?/s.

This approach reveals the underlying related—rates principle. Let Vand A
represent the Volume and Area of the puddle. We know V = A x % Take
the derivative of both sides with respect to t, employing implicit differen-

tiation.
1
V=-A
8
d d /1
—(V)=—(=A
&= ()
dv _ 1dA
dt ~ 8dt
dv __ __1dA dA __ H
As & = 2, we know 2 = 39 and hence & = 16. Thus the area is

growing by 16in?/s.

2. To start, we need an equation that relates what we know to the radius.
We just learned something about the surface area of the circular puddle,
and we know A = 7rr2. We should be able to learn about the rate at which
the radius is growing with this information.

Implicitly derive both sides of A = 7r? with respect to t:

A=Tr
d d, ,
(A = ()
at ~ ar

Our work above told us that % = 16in?/s. Solving for %, we have

dr 8

dt ~ 7r

Note how our answer is not a number, but rather a function of r. In other
words, the rate at which the radius is growing depends on how big the



N
B=1/2 -

4 E
Car

o~

~

- c

Il

<

Tl Officer

Figure 4.2.1: A sketch of a police car
(at bottom) attempting to measure the
speed of a car (at right) in Example 4.2.3.
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circle already is. If the circle is very large, adding 2in® of water will not
make the circle much bigger at all. If the circle is dime—sized, adding the
same amount of water will make a radical change in the radius of the circle.

In some ways, our problem was (intentionally) ill-posed. We need to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of 10in, the radius is growing at a rate of

dr 8 4 .
= = 0.25in/s.

dt 10t 57

Example 4.2.3 Studying related rates

Radar guns measure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “55mph” means the object is moving
away from the gun at a rate of 55 miles per hour, whereas a measurement of
“—25mph” would mean that the object is approaching the gun at a rate of 25
miles per hour.

If the radar gun is moving (say, attached to a police car) then radar readouts
are only immediately understandable if the gun and the object are moving along
the same line. If a police officer is traveling 60mph and gets a readout of 15mph,
he knows that the car ahead of him is moving away at a rate of 15 miles an hour,
meaning the car is traveling 75mph. (This straight—line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

Suppose an officer is driving due north at 30 mph and sees a car moving due
east, as shown in Figure 4.2.1. Using his radar gun, he measures a reading of
20mph. By using landmarks, he believes both he and the other car are about
1/2 mile from the intersection of their two roads.

If the speed limit on the other road is 55mph, is the other driver speeding?

SOLUTION Using the diagram in Figure 4.2.1, let’s label what we know
about the situation. As both the police officer and other driver are 1/2 mile from
the intersection, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/v/2 = 0.707.

We know the police officer is traveling at 30mph; that is, ‘;—f = —30. The
reason this rate of change is negative is that A is getting smaller; the distance
between the officer and the intersection is shrinking. The radar measurement
is % = 20. We want to find 2.

We need an equation that relates Bto A and/or C. The Pythagorean Theorem
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is a good choice: A2 + B> = C?. Differentiate both sides with respect to t:

A +B=C
G E) = 2@
dt dt
2AdA + ZBdB = 2CdC
dt dt " dt
. dB . .
We have values for everything except . Solving for this we have
d8  Cl — A%
dt B = 58.28mph.

The other driver appears to be speeding slightly.

Example 4.2.4 Studying related rates

A camera is placed on a tripod 10ft from the side of a road. The camerais to turn
to track a car that is to drive by at 100mph for a promotional video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.2.2 shows the proposed
setup.

How fast must the camera be able to turn to track the car?

SOLUTION We seek information about how fast the camera is to turn;
therefore, we need an equation that will relate an angle 6 to the position of the
camera and the speed and position of the car.

Figure 4.2.2 suggests we use a trigonometric equation. Letting x represent
the distance the car is from the point on the road directly in front of the camera,
we have

tanf = L. (4.1)
10

As the caris moving at 100mph, we have % = —100mph (asin the last example,
since x is getting smaller as the car travels, % is negative). We need to convert

the measurements so they use the same units; rewrite —100mph in terms of
ft/s:
X _ _100™ = _100
dt hr

m ft 1 hr _
— .5280— - —— — = —146.6ft/s.
hr m 3600 s

Note: Example 4.2.3 is both interesting
and impractical. It highlights the difficulty
in using radar in a non—linear fashion, and
explains why “in real life” the police offi-
cer would follow the other driver to de-
termine their speed, and not pull out pen-
cil and paper.

The principles here are important,
though. Many automated vehicles make
judgments about other moving objects
based on perceived distances, radar—like
measurements and the concepts of
related rates.

10ft

Figure 4.2.2: Tracking a speeding car (at
left) with a rotating camera.

Now take the derivative of both sides of Equation (4.1) using implicit differentiation:

A water tank is a horizontal cylinder of radius 5 feet
Example Infinitesimal Analysis and length 15 feet. Water is poured into the tank at

_ the rate 8 22t How fast is the water level rising
minute

when the water is 9 feet deep?

Unfortunately you do not know the formula for the
volume as a function of the water depth, V=V(y).
You will learn it in the next calculus course: it is
quite complicated. Fortunately, you can easily work
the problem using infinitesimal analysis! See the

solution on the next page.
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tan9:i
10
d d / x
o= £ (2)
ai(en?) = (5
do 1 dx
297:77
V9 T 104t
diﬁ_coszﬁg (4.2)
dt 10 dt '

We want to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when 8 = 0). Our mathe-
matics bears this out. In Equation (4.2) we see this is when cos? § is largest; this
is when cos# = 1, or when 6§ = 0.

With & = —146.67ft/s, we have

d9  1rad
= —%146.67&/5 — _14.667radians/s.

We find that fg is negative; this matches our diagram in Figure 4.2.2 for 6 is

getting smaller as the car approaches the camera.

What is the practical meaning of —14.667radians/s? Recall that 1 circular
revolution goes through 2 radians, thus 14.667rad/s means 14.667/(2m) =
2.33 revolutions per second. The negative sign indicates the camera is rotating
in a clockwise fashion.

We introduced the derivative as a function that gives the slopes of tangent
lines of functions. This chapter emphasizes using the derivative in other ways.
Newton’s Method uses the derivative to approximate roots of functions; this
section stresses the “rate of change” aspect of the derivative to find a relation-
ship between the rates of change of two related quantities.

In the next section we use Extreme Value concepts to optimize quantities.

Solution by infinitesimal analysis

Solution From the graph, the volume of the
infinitesimal layer is

dV = 2x (16) dy = 32y 25-y2dy

X dyzd_v

dy [~
X X (x,y)

32+ 25-y2
av
dy ~ __dt — 1 meter
~ Y= 4 - . .
dt 32V 25-y7 | 12 minute
N o

dt
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Terms and Concepts

1. T/F: Implicit differentiation is often used when solving “re-
lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems

3. Water flows onto a flat surface at a rate of 5cm?/s forming a
circular puddle 10mm deep. How fast is the radius growing
when the radius is:

(a) 1cm?
(b) 10 cm?
(c) 100 cm?

4. A circular balloon is inflated with air flowing at a rate of
10cm®/s. How fast is the radius of the balloon increasing
when the radius is:

(a) 1cm?
(b) 10 cm?
(c) 100 cm?

5. Consider the traffic situation introduced in Example 4.2.3.
How fast is the “other car” traveling if the officer and the
other car are each 1/2 mile from the intersection, the other
car is traveling due west, the officer is traveling north at
50mph, and the radar reading is —80mph?

6. Consider the traffic situation introduced in Example 4.2.3.
Calculate how fast the “other car” is traveling in each of the
following situations.

(a) The officer is traveling due north at 50mph and is
1/2 mile from the intersection, while the other car
is 1 mile from the intersection traveling west and the
radar reading is —80mph?

(b) The officer is traveling due north at 50mph and is
1 mile from the intersection, while the other car is
1/2 mile from the intersection traveling west and the
radar reading is —80mph?

7. An F-22 aircraft is flying at 500mph with an elevation of
10,000ft on a straight—line path that will take it directly over
an anti—aircraft gun.

4

10,000 ft

-
-

X

How fast must the gun be able to turn to accurately track
the aircraft when the plane is:

8.

10.

11.

(a) 1 mile away?
(b) 1/5 mile away?

(c) Directly overhead?

An F-22 aircraft is flying at 500mph with an elevation of
100ft on a straight-line path that will take it directly over
an anti—aircraft gun as in Exercise 7 (note the lower eleva-
tion here).

How fast must the gun be able to turn to accurately track
the aircraft when the plane is:

(a) 1000 feet away?
(b) 100 feet away?

(c) Directly overhead?

A 24ft. ladder is leaning against a house while the base is
pulled away at a constant rate of 1ft/s.

=
Gi 1ft/s
—

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) 1 foot from the house?
(b) 10 feet from the house?
(c) 23 feet from the house?

(d) 24 feet from the house?

A boat is being pulled into a dock at a constant rate of
30ft/min by a winch located 10ft above the deck of the
boat.

At what rate is the boat approaching the dock when the
boat is:

(a) 50 feet out?
(b) 15 feet out?
(c) 1foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than 10 feet long?

An inverted cylindrical cone, 20ft deep and 10ft across at
the top, is being filled with water at a rate of 10ft3/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) 1foot?
(b) 10 feet?
(c) 19 feet?

How long will the tank take to fill when starting at empty?
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12. A rope, attached to a weight, goes up through a pulley at (b) How fastis the weight rising after the man has walked
the ceiling and back down to a worker. The man holds the 10 feet?
rope at the same height as the connection point between

> (c) How fastis the weight rising after the man has walked
rope and weight.

30 feet?
T (d) How far must the man walk to raise the weight all the
S way to the pulley?
« 2 ft/s
1 —— . . .. .
14. A hot air balloon lifts off from ground rising vertically. From
Suppose the man stands directly next to the weight (i.e., a 100 feet away, a 5" woman tracks the path of the balloon.
total rope length of 60 ft) and begins to walk away at a rate When her sightline with the balloon makes a 45° angle with
of 2ft/s. How fast is the weight rising when the man has the horizontal, she notes the angle is increasing at about
walked: 5°/min.
2
(a) 10 feet? (a) What is the elevation of the balloon?
b) 40 feet?
(b) (b) How fast is it rising?
How far must the man walk to raise the weight all the way
to the pulley? 15. A company that produces landscaping materials is dumping
sand into a conical pile. The sand is being poured at a rate
13. Consider the situation described in Exercise 12. Suppose of 5ft3/sec; the physical properties of the sand, in conjunc-
the man starts 40ft from the weight and begins to walk tion with gravity, ensure that the cone’s height is roughly
away at a rate of 2ft/s. 2/3 the length of the diameter of the circular base.
(a) How long is the rope? How fast is the cone rising when it has a height of 30 feet?

16. In the cylindrical water tank problem, how fast is the water level rising when the tank is
half full?

17. Aspherical petroleum tank has a radius of 8 feet. Liquid is removed out of the bottom at the

foot>
rate of 1 ——

minute *

a. How fast is the level decreasing when the tank is half full?
b. How fast is the level decreasing when the level is at 4 feet?
Use infinitesimal methods.

18. Amedicinal CBD oil tank has the form of an inverted truncated pyramid 40 centimeters high,
the top being a square with side 20 centimeters and the bottom a square of side 10 centimeters.

Oil is withdrawn at the rate of 10 <2

second *

a. How fast is the level decreasing when the tank is full?
b. How fast is the level decreasing when the oil level is at 20 centimeters?
Use infinitesimal methods.

19. A parabolic tank is obtained by rotating the parabola y = x> 0 < x < 10 cm, about the y-axis. Water is
being poured into the tank at the rate 100 cm 3/min. How fast is the water level rising when the level is
10cm?



191

Solutions 4.2

1.7

2. F

3. (a)5/(2m) = 0.796cm/s

(b) 1/(4m)=0.0796 cm/s

(c) 1/(40m)=0.00796 cm/s
. (a)5/(2m) =0.796cm/s

(b) 1/(40r) = 0.00796 cm/s

(c) 1/(40007)= 0.0000796 cm/s
5. 63.14mph
. (a) 64.44 mph

(b) 78.89 mph

IN

(2]

7. Due to the height of the plane, the gun does not have to rotate
very fast.

(a) 0.0573 rad/s
(b) 0.0725 rad/s
(c) Inthe limit, rate goes to 0.0733 rad/s

8. Due to the height of the plane, the gun does not have to rotate
very fast.

(a) 0.073rad/s
(b) 3.66 rad/s (about 1/2 revolution/sec)

(c) Inthe limit, rate goes to 7.33 rad/s (more than 1
revolution/sec)

9. (a) 0.04ft/s
(b) 0.458 ft/s
(c) 3.35ft/s
(d) Not defined; as the distance approaches 24, the rates
approaches oco.
10. (a) 30.59 ft/min
(b) 36.1ft/min
(c) 301 ft/min

(d) The boat no longer floats as usual, but is being pulled up by
the winch (assuming it has the power to do so).

11. (a) 50.92 ft/min
(b) 0.509 ft/min
(c) 0.141 ft/min

As the tank holds about 523.6ft3, it will take about 52.36 minutes.
12.  (a) 0.63 ft/sec
(b) 1.6 ft/sec
About 52 ft.
13. (a
(b) 1.71 ft/sec
(c) 1.84 ft/sec
(d) About 34 feet.
14, (a

(b) The balloon is rising at a rate of 17.45ft/min. (Hint: convert
all angles to radians.)

The rope is 80ft long.

The balloon is 105ft in the air.

15. The cone is rising at a rate of 0.003ft/s.

dy _ 1 _meter
16. dt 20 minute

dy 1 feet
17a. dt 2571 minute
b dy _ __1 _feet
todt 9 7T minute

18.

Y Front-right quarter of tank shown.
y=8x-40
dv=(2x)*dy

= 4x%dy

= 4(% +5)*dy

IR s

dy _ dy/dt
- 2
dt 4(%+5)
— —10
4(5+5)?
—_1_cm
40 second
d 10 cm
19. &£ =2
dt 7T minute
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4.3 Optimization

In Section 3.1 we learned about extreme values — the largest and smallest values
a function attains on an interval. We motivated our interest in such values by
discussing how it made sense to want to know the highest/lowest values of a
stock, or the fastest/slowest an object was moving. In this section we apply
the concepts of extreme values to solve “word problems,” i.e., problems
stated in terms of situations that require us to create the appropriate
mathematical framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of optimization.

Example 4.3.1 Optimization: perimeter and area

A man has 100 feet of fencing, a large yard, and a small dog. He wants to create
a rectangular enclosure for his dog with the fencing that provides the maximal
area. What dimensions provide the maximal area?

SOLUTION One can likely guess the correct answer — that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situation. Our enclosure is sketched twice
in Figure 4.3.1, either with green grass and nice fence boards or as a simple
rectangle. Either way, drawing a rectangle forces us to realize that we need to
know the dimensions of this rectangle so we can create an area function — after
all, we are trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle functions with 2 variables; we need to
reduce this down to a single variable. We know more about the situation: the
man has 100 feet of fencing. By knowing the perimeter of the rectangle must
be 100, we can create another equation:

Perimeter = 100 = 2x + 2.

We now have 2 equations and 2 unknowns. In the latter equation, we solve
fory:
y=50-x.

Now substitute this expression for y in the area equation:
Area = A(x) = x(50 - x).

Note we now have an equation of one variable; we can truly call the Area a
function of x.

X

Figure 4.3.1: A sketch of the enclosure in
Example 4.3.1.
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This function only makes sense when 0 < x < 50, otherwise we get negative
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the critical points, we take the derivative of A(x) and set it equal to
0, then solve for x.

A(x) = x(50 — x)
=50x — X
A'(x) = 50 — 2x

We solve 50 — 2x = 0 to find x = 25; this is the only critical point. We evaluate
A(x) at the endpoints of our interval and at this critical point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625ft>. This is the max-
imum. Since we earlier found y = 50 — x, we find that y is also 25. Thus the
dimensions of the rectangular enclosure with perimeter of 100 ft. with maxi-
mum area is a square, with sides of length 25 ft.

This example is very simplistic and a bit contrived. (After all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equations that de-
scribe a situation, reduce an equation to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equations are often
not reducible to a single variable (hence multi-variable calculus is needed) and
the equations themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundation for the mathematics you will likely en-
counter later.

We outline here the basic process of solving these optimization problems.

Key Idea 4.3.1 Solving Optimization Problems

1. Understand the problem. Clearly identify what quantity is to be
maximized or minimized. Make a sketch if helpful.

2. Create equations relevant to the context of the problem, using the
information given. (One of these should describe the quantity to
be optimized. We'll call this the fundamental equation.)

3. If the fundamental equation defines the quantity to be optimized
as a function of more than one variable, reduce it to a single vari-
able function using substitutions derived from the other equa-
tions.

(continued). . .
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Key Idea 4.3.1 Solving Optimization Problems — Continued

4. |dentify the domain of this function, keeping in mind the context
of the problem.

5. Find the extreme values of this function on the determined do-
main.

6. ldentify the values of all relevant quantities of the problem.

We will use Key Idea 4.3.1 in a variety of examples.

Example 4.3.2 Optimization: perimeter and area
Here is another classic calculus problem: A woman has a 100 feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

SOLUTION We will follow the steps outlined by Key Idea 4.3.1.

1. We are maximizing area. A sketch of the region will help; Figure 4.3.2
gives two sketches of the proposed enclosed area. A key feature of the
sketches is to acknowledge that one side is not fenced.

2. We want to maximize the area; as in the example before,
Area = xy.

This is our fundamental equation. This defines area as a function of two
variables, so we need another equation to reduce it to one variable.

We again appeal to the perimeter; here the perimeter is
Perimeter = 100 = x + 2y.
Note how this is different than in our previous example.

3. We now reduce the fundamental equation to a single variable. In the
perimeter equation, solve for y: y = 50 — x/2. We can now write Area as

1
Area = A(x) = x(50 — x/2) = 50x — EXZ'

Area is now defined as a function of one variable.

Figure 4.3.2: A sketch of the enclosure in
Example 4.3.2.
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4. We want the area to be nonnegative. Since A(x) = x(50 — x/2), we want
x > 0and 50 — x/2 > 0. The latter inequality implies that x < 100, so
0 < x < 100.

5. We now find the extreme values. At the endpoints, the minimum is found,
giving an area of 0.

Find the critical points. We have A’(x) = 50 — x; setting this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50 — x/2; thus y = 25. Thus our rectangle will have
two sides of length 25 and one side of length 50, with a total area of 1250
ft2.

Keep in mind as we do these problems that we are practicing a process; that
is, we are learning to turn a situation into a system of equations. These equa-
tions allow us to write a certain quantity as a function of one variable, which we
then optimize.

Example 4.3.3 Optimization: minimizing cost
A power line needs to be run from a power station located on the beach to an
offshore facility. Figure 4.3.3 shows the distances between the power station to
the facility.

It costs $50/ft. to run a power line along the land, and $130/ft. to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

SOLUTION We will follow the strategy of Key Idea 4.3.1 implicitly, with-
out specifically numbering steps.

There are two immediate solutions that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connecting the two locations with a straight line. However, this requires
that all the wire be laid underwater, the most costly option. Second, we could
minimize the underwater length by running a wire all 5000 ft. along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non—minimal cost.

The optimal solution likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
distances — the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure 4.3.4.
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By choosing x as we did, we make the expression under the square root sim-
ple. We now create the cost function.

Cost = land cost + water cost
$50 x land distance + $130 x water distance

50(5000 —x)  +  130v/x? + 10002.

So we have ¢(x) = 50(5000 — x) + 130v/x? 4+ 10002. This function only
makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we still evaluate c(x) at each to verify.

c(0) = 380,000  ¢(5000) = 662, 873.
We now find the critical values of ¢(x). We compute ¢’(x) as

130x

b
V/x2 + 10007

Recognize that this is never undefined. Setting ¢’(x) = 0 and solving for x,
we have:

c’(x) = —50

130x _o
VX2 +10007
13x
VX2 410002
130%%
x2 4+ 10002
130%* = 50%(x* + 1000?)
130%x* — 50°x*> = 507 - 10007
(130% — 50%)x* = 50,0007
2 %0 0002
1302 — 502
50, 000
v/1302 — 502

50,000 1250 .
X=———=——— =416.67.
120 3

—50 +

Evaluating c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000 — 416.67 = 4583.33 ft., and the under-

water distance is v/416.672 + 10002 = 1083 ft.

In the exercises you will see a variety of situations that require you
to combine problem—solving skills with calculus. Focus on the process;
learn how to form equations from situations that can be manipulated
into what you need. Eschew memorizing how to do “this kind of
problem” as opposed to “that kind of problem.” Learning a process will
benefit one far longer than memorizing a specific technique.

The next section introduces our final application of the derivative:
differentials. Given y = f (x), they offer a method of approximating the
change in y after x changes by a small amount.
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. T/F: An “optimization problem” is essentially an “extreme

values” problem in a “story problem” setting.

. T/F: This section teaches one to find the extreme values of

a function that has more than one variable.

Problems

10.

11.

. Find the maximum product of two numbers (not necessar-

ily integers) that have a sum of 100.

. Find the minimum sum of two positive numbers whose

product is 500.

. Find the maximum sum of two positive numbers whose

product is 500.

. Find the maximum sum of two numbers, each of which is

in [0,300] whose product is 500.

. Find the maximal area of a right triangle with hypotenuse

of length 1.

. A rancher has 1000 feet of fencing in which to construct

adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

. Astandard soda can is roughly cylindrical and holds 355cm?

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

Find the dimensions of a cylindrical can with a volume of
206in° that minimizes the surface area.

The “#10 can”is a standard sized can used by the restau-
rant industry that holds about 206in® with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
were chosen with minimization in mind?

The United States Postal Service charges more for boxes
whose combined length and girth exceeds 108" (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross section, i.e., 2w + 2h).

12.

13.

14.

15.

16.

17.

What is the maximum volume of a package with a square
cross section (w = h) that does not exceed the 108” stan-
dard?

The strength S of a wooden beam is directly proportional
to its cross sectional width w and the square of its height h;
that is, S = kwh? for some constant k.

w

12 |h

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 2
miles at sea and 5 miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.

How much of the power line should be run underground to
minimize the overall costs?

A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 5
miles at sea and 2 miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.

How much of the power line should be run underground to
minimize the overall costs?

A woman throws a stick into a lake for her dog to fetch;
the stick is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the stick before swimming. The dog runs about 22ft/s and
swims about 1.5ft/s.

How far along the shore should the dog run to minimize
the time it takes to get to the stick? (Hint: the figure from
Example 4.3.3 can be useful.)

A woman throws a stick into a lake for her dog to fetch;
the stick is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the stick before swimming. The dog runs about 22ft/s and
swims about 1.5ft/s.

How far along the shore should the dog run to minimize the
time it takes to get to the stick? (Google “calculus dog” to learn
more about a dog’s ability to minimize times.)

What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?
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Solutions 4.3

10.

11.

12.
13.

14.

15.

16.

17.

A W ON R

T
F

. 2500; the two numbers are each 50.
. The minimum sum is 2+/500; the two numbers are each /500.

. There is no maximum sum; the fundamental equation has only 1

critical value that corresponds to a minimum.

. The only critical point of the fundamental equation corresponds

to a minimum; to find maximum, we check the endpoints.

If one number is 300, the other number y satisfies 300y = 500;
y = 5/3. Thus the sum is 300 + 5/3.

The other endpoint, O, is not feasible as we cannot solve

0-y =500 fory. In fact, if 0 < x < 5/3, then x - y = 500 forces
y > 300, which is not a feasible solution.

Hence the maximum sum is 301.6.

. Area = 1/4, with sides of length 1/\/f.
. Each pen should be 500/3 = 166.67 feet by 125 feet.
. The radius should be about 3.84cm and the height should be 2r

= 7.67cm. No, this is not the size of the standard can.

The radius should be about 3.2in and the height should be

2r = 6.4in. As the #10 is not a perfect cylinder (with extra
material to aid in stacking, etc.), the dimensions are close enough
to assume that minimizing surface area was a consideration.

The height and width should be 18 and the length should be 36,
giving a volume of 11, 664in3.
w=43,h=14/6

5 — 10/+/39 =3.4 miles should be run underground, giving a
minimum cost of $374,899.96.

The power line should be run directly to the off shore facility,
skipping any underground, giving a cost of about $430,813.

The dog should run about 19 feet along the shore before starting
to swim.

The dog should run about 13 feet along the shore before starting
to swim.

The largest area is 2 formed by a square with sides of length v/2.
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4.4 Differentials - Preliminary Overview

The derivative and the differential provide simple, effective ways of approximating a function.

Tangent Line Approximations The tangentlineto y=f(x) atx=a is
y = f(a) +f*(a)(x - a).

The tangent line approximationto y=f(x) at x=a is

f(x)=f(a)+f'(a)(x - a)|-

Example
a. Find the tangent line approximationto y = Jx at x=4.
f(x) =[x, f(4)=+/4 =2

f0= =, ===t

= /X i2+%(x-4) near x=4.

Xy 2+ i—(x—4)

30F
25¢F
20F
1.5F
1.0
05F

|

|

|

|

|
. 1 . .
2 4 6 8

b. Use the above approximation to to calculate V4.08 .
4.08 =2+ +(4.08-4)= 2.02
Exact answer
\/4.08 = 2.0199009876724 -

Differentials

Definition The differential of the function y = f(x):
1. dx is an infinitesimal

2. dy =f‘(x)dx.

Historically, the differential played a central, beginning role in calculus. You find the differential of a
quantity y, often a simple equation, by examining its behavior over a short interval. If you divided the
result by dx, you get the slope. If you divided it by dt, you get the growth rate. If you did a suitable
sum of the dy’s you would its total change (later called its definite integral).

Now-a-days you usually see in textbooks that dx is taken to be any real number -co < dx < +oo. This bit of
silliness is to allow you, without knowing about infinitesimals, later on to feel comfortable with doing seemingly
illegal things in standard calculus like making a change of variables in integrals, setting up integrals for
applications or separating variables in differential equations.

You can readily change any derivative formula %{ =f‘(x) into its differential form dy=f‘(x)dx if you
want. (The = should really be a =, but we won’t be compulsive about this.)
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General Formulas Let u=u(x) and v=v(x) be differentiable.

I. Constant Multiple Rule d(cu) = cdu
Il. Sum Rule d(u+v) = du+dv
lll. Product Rule d(uv) = vdu+udv
Iv. tient Rul u) _ vdu-udv
Quotient Rule d(V) = =
V. ChainRule

d(u(v)) = u’(v)dv

Special Differential Formulas

d(c)=0 d(x") = nx"1dx
d (sinx) = cosxdx dgcolx) = —=sinxdx

d (tanx) = sec? xdx d (cotx) = —csc? x dx
d (secx) = sec xtanx dx d(cscx) = —csc x cot xdx
d(€*) = e dx d(Inx) = de

Example d(x?+ 3 sin x) = (2x + 3 cos x)dx

Differential Approximations

The differential approximation associated with dy = f‘(x)dx is

Ay = ' (x) Ax The differential approx_imation says that, near x, dy is
approximately proportional to dx, everyones favorite
relationship between two quantities.

Example Illustrate the difference between the exact AA and the approximate AA for a square.

Ax'! x Ax | sz:
T

[

[

[

[

[

[

[

X X2 XA)d‘
[

[

[

[

[

[

[

X A

A=x?
exact = AA = (x + Ax)?-x2= (®+ 2x Ax + Ax?) - X2 = 2x Ax + Ax?
approximate = AA = 2x Ax
= very close if Ax is a small real number!
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Example How much paint is required to paint a sphere of radius 1 meter with a coating 1 mm
thick. Use V=2m r. 1 meter=1000 mm.

\

S ="

AV = 47tr? Ar
= 4771000%(1)
= 477 litres

= 3 gallons of paint

Error Analysis Suppose y=f(x). If the error in measuring x is Ax, then the errorin
calculating y is y £ Ay = f(x + Ax) where

Ay = ' (x) Ax |

Example The height of a canis h =30 cm. Its radius is measured to be 10+ 0.1 cm.

What is the volume and possible error in its calculated volume?

V= 7Tr2h = 7T10230 = 30007Tcm3 Nominal Volume
= AV = 27trhAr = 27110-20-0.1 = 407tcm? Possible Error

= V = (300071£ 4077 cm®  Volume with Possible Error

Note: in the APEX Calculus exercises, use the notations and definitions above
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4.4 Differentials - Further Examples

Historically differentials were invented to discover physical laws or to solve some difficult
mathematical problems because over a short interval of time or space these laws tend to be
approximately simple proportions of the form dQ =f(z)dz. Such problems will be explored in
the next chapter and especially in the next calculus course.

To extend the formula dQ =f(2dz to larger regions of space or time, we introduce the process
calledintegrationin the Chapter 5. In that process it is often necessary to start with
differentials of functions. Let us get fluent at calculating differentials.

Example 4.4.1 Finding differentals.
In each of the following, find the differential dy.

1.y =sinx 2.y=¢€e(x*+2) 3.y=vx2+3x—1

SOLUTION
1. y=sinx:  As f(x) =sinx, f'(x) = cosx. Thus

dy = cos(x)dx.

2.y = e(x* +2): Letf(x) = (x> +2). We need f'(x), requiring the
Product Rule.

We have f’(x) = e¥(x* 4 2) + 2xe*, so

dy = ("(x* +2) + 2xe*)dx.

3.y = vx*+3x—1: Letf(x) = vx%+ 3x — 1; we need f’(x), requiring

the Chain Rule.

1 1 2 3
We have f'(x) = E(XZ +3x—1)"7(2x+3) = 2\/% Thus
dy = (2x + 3)dx
St 1

Finding the differential dy of y = f (x) i s really no harder than finding the
derivative of f; we just multiply f'(x) by dx. It is important to remember that
we are not simply adding the symbol “dx” at the end.

We have seen a practical use of differentials as they offer a good method of
making certain approximations. Another use is error propagation. Suppose a
length is measured to be x, although the actual value is x + Ax (where Ax is the
error, which we hope is small). This measurement of x may be used to compute
some other value; we can think of this latter value as f(x) for some function f.
As the true length is x + Ax, one really should have computed f(x + Ax). The
difference between f(x) and f(x + Ax) is the propagated error.
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Error Analysis We can approximate the propagated error using
differentials.

Example 4.4.2 Using differentials to approximate propagated error

A steel ball bearing is to be manufactured with a diameter of 2cm. The
manu-facturing process has a tolerance of £0.1mm in the diameter. Given
that the density of steel is about 7.85g/cm?, estimate the propagated error in

the mass of the ball bearing.
SOLUTION The mass of a ball bearing is found using the equation “mass

=volume x density.” In this situation the mass function is a product of the radius
of the ball bearing, hence itism = 7.85§7rr3. The differential of the mass is

dm = 31.4xr%dr.

The radius is to be 1cm; the manufacturing tolerance in the radius is 0.05mm,
or +0.005cm. The propagated error is approximately:

Am — dm
= 31.47(1)*(40.005)
= +0.493g
Is this error significant? It certainly depends on the application, but we can get

an idea by computing the relative error. The ratio between amount of error to
the total mass is

dm 0.493
=4
m 7.85%m
~,0.493
32.88
= =0.015,

or £1.5%.

We leave it to the reader to confirm this, but if the diameter of the ball was
supposed to be 10cm, the same manufacturing tolerance would give a propa-
gated errorin mass of £=12.33g, which corresponds to a percent error of -0.188%.
While the amount of error is much greater (12.33 > 0.493), the percent error
is much lower.

We first learned of the derivative in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the derivative by studying how it relates to the graph of a function
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the derivative to yet more uses:

e Equation solving (Newton’s Method),

¢ Related Rates (furthering our use of the derivative to find instantaneous
rates of change),

¢ Optimization (applied extreme values), and

¢ Differentials (useful for various approximations and for something called
integration).

In the next chapters, we will consider the “reverse” problem to computing the
derivative: given a function f, can we find a function whose derivative is f?
Being able to do so opens up an incredible world of mathematics and applications.
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Exercises 4.4

Terms and Concepts
1. T/F: Given a differentiable function y = f(x), we are gen-
erally free to choose a value for dx, which then determines

the value of dy.

2. T/F: The symbols “dx” and “Ax” represent the same con-
cept.

3. T/F: The symbols “dy” and “Ay” represent the same con-
cept.

4. T/F: Differentials are important in the study of integration.
5. How are differentials and tangent lines related?

6. T/F: In real life, differentials are used to approximate func-
tion values when the function itself is not known.

Problems

In Exercises 7 — 16, use differentials to approximate the given
value by hand.

7. 2.05%

8. 5.93

9. 5.13
10. 6.8°
11. v/16.5
12. V24
13. v/63
14. /8.5
15. sin3
16. %!

In Exercises 17 — 30, compute the differential dy.

17. y=x>+3x—5

18. y=x —x°
1
19. y=—
y 4x2

20. y = (2x + sinx)?

21. y = x*e¥

22. y:%

2.y = tanzxﬁ
24. y = In(5x)
25. y = €“sinx
26. y = cos(sinx)
ni
28. y=3"Inx
29. y=xlnx—x

30.

f(x) = In (secx)

Exercises 31 — 34 use differentials to approximate propagated
error.

31.

32.

33.

34.

A set of plastic spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t%. The depth of a hole is to be approximated by
dropping a rock and listening for it to hit the bottom. What
is the propagated error if the time measurement is accurate
to 2/10"™ of a second and the measured time is:

(a) 2 seconds?

(b) 5 seconds?

What is the propagated error in the measurement of the
cross sectional area of a circular log if the diameter is mea-
sured at 15", accurate to 1/4”?

A wall is to be painted that is 8’ high and is measured to
be 10’, 7" long. Find the propagated error in the measure-
ment of the wall’s surface area if the measurement is accu-
rateto 1/2".

Exercises 35 — 39 explore some issues related to surveying in
which distances are approximated using other measured dis-

tances and measured angles. (Hint: Convert all angles to ra-

dians before computing.)



35.

36.

37.

The length | of a long wall is to be approximated. The angle

6, as shown in the diagram (not to scale), is measured to be
85.2°, accurate to 1°. Assume that the triangle formed is a
right triangle.

#35,36 . s

(a) What is the measured length / of the wall?
(b) What is the propagated error?
(c) What is the percent error?

Answer the questions of Exercise 35, but with a measured
angle of 71.5°, accurate to 1°, measured from a point 100’
from the wall.

The length / of a long wall is to be calculated by measuring
the angle 6 shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143°, accurate to 1°.

Solutions 4.4

10.

11.

12.

13.

14,

15.

16.

17.
18.

19.
20.

T
F

F

T

Answers will vary.

T

Use y = x% dy = 2x - dx with x = 2 and dx = 0.05. Thus dy
= .2; knowing 2% = 4, we have 2.05%2 ~ 4.2.

Use y = x2; dy = 2x - dx with x = 6 and dx = —0.07. Thus
dy = —0.84; knowing 62 = 36, we have 5.93%2= 35.16.

Usey = x3; dy = 3x? - dx with x = 5 and dx = 0.1. Thus dy
= 7.5; knowing 53 = 125, we have 5.13 132.5.

Usey = x3; dy = 3x? - dx with x = 7 and dx = —0.2. Thus
dy = —29.4; knowing 73 = 343, we have 6.8% =313.6.

Usey = v/x; dy = 1/(2+/x) - dx with x = 16 and dx = 0.5. Thus
dy = .0625; knowing /16 = 4, we have v/16.5 = 4.0625.

Usey = v/x; dy = 1/(24/x) - dx with x = 25 and dx = —1. Thus
dy = —0.1; knowing /25 = 5, we have v/24=4.9.

Usey = ¥/x; dy = 1/(3V/x%) - dx with x = 64 and dx = —1.
Thus dy = —1/48 =0.0208; we could use
3

\3/;148i —1/50 = —0.02; knowing /64 = 4, we have

63  3.98.

Usey = ¥/x; dy = 1/(3\3/72) - dx with x = 8 and dx = 0.5. Thus

¢y =1/24=1/25 = 0.04; knowing /8 =2, we have
8.5=2.04.

Use y = sin x; dy = cos x - dx with x = m and dx =—0.14. Thus dy

= 0.14; knowing sin T = 0, we have sin 3=0.14.

Usey = e5;dy = €* - dxwithx = 0and dx = 0.1. Thusdy = 0.1;

knowing e® = 1, we have e¥-1=1.1.

dy = (2x + 3)dx

dy = (7x® — 5x*)dx

dy = i%dx

dy = 2(2x + sinx)(2 4 cos x)dx
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38.

39.

(a) What is the measured length of the wall?
(b) What is the propagated error?

(c) What is the percent error?

The length of the walls in Exercises 35 — 37 are essentially
the same. Which setup gives the most accurate result?

Consider the setup in Exercise 37. This time, assume the
angle measurement of 143° is exact but the measured 50
from the wall is accurate to 6”. What is the approximate
percent error?

21.
22.

23.

24.
25.
26.
27.

28.
29.
30.
31.
32.

33.
34.
35.

36.

37.

dy = (2xe™ + 3x%e>)dx

dy = ’X—ésdx

dy = 2(tan(>;-as-nl)2_'——12;(25ec2xd
dy = %dx

dy = (e*sinx + e* cos x)dx
dy = (— sin(sin x) cos x)dx
dy = ﬁdx

dy = ((In3)3*Inx + ¥)dx
dy = (Inx)dx

dy = (tanx)dx

dV = £0.157

(a) +12.8feet

(b) +£32 feet
+157/8 =+5.89in?
+48in?, or 1/3ft2
(a) 297.8 feet

(b) +62.3 ft

(c) +20.9%

a) 298.8 feet

3@} +17.3ft
(c) +5.8%
(a) 298.9 feet
(b) +8.67 ft

+2.9%

. The isosceles triangle setup works the best with the smallest

percent error.

. 1%
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We have spent considerable time considering the derivatives of a function and
their applications. In the following chapters, we are going to starting thinking
in “the other direction.” That is, given a function f(x), we are going to consider
functions F(x) such that F'(x) = f(x). There are numerous reasons this will
prove to be useful: these functions will help us compute area, volume, mass,
force, pressure, work, and much more.

4.5 Antiderivatives and Indefinite Integration

Given a function y = f(x), a differential equation is one that incorporates y, x,
and the derivatives of y. For instance, a simple differential equation is:

y' = 2x.

Solving a differential equation amounts to finding a function y that satisfies
the given equation. Take a moment and consider that equation; can you find a
function y such that y’ = 2x?

Can you find another?

And yet another?

Hopefully one was able to come up with at least one solution: y = x*. “Find-
ing another” may have seemed impossible until one realizes that a function like
y = x> 4 1 also has a derivative of 2x. Once that discovery is made, finding “yet
another” is not difficult; the function y = x*> 4 123, 456, 789 also has a deriva-
tive of 2x. The differential equation y’ = 2x has many solutions. This leads us
to some definitions.

Definition 4.5.1 Antiderivatives and Indefinite Integrals

Let a function f(x) be given. An antiderivative of f(x) is a function F(x)
such that F/(x) = f(x).

The set of all antiderivatives of f(x) is the indefinite integral of f, denoted

by
/ f(x) dx.

Make a note about our definition: we refer to an antiderivative of f, as op-
posed to the antiderivative of f, since there is always an infinite number of them.

F(x)
f(x)

f'(x)
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We often use upper-case letters to denote antiderivatives.

Knowing one antiderivative of f allows us to find infinitely more, simply by
adding a constant. Not only does this give us more antiderivatives, it gives us all
of them.

Theorem 4.5.1 Antiderivative Forms

Let F(x) and G(x) be antiderivatives of f(x) on an interval /. Then there
exists a constant C such that, on /,

Given a function f defined on an interval / and one of its antiderivatives F,
we know all antiderivatives of f on I have the form F(x) + C for some constant
C. Using Definition 5.1.1, we can say that

/ F(x) dx = F(x) + C.
Let’s analyze this indefinite integral notation.

Integration Differential ~ Constant of
symbol of x integration

/ |
\/f(x) dx = FT(X) +C
f

One

Integrand antiderivative

Figure 4.5.1: Understanding the indefinite integral notation.

Figure 5.1.1 shows the typical notation of the indefinite integral. The inte-
gration symbol, f, is in reality an “elongated S,” representing “take the sum.”
We will later see how sums and antiderivatives are related.

The function we want to find an antiderivative of is called the integrand. It
contains the differential of the variable we are integrating with respect to. The f
symbol and the differential dx are not “bookends” with a function sandwiched in
between; rather, the symbol f means “find all antiderivatives of what follows,”
and the function f(x) and dx are multiplied together; the dx does not “just sit
there.”

Let’s practice using this notation.
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Example 4.5.1 Evaluating indefinite integrals

Evaluate /sinx dx.

SOLUTION We are asked to find all functions F(x) such that F'(x) =
sin x. Some thought will lead us to one solution: F(x) = — cos x, because 2 (— cos x) =
sinx.

The indefinite integral of sin x is thus —cos x, plus a constant of integration.
So:

/sinxdx: —cosx + C.

A commonly asked question is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of antidifferentiation is really solving a differential question. The

integral
/ sinx dx

presents us with a differential, dy = sin x dx. Itis asking: “What is y?” We found
lots of solutions, all of the formy = — cosx + C.
Letting dy = sin x dx, rewrite

/sinxdx as /dy.

This is asking: “What functions have a differential of the form dy?” The answer
is “Functions of the form y + C, where Cis a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = — cos x.

Understanding all of this is more important later as we try to find antideriva-
tives of more complicated functions. In this section, we will simply explore the
rules of indefinite integration, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s practice once more before stating integration rules.

Example 4.5.2 Evaluating indefinite integrals
Evaluate /(3x2 + 4x + 5) dx.

SOLUTION We seek a function F(x) whose derivative is 3x* + 4x + 5.
When taking derivatives, we can consider functions term—by—term, so we can
likely do that here.

What functions have a derivative of 3x%? Some thought will lead us to a
cubic, specifically x> 4+ C;, where C; is a constant.
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What functions have a derivative of 4x? Here the x term is raised to the first
power, so we likely seek a quadratic. Some thought should lead us to 2x? + G,
where G, is a constant.

Finally, what functions have a derivative of 5? Functions of the form 5x + C;,
where C; is a constant.

Our answer appears to be
/(3X2+4x+5)dx:x3+C1—|—2x2+C2+5x+C3.

We do not need three separate constants of integration; combine them as one
constant, giving the final answer of

/(3x2+4x+5)dx:x3+2xz+5x+c.

It is easy to verify our answer; take the derivative of x> + 2x3 + 5x + C and
see we indeed get 3x% + 4x + 5.

This final step of “verifying our answer” is important both practically and
theoretically. In general, taking derivatives is easier than finding antiderivatives
so checking our work is easy and vital as we learn.

We also see that taking the derivative of our answer returns the function in
the integrand. Thus we can say that:

a ( [ 10 dx) — 1.

Differentiation “undoes” the work done by antidifferentiation.

Our derivative tables gave a list of the derivatives of common functions we
had learned at that point. We restate part of that list here to stress the
relationship between derivatives and antiderivatives. This list will also be useful
as a glossary of common antiderivatives as we learn.



Theorem 4.5.2

Common Differentiation Rules

1.

2.

10.

11.

12.

13.

14.

lcf(x) = c-f'(x)

Derivatives and Antiderivatives
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Common Indefinite Integral Rules

1. e flx) dx = c~ff(X) dx

H)EG(x) = F(x)£g/(x) 2 [£X)Eg()ax=[F(x)ox L[ g(x)lx
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. fodx=C

* * *

. fldx= [dx=x+C

. fx"dx:ﬁllx"“—i—c (n# —1)

. [cosxdx =sinx+C
. [sinxdx = —cosx + C

. [sec?xdx =tanx+C

. [escxcotxdx = —csex + C

. [secxtanxdx = secx + C

. [esc?xdx = —cotx + C

. [edx=e"+C

Cfadx =k

-a*+C

. [idx=Inlx|+C

We highlight a few important points from Theorem 5.1.2:

* Rule #1 states [ ¢ f(x) dx = c- [ f(x) dx. This is the Constant Multiple
Rule: we can temporarily ignore constants when finding antiderivatives,

just as we did when computing derivatives (i.e.

compute as & (x2)). An example:

d
7 dx

(3x?) is just as easy to

/5cosxdx:5~/cosxdx:5-(sinx—|—C)=55inx—|—C.

In the last step we can consider the constant as also being multiplied by
5, but “5 times a constant” is still a constant, so we just write “C".
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¢ Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
5.1.2. So:

/(3x2+4x+5)dx:/3x2dx+/4xdx+/5dx
:3/x2dx+4/xdx+/5dx
1

:3-}x3+4~7x2+5x+c
3 2

=x 4+ 2% +5x+C

In practice we generally do not write out all these steps, but we demon-
strate them here for completeness.

e Rule #5 is the Power Rule of indefinite integration. There are two impor-
tant things to keep in mind:

1. Notice the restriction that n =/ —1. This is important: f% dx #
“2x% + C”; rather, see Rule #14.

2. We are presenting antidifferentiation as the “inverse operation” of
differentiation. Here is a useful quote to remember:

“Inverse operations do the opposite things in the opposite
order.”

When taking a derivative using the Power Rule, we first multiply by
the power, then second subtract 1 from the power. To find the an-
tiderivative, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

¢ Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

Initial Value Problems

In Section 2.3 we saw that the derivative of a position function gave a velocity
function, and the derivative of a velocity function describes acceleration. We
can now go “the other way:” the antiderivative of an acceleration function gives
a velocity function, etc. While there is just one derivative of a given function,
there are infinitely many antiderivatives. Therefore we cannot ask “What is the
velocity of an object whose acceleration is —32ft/s??”, since there is more than
one answer.
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We can find the answer if we provide more information with the question,
as done in the following example. Often the additional information comes in the
form of an initial value, a value of the function that one knows beforehand.

Example 4.5.3 Solving initial value problems

The acceleration due to gravity of a falling object is —32 ft/s?. At timet = 3,
a falling object had a velocity of —10 ft/s. Find the equation of the object’s
velocity.

SOLUTION We want to know a velocity function, v(t). We know two
things:
* The acceleration, i.e., v/(t) = —32, and

* the velocity at a specific time, i.e., v(3) = —10.

Using the first piece of information, we know that v(t) is an antiderivative of
v’(t) = —32. So we begin by finding the indefinite integral of —32:

/(—32) dt = =32t + C = v(t).
Now we use the fact that v(3) = —10 to find C:
v(t) = =32t + C

v(3) = -10
—32(3)+C=—10
C=86

Thus v(t) = —32t + 86. We can use this equation to understand the motion
of the object: when t = 0, the object had a velocity of v(0) = 86 ft/s. Since the
velocity is positive, the object was moving upward.

When did the object begin moving down? Immediately after v(t) = 0:

43
—32t+86 =0 = t:1—6z2.695.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleration and its velocity at a single point in time.

Example 4.5.4 Solving initial value problems
Find f(t), given that f"/(t) = cost, f/(0) = 3 and f(0) = 5.

SOLUTION We start by finding f’(t), which is an antiderivative of f”(t):

/f”(t) dt:/costdt:sint+C:f/(t)-
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So f'(t) = sint + C for the correct value of C. We are given that f/(0) = 3,
so:
f(0)=3 = sin0+C=3 = C=3.

Using the initial value, we have found f'(t) = sint + 3.
We now find f(t) by integrating again.

/f /smt+3)d = —cost+3t+C
We are given that f(0) = 5, so

—cos0+3(0)+C=5
—1+C=5
C=6

Thus f(t) = —cost + 3t + 6.

This section introduced antiderivatives and the indefinite integral. We found
they are needed when finding a function given information about its deriva-
tive(s). For instance, we found a velocity function given an acceleration func-
tion.

In the next section, we will see how position and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity function. Then,
in Section 5.4, we will see how areas and antiderivatives are closely tied together.
This connection is incredibly important, as indicated by the name of the theorem
that describes it: The Fundamental Theorem of Calculus.

The following memory list is derived by ‘turning around’ derivative formulas.

Integral Table
Xn+1
fdx=X+C fx"dx=n+1+C
fexdx=eX+C faxdx=l" + C
na
Jd— = In|x| + C
jcosxdx =sinx + C fsinxdx = —-cosx + C
fseczxdx =tanx + C fcsczxdx =-cotx + C

jsecxtanx dx =tanx + C fcscxcotx dx = -cotx + C
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Terms and Concepts

1.

Define the term “antiderivative” in your own words.

. Is it more accurate to refer to “the” antiderivative of f(x) or

“an” antiderivative of f(x)?

. Use your own words to define the indefinite integral of

f).

. Fill in the blanks: “Inverse operations do the

things in the order.”

. What is an “initial value problem”?

. The derivative of a position function is a

function.

. The antiderivative of an acceleration functionis a

function.

. If F(x) is an antiderivative of f(x), and G(x) is an antideriva-

tive of g(x), give an antiderivative of f(x) + g(x).

Problems

In Exercises 9 — 27, evaluate the given indefinite integral.

9.

10.

11.

12.

13.

14

15.

16

17.

18.

/3x3 i

/xs i
/(1Ox2 ~2)dx
/dt

/lds

¥
/
. /%dx
/sec20d0
/sin&d@

1
— dt
3t?

3

19.

20.

21.

22

23.

24

25.

26.

27.

28

/(secxtanx + cscx cot x) dx

/Se(’ do
/3f dt
i
2
/(2t+ 3)% dt
. /(t2 +3)(£ — 2t) dt
/sza dx
/e” dx
/adx

. This problem investigates why Theorem 5.1.2 states that
1
/fdx: In|x| + C.
X

(a) What is the domain of y = Inx?

(b) Find d%(ln x).

(c) What is the domain of y = In(—x)?
(d) Find £ (In(—x)).

(e) You should find that 1/x has two types of antideriva-
tives, depending on whether x > 0 orx < 0. In

1
one expression, give a formula for / 5 dx that takes

these different domains into account, and explain
your answer.

In Exercises 29 — 39, find f(x) described by the given initial
value problem.

29.

30.

31.

32.

33.

34.

35.

f'(x) = sinxand f(0) = 2
f'(x) = 5¢*and f(0) = 10

f'(x) =4 — 3¢ andf(—1) = 9
f'(x) = sec* xand f(w/4) = 5
f'(x) =7"andf(2) =1

f"(x) =5andf’(0) = 7,£(0) = 3

F/(x) = 7xand f'(1) = —1, (1) = 10



36. f”(x) =5e“andf'(0) = 3,f(0) =5

37. f"(6) =sinfandf'(7) = 2,f(r) = 4

38. f"(x) = 24x* + 2" — cosxand f'(0) = 5, f(0) = 0

39. f"(x) =0andf'(1) =3,f(1) =1

Solutions 4.5

Answers will vary.
“zn”

Answers will vary.
opposite; opposite
Answers will vary.
velocity

velocity

F(x) + G(x)
3/4x* + C

1/9x° +C

. 10/33 —2x+C

L ® N W e

=
N B O

L t+C
.s+C

. —1/(Bt)+C
. =3/(t)+cC
. 2yx+C

. tanf+C

. —cosf+C

[ T L
O 00 N O U b~ W

. secx —cscx+ C
. 5ef +¢C
.3f/|n3+C

NN
= O

st
- 35 T €

N
N
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Review

40. Use information gained from the first and second deriva-

1
tives to sketch f(x) = o1

41. Giveny = x*e* cosx, find dy.

23.
24.
25.
26.
27.
28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

40.
41.

4/36 + 62 +9t+C
5/6 +t*/4 -3+ C
x5/6+C
e"x+C
ax+C

(@ x>0

(b) 1/x

(c) x<0

(d) 1/x

(e) In|x| + C. Explanations will vary.
—cosx+3
5e¥ 45
X —x3+7
tanx+ 4
7/In7+1—49/In7
5/2x% +7x+3
#ogeg
5e* — 2x
0—sin(@) —m+4
2x* + cosx + ﬁ-ﬁ-(S— ﬁ)x—l— ﬁ
3x—2
No answer provided.

2

dy = (2xe* cos x + x%€* cos x — x%e* sin x)dx
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Chapter S The Definite Integral

If you know the differential of a quantity Q =f(t), dQ = r(t)dt, then by dividing by dt you got

g—? = r(t), the derivative (or growth rate).

If yousumup dQ;=r(t;)dt over a suitable infinite number of t values you will get in this chapter

Q(t)-Q(0) = j;)tr(t)dt, the integral (or the net change of Q from time 0 to time t).

5.1 We Need (something called) the Definite Integral

Difficult Problems A basic calculus method is to approximate a difficult problem by

chopping it up into a large number of approximately simple, easily solved problems. The

greater the number of the simple problems, hopefully the better the approximation to the exact
answer.

Problem 1 Find the area under the curve y=f(x) =x? for 0<Sx<2.

Note: AA, = f(x;)Ax. We choose to approximate the area with n rectangles of height f(x;),

right-hand approximation, and width Ax= 2-0, Then X;= jAx= i- 2
n n.
y=x
4 .
3 L
2 L
1L AA
Xi 2

The area approximation with n approximating rectangles is then

n
A= 3 () Ax
i=1
X2DX + XZAX + XZAX + -+ + x2AX

- (B R (2

= :_3[12_'_ 22 4 -+ n?]

To compute the table below, you need a good calculator or a Computer Algebra System unless you
have lots of time to kill.

Example Calculation

Ax n A,
If n=2,
1. 2 5.00000 A= & 12427
0.1 20 2.87000 5
0.01 200 2.68686

0.001 2000 2.66868
0.0001 20000  2.66686
J J J

0 +oc0 A=8/3?
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Problem 2 The velocity of our charging moose was v(t) = j—: =10sin tSrZT , 0=t <77 seconds.

How close can you safely approach this moose? Use RH approximations.

Note: Z—’t‘ =v(t) = Ax=v(t) At,asimple problem. 71=3.14159

At Xn

1 3 18.9189
0.1 31 19.9955
0.01 314 19.9999
0.001 3141 19.9999
0.0001 31415 20.0000

J 4 J

0 +o00 Xx=20

Example Calculation

If n=3.

X3 = 10sin1-1+ 10sin2-1+10sin3-1

=8.4147+9.0929 + 1.4112

=18.9189

d

Problem 3 The growth rate of a fungusis r(t) = d—T: 2t:8M " 1 <t<5hours.

hour?

By how much does its mass increase for 1 <t <5 hours? Use RH approximations.
r(t) = Am =r(t)At, a simple problem.

Note:

dm
d;

t =

R
35

30

25

T
At n m,
1 4 54.0000
0.1 40 44,7982
0.01 400 43.4310
0.001 4000 43.2959
0.0001 40000 43.2824
J J J
0 +00 m=43.2---

Example Calculation
If n=4.
m,=22.1+32.1+4%.1+5%1

=54
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Summary It looks like to find the exact area under a curve y =f(x), we should try
A= liMpsee 5 F(X)Ax
i=1

1

or to recover the size of a quantity whose growth rate is do_ r(t), try

dt
Q=1imps e % r(tj) At

i=1

Here is the official name for the above limit of the sum stated in its hyperreal form.

Hyperreal Definition of the (Riemann) Definite Integral
Let f be defined on the interval a < x <b. Let x;* be a point inthe /" sub-interval.

Let dx =22, N a positive infinite integer. Then the definite integral of f on the interval is

_% f(x*) dx => fab f(x) dx

provided the same result is obtained for any choice of the x;* ’s,

Y
7‘ | y = f(x)

\ |
| |
\ \
\ \
\ \

| \ \

| | |

| | |

| | |

| | |

dx | c’x | dx X
a X1 Xij-1 Xi Xn-1 xn=b
X; X; Xy

Note In this definition we require getting the same answer regardless of whether we choose the x;'s
to be the left-hand, right-hand, mid-point or any other approximation. The most critical step is
finding an approximation, while imperfect, gives the exact answer when N is an infinite integer.

Exercises Show all calculation details.

Work #1 with n=1.

1.

. _ If you find these calculations interesting,
2. Work #2 with n =3. perhaps you should make an appointment
3. Work #3 with n=4. with one of our fine school psychologists.
4,

Work #1 with n=10.

5. Find the area under the curve y =f(x) =x for 0 <x<5. Use 5 right-hand approximating rectangles.
Compare your answer with the exact answer using the formula for the area of a triangle.

6. Find the area under the curve y=f(x) =x for 0<x<5.Use 5 left-hand approximating rectangles.
Compare your answer with the exact answer using the formula for the area of a triangle.
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7. Find the area under the curve y=f(x) =x for 0 <x<5. Use 5 midpoint approximating rectangles.

8. Comment on the results of #5,6 and 7.

Solutions

1to 7. Foradollar,I'll do one ortwo in
class or by email upon request, perhaps.

8. #5 gives an over approximation.
#6 gives an under approximation.
#7 gives the exact answer.

Do you understand why?
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5.2 The Definite Integral

In the last lecture we learned how to find the area under the curve y=f(x) for a<x<b by
approximating the area with n rectangles and then expect to get the exact area by letting
n —> +oo. It will be helpfulin proving theorems about the definite integralto let n=N,

an infinite integer (the hyperreal approach), and rounding off to get the exact real area.

Hyperreal Definition of the (Riemann) Definite Integral
Let f be defined on theinterval a < x<b. Let x;* be a pointin the it"sub-interval.

Let dx :"'Ta, N a positive infinite integer. Then the definite integral of f on the interval is

N
El f(x;) dx => fab f(x) dx

provided the same result is obtained for any choice of the x;* ’s,

Y

— | =)

Limit Definition of the (Riemann) Definite Integral
Let f be defined on the interval a<x <b. Let x! be a point in the it" sub-
interval. Let dx= ”—}'- Then the definite integral of f on the intervalis

[Pf(x)dx = lim > f(x*)dx

N— oo i=1
provided the same result is obtained for any choice of the x}’s.

Y

y =f(x)
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N n
. . . b . .
The sum ; f(x;)dx or Z f(x*)dx is called a Riemann Sum. fa f(x) dx is called a Riemann Integral.

i=1
Bernhard Riemann, a German mathematician, 1826 to 1866 used these sums. We usually will omit the
‘Riemann’ because we will only use the Riemann Integral in this course. f is said to be Riemann

integrable on the interval if the integral exits.

For differentiating a function, it must be smooth.
For integrating a function, it is only expected to be continuous.

Integrability Theorem Let f be continuous on the closed interval ag<x<b.
Then f is Riemann integrable over the interval.

Proof
Y
€ Gy = f(x)
[ |
| |
| |
| |
| | |
« == ‘ ‘
| | |
| | |
| | |
| | |
dx ‘ 01x ‘ dx X
a X1 Xi-1 Xj XN-1 xy=b
x; x; XN
Proof

By the continuity of f, the error rectangles for any choice of the x;* all have an infinitesimal height < €. Let €
be the largest of these heights; it also is an infinitesimal. Then the error in calculating ¥, f(x;*)dx is

less than or equal to

2L € dx

< SN edx

€y, dx

e(b-a) typei-h

~> (. End of Proof

Corollary If f isintegrable, then any choice of the xi's can be used to evaluate f: f(x)dx.

Example Let's do that for finding the area under the curve y =f(x) =x*for 0 <x <2 taking x = x;, the

right-hand end point. We got A = 3L, (x)*Ax :%[12 +22+32+ ---+n?] for n subdivisions numerically.
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You should have learned sigma notation in high school. We will use it sparingly now
and treat it in more detail later in calculus. We will use the sum formula

n

> 2= % N(N +1)2N+1)  to do this example from the last section exactly using the
i=1

hyperreal definition of definite integral.

I
q
|
I
'dx
0 !

Xj 2

Subdivide the interval 0 <x<2 into n=N, an infinite whole number of subdivisions

Note: dx:ﬁand X; =idx= iﬁ.Then

N N N N
(72 dx = D x2dx =) (i %)2 2 - i,—zz i2 = ﬁ—z%N(N +1)(2N+1)
I=1 =1 I=1 =1
— 2 NN+12N+1
6N N N
s 2 2 & _ 2
> 221125 = [Cxdx

Read it again and agree there has got to be a better way of evaluating integrals exactly!

Outcome Examples The outcomes the hyperreal integral calculation and rounding

off can only be:

1. Areal number. One example is the problem above. You will see many more of these later.

2. +oo0 or -o0o. Area under y:)%,Ostl.
1
—_ = — => + |
% dx o0 :

The area of the first approximating rectangle alone is dA = dlz dx

dA

dx

X1
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1/2 x rational

3. DNE. The areaunder y=f(x) = { 1 xirrational’

f(x)

L X
‘ 1

If the x;* are chosen rational, the area of the sum of the approximating rectangles is 1/2. If the x;*

are chosen irrational, their area is 1.
= The Riemann Integral fol f(x) dx DNE.

NOTES
There is a more advanced integral, the Lebesque integral, which evaluates the integral as 1. That
will make sense because there are many more irrational numbers than rational ones.

For the rest of this course we will mostly deal with continuous functions. In the next course, in the
topic of generalized functions, you will learn about discontinuous function calculus.

Let f be continuous. Then by the Integrability Theorem we can choose xi*= X;. Thenthe

definition of Definition Integral is much easier to use. But it’s still a pain. The really easy way
to integrate (evaluate the definite integral of f) is found in the Fundamental Theorem of

Calculus which we will do in section 4.

Dummy Variable The variable of integration is a dummy variable: fab f(x) dx = fab f(t)dt.

Note: The word dummy has largely fallen in disuse. In this context, however, it is an appropriate
adjective. Dumb is an Old English word for ‘cannot speak’ (because of a hearing impairment) which in

this context implies ‘it does not matter what you call it’*. See the graphs below.

Y Y *What do you call a dog without any legs?

y =f(x) y =f(t)

You don't bother, it won't come anyway.

a b X a b T

N
Lbf(x) dx as live math Itis often thought that fab f(x) dx is just the name or symbol for »  f(x*) dx

i=1
rounded off. If f is continuous on a closed interval a < x < b, f(x) and dx as hyperreal quantities can be

substituted forin fab f(x) dx; so it is live math. So you can usually use fab f(x) dx instead of the uglier

N
Zf(x,-*) dx in both theory and applications.

i=1

Compare this with the derivative situation for y =f(x): %f = ﬂ%x')—fm => f¢(x). %}f is a complete, concise

summary of ﬂLd;‘)x'—@- which => f‘(x); thatis % is live math, only infinitesimally wrong, and not just a name
for the derivative.
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Algebraic or Signed Area In most applications of integration, the integrand can be positive or
negative. But if f(x) is negative, so is the area. For uniformity we will allow ourselves to talk about
algebraic (signed) area.

Example Find the algebraic area for f(x) =x for -1 <x < 1. Use the area interpretation.

SN [

Algebraic area: A=—§+ §= 0. Geometricarea: A= =+ %= 1.

MidPoint Approximation for ff f(x) dx. Take n large and finite (i.e., Ax small) and x* to be

the midpoint in the definition of the definite integral.

There are many ways of approximating a Riemann integral. The midpoint approximation is especially
effective because the ‘error triangles' often nearly cancel if there is local linearity.

Example Evaluate ff%dx. Use the mid-point approximation with n=2.

21 .1
fl dx =

1 1.
i 2% 72y =0686

/
.693

o N =

Exact value =
Not bad!
Y

12 7 under
[ estimate over

1.0 , estimate

08F

06F

X 1=

04f

0.2f

0.5 1.0 1.5 20

Exercises
1. Read this section carefully several times. Make sure you understand everything.

2. Evaluate f:‘/de using the midpoint formula with two subdivisions. Graph. Would you expect your

answer to be somewhat, fairly or extremely accurate?

3. Find the area under theﬁurve y=f(x) =x3 for 0 <x <2 taking x; = x;, the right hand end point.

Hint: use the formula Zi3 = NN+1p

i=1
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5.3 Properties of the Definite Integral

REVIEW Hyperreal Definition of the (Riemann) Definite Integral

Y

- | = -
> | | y - f(x)
| |
| |
| |
| |
| | |
| | |
| | |
| | |
| | |
dxl d?( | dx M
a X1 Xi-1  Xj XN-1 xy=b
Xq xi XN

Let f be defined on the interval a < x < b. Then the definite integral of f on the
interval is

N
> f(x)dx => fabf(x) dx, for N a positive infinite integer and dx = b—I;I‘“
i=1

provided the same result is obtained for every choice of the x/'s.

The Secret of Integral Calculus Over a short interval a continuous function appears constant.

y =f(x) y =f(x)

dy
dx

dA
dA

dx

dx X ... X

X X

On the left diagram with dx shown infinitely magnified. It appears there may be a significant error in
writing dA =f(x)dx. On the right diagram the X-axis is infinitely magnified. If f is continuous, then f(x)

appears constant (dx an infinitesimal = dy, an infinitesimal) and so dA = f(x)dx.

Prope rties of Integrals The proofs of most of these are left as exercises; they are

completely intuitive in terms of the area interpretation.

In the definition of Definite Integral, it was assumed that a < b. Sometimes it is desirable to remove
this restriction.
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Properties 1 Generalized Limits of Integration (in the definition of definite integral it was
assumed that b>a,a and b real numbers.

y =f(x)

A. f; f(x) dx=0 The area under a point is 0.

X

y =f(x)
Generalized Integrals: a related note

| a X b X

In some applications a function may be undefined at a point x¢ inthe interval of integration. Then
f(x{")dx is undefined and so fg f(x)dx is undefined. However, since the area under a pointis 0, we will
usually ignore this ‘undefined infinitesimal area’. With this understanding the integral is defined and
is called the ‘generalized integral of f on the on the interval a <x <b.” In applications, this

understanding is universally accepted.

y = f(x)

B. [ f(x) dx =- [ fx) dx

o
| - X
a Xi b

N
For fg f(x)dx, the dx’s in ) f(x?*) dx are all negative.

i=1

Properties 2. Linearity Properties
1. [7 cf(x) dx=c [?f(x)dx
2. [2TF0) + g()1dx= [2F(x) dx+ [7 g(x) dx

Discussion
1. If you multiply the height of each approximating rectangle by ¢, you multiply the area of each
rectangle by c.

2. If you add the heights of two rectangles, you add their areas.

Property 3. Piecewise Continuous Function Property

y = f(x)

fab fx) dx+ [ f(x) dx= [ “f(x) dx -
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Property 4. Inequality property

y =g(x)
f(x) < g() = [P F(x)dx < [P F(x) dx \\~//

-
=
=3
<

|

QF--
o---

A Historical / Application Note
Historically to find a quantity Q, you begin by finding its differential dQ, because over an
infinitesimal time interval, its behavior should be quit simple:

dQ = r(t)dt.
To find its rate you divide you divide by dt to get its rate of change, the derivative:

dQ _
e r(t).

To find its total amount of accumulation of Q, you sum the differential over the
time interval obtaining its integral:

AQ = ftfz r(t) dt

There you go. Just about all you need to know about elementary calculus!

Details of the last calculation.

dQ = r(t)dt
j;tde = j;:zr(t)dt summing / integrating from t; to ¢,
1
t t
Q(t) tj = j;lzr(t)dt or
t
Qt)-Qt) = f'r(t)dt o
t
Q-0Q; = J;lzl’(t) dt or
AQ = ttlz r(t) dt The Net Change Theorem (as some call it)

Think again about this picture. In early calculus,
the differential was the key ingredient.

AQ= f:z r(t) dt the definite integral
1
dQ = r(t) dt thedifferential

4
49 _

= r(t) the derivative
dt
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Exercises Read the section carefully. Semi-memorize the properties of integrals.

1. Use Property 3 to evaluate f:f(x) dx.

f(x)

2

1

o
N
S
o
fer)

2. Use Property 3 to evaluate the generalized integral f06 g(x) dx.
g(x)

3. Use Property 3 to evaluate ffz h(x) dx. Comment: Property 3 sometimes holds even if there are an

infinite number of discontinuities.
Y

—_ y= h(X)

Hint: A geometric Series. Answer: A= %,

4. Carefully prove Properties 2 using the definition of definite integral. Illustrate graphically.

5. Carefully prove Property 4 using the definition of definite integral.

Solution
3. Area=1+ () + (f+ -

w s

Simplifying and using the Geometric Series formula.
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5.4A The Fundamental Theorem of Calculus, |

This is step 1 in finding an easy way to evaluate integrals!

Fundamental Theorem of Calculus, Part | Let f be continuous for a<x<b, then
Fa(x) = ff(t) dt
is the antiderivative of f(x) for a<x<b satisfying F;(a) =0.

Y

| =~ y=f(x)

dF,

Fa(x)

dx

Proof

Let F,(x) be the area under the curve y=f(t) for a<t<b. Then

dFg o fx)dx
dx dx
= f(x)

So F4(x) is an antiderivative of f(x).
Also, clearly F,(a)=0.
End of Proof

Recall, A= B, A is asymptotically equal to B means %: 1+ € where € is aninfinitesimal.

d
Alternate Form of FTof C,1 - f;(f(t) dt = f(x)

Example

d X

5'[2 1+82 dt = /1422
Example

%Ls(ﬁ"‘:%)dt = '%Lx(t3+3)dt=-(x3+3)

Example
3
(jixf;( sin*tdt Hint: Chain Rule. Think ﬁf;lsm“tdt,u:x:‘}
= sin*u - 3x?

=3x%sin* x3
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Example* f(x) is the function shown below. Find the antiderivative F,(x). It is difficult to guess an
antiderivative of a piecewise defined function; you will learn how to do this in the next calculus course.
We will do it now numerically using the area interpretation, the area between 0 and x. Computers
programs can do this accurately even for very complicated functions.

Y
2
Wﬂt)
1
-2 ‘ 2 4 6 T
X -2 -1 0 1 2 3 4 5 6 7

Next, plot the points and join with a smooth curve to get the graph of Fy(x).
Fo(x)
4,
3,
2 E

1F

-2 2 4 6

NOTE If f(x) is continuous, then F,(x) is smooth (differentiable). (The proof is an exercise.)

Finally we are almost at the point where evaluating definite integrals is easy. Just let x=b

in the Fundamental Theorem of Calculus, I:
JEA(t) dt= Fo(b).

But we can still do better. It is often easier to find F(x), any antiderivative, than F,(x).

Exercises

1. Provethatif f(x) is continuous, then F4(x) is smooth (differentiable).

2. Evaluate

4 (Xein2 =
a. dxL’sm tdt=
d 5 . 2 _
b. —deX sin“tdt=

d (3 iq2 _
¢ 5 fasin*tdt=

3. Memorize and understand the statement and proof of the Fundamental Theorem of Calculus, Part I.
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4. Find an antiderivative of y = g(x) graphed below numerically.

Y

" \\Y=g(t)
— N |

-2+t

-3t

Solutions

1. In the proof of the Fundamental Theorem of Calculus, Part I, we showed that Fy(x) is
differentiable for all x in the interval a< x <b. Differentiable means smooth. Remember?

2. a. sin?x
b. -sin?x
c. -2xsin? (x2)

3. Your job.

4.

G(x)

A+
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5.4 B The Fundamental Theorem of Calculus, Part Il

Finally we are almost at the point where evaluating definite integrals is easy. Just let x=b in

the Fundamental Theorem of Calculus, I:
J2A(t) dt= Fa(b).

But we can still do better. It is often easier to find (any) antiderivative F(x) than Fg(x).

Fundamental Theorem of Calculus, Part Il Let f be continuous for as<t<b, then
[ f(t) dt=F(b) - F(a)
where F(x) is any antiderivative of f(x).
Proof By the FT of C, |
f;(f(t) dt = Fa(x) The antiderivative satisfying F,(a)=0

= F(x) - F(a) Equivalent form of Fy(x) where F(x) is any

antiderivative of f(x).
Check:

1. F(x) - F(a) is an antiderivative.
2. When x=a, F(x)-F(a)=F(a)=0.
Setx=h:
JP(t) dt = F(b) - F(a)

End of Proof
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For easy evaluation, the FTofC, Il is usually written
b b
L f(x) dx = F(x) .

which is read “F(x) evaluated between a and b.”

Recall, antiderivative formulas are easier to write and remember in indefinite integral form.

Recall: Definition [f(x) dx=F(x)+C

Example fx3 dx = );—4+ C is shorter than "If f(x) =x3, then F(x) = X4—4+ c."

Application For the quick evaluation of a definite integral, once F(x) is known.
4 oA 4 0t
Example fox3dx =5 =t.Coea

The following memory list was derived by ‘turning around’ derivative formulas.
In the future you will get more such formulas in a similar way.

Integral Table
fdx=x+C fx"dx=xn+1+C
n+1
fexdx=eX+C faxdx= T . C
lna
Jd—": In|x| +C
X
fcosxdx=sinx+C fsinxdx:—cosx+C
fseczxdx=tanx+C fcsczxdx=—cotx+Cf

fsecx tanxdx=secx+ C cscx cotxdx=-cscx+ C



234

Example Our old friend. Find the area under the curve y=x? for 0 <x < 2. Finally, the easy way!

Recall F(x) = )§—3 Then

meters
second’

Example Distance traveled by our moose in section 5.1 with velocity v=10sint
0<t<yt F(t) =-10cost. Then

JT

=-10cosm — (- 10 cos 0) =10 + 10 = 20 meter.
0

JT
X = I 10sintdt = —cost
0

Example The fungus problem from Section 5.1. The antiderivative will be found next semester.

= 5t :2—t 5 = 25 - 21:i
m LZdt In2 |9 In2 1n2 ln2gram

Example Area under the curve in Example* from 2 to 6.

6

6
A = J; f(x)dx = F(x) .

=F(6)-FQ)=4-2=2.

As we remarked at the beginning of this lesson, we have found the easy, almost magical, way of evaluating
definite integrals. The problem, though, it is not completely easy to find additional integral formulas. In
your next calculus course you will greatly increase the indefinite integral list. However, there will always be
many antiderivatives for which you cannot find in a 'nice' form and you may have to evaluate the integrals
the 'hard way' (numerically) or ask a Computer Algebra System to do the calculation.
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Exercises 5.4 Part B
Terms and Concepts 18 / 1

1. How are definite and indefinite integrals related?

2
2. What constant of integration is most commonly used when  19. / 1 dx
evaluating definite integrals? 1

3. T/F: If fis a continuous function, then F(x) = / f(t) dtis 2 4
a 20 / — dx
1

also a continuous function.

4. The definite integral can be used to find “the area under a

1
curve.” Give two other uses for definite integrals. 21. / x dx
0
Problems )
22 / X dx
In Exercises 5 — 28, evaluate the definite integral. 0
3 2
5. 3x* — 2x+ 1) dx !
/1 ( +1) 23. / x* dx
0

[e)]

4
./(X—l)2 dx
0 1
24. / X dx
1 0
7. / ( —x°) dx

—1

4
™ 25./ dx
8./ cos x dx —4

/2

w/4 —5
9./ sec? x dx 26./ 3dx
0 —10

e
10. / de 2
1 X 27. / 0 dx
2

/3
. 28./ cscx cot x dx
12./ (4 — 2¢) dx e

2

™ 29. Explain why:

13. / (2cosx — 2sinx) dx
0

1

3 (a) x" dx = 0, when n is a positive, odd integer, and
14. / e* dx -1
1
4 1 1
15. / Vtdt (b) X dx = 2/ X" dx when n is a positive, even
—1 0
° integer.
25
1
16. — dt
s Vi

a+2m
30. Explain why/ sint dt = 0 for all values of a.
a

8
17. / /x dx
1



In Exercises 31 — 34, do mentally.

2
31. / X dx
0
2
32. / X dx
-2
1
33. / e dx
0

16
/ VX dx
0

In Exercises 35 — 40, find the average value of the function on
the given interval.

34.

35. f(x) =sinxon [0,7/2]
36. y =sinxon [0, 7]
37. y=xon|0,4]
38. y=x"on [0, 4]
39. y =x*on [0, 4]
40. g(t) =1/ton|[1,¢]
In Exercises 41 — 46, a velocity function of an object moving
along a straight line is given. Find the displacement of the
object over the given mea interval.
41. v(t) = —32t+ 20ft/son [0, 5]
42. v(t) = —32t + 200ft/s on [0, 10]
43. y(t) = 10ft/son [0, 3].
44. v(t) = 2'mphon[-1,1]
45. v(t) = costft/son [0,37/2]

46. v(t) = v/tft/son [0, 16]
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In Exercises 47 — 50, an acceleration function of an object
moving along a straight line is given. Find the change of the
object’s velocity over the given interval.

47. a(t) = —32ft/s’ on [0, 2]
48. a(t) = 10ft/s’ on [0, 5]
49. a(t) = tft/s> on [0, 2]
50. a(t) = cost ft/s* on [0, 7]

In Exercises 51 — 54, sketch the given functions and find the
area of the enclosed region.

51. y = 2x,y = 5x,and x = 3.
52. y=—x+1,y=3x+6,x=2andx = —1.
53. y=x>—2x+5,y="5x—5.

54, y =2 +2x—5,y=x*+3x+7.

In Exercises 55 — 58, find F'(x).

X3+x 1
55. F(x) :/ ~dt
2 t

0
56. F(x) :/ £ dt

3
2

57. F(x) = / (t+2)dt

X

58. F(x) = /|

sint dt
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Solutions 5.4 B

1. Chain Rule.
2. T
3. %(x3 —5)84C 33. 128/3
4 10¢ —sx+7) 4 34. 2/m
5 L) e 35. 2/pi
36. 2
6. 13 +7x—1)°+C
37. 16/3
7. nj2x+7|+C 38, 16
8. vVax+3+cC 39. 1/(e —1)
9. F(x+3)/2 —6(x+3)2+C=I(x—6)Vx+3+C 40. —300ft
10. Zx3/2 (3 —7) +¢ 41. 400ft
11. 2eV* 4+ C
. @ s 43. 30ft
13 —ﬁ B % s 44. 1.5/ In(2) = 2.164miles
. 45, —1ft
1. 20 4 c 46. 128/5ft
15. 5'”3% +cC 47. —64ft/s
16. _ws‘% +c 48. 50ft/s
17. —Lsin(3—6x)+C 4. 2f/s
18. —tan(4 —x) +C 0. 0ftfs
19. % In | sec(2x) + tan(2x)| + C 5L 27/2
, 52. 21
20, =00 4 ¢ 53. 9/2
2. =) 4 ¢ 54. 343/6
22. tan(x) —x+C 55. F(x) = (3x* +1) Xai_x
17. 45/4 56. F/(x) = —3x1
18. In2 57. F(x) =2x(x® +2) — (x +2)
19. 1/2 58. F/(x) = e*sin(e*) — 1/xsin(In x)
20. 3/8
21. 1/2
22. 1/3
23. 1/4
24. 1/101
25. 8
26. 15
27. 0
28. 2—-2/V3

29. Explanations will vary. A sketch will help.

30. f;J’M sint dt = cos(a + 27) — cos(a). Since cosine is periodic
with period 27, cos(a + 27) = cos(a), and hence the integral is
0.

31. c=8/3
32. ¢ = 16/3
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5.5 A The Method of Substitution, Indefinite Integrals

In applications, simple integrals like fcos xdx arerare. Itis more likely you will encounter
integrals like fcos(zrrk) dx or fcos(2.34 X + 7.49) dx. Fortunately these can often be

worked with a slightly modified table of integrals.

Integral Table

_ n _ Xn+1
fdx_x+C fxdx-n+1+C
fexdx=e"+C faxdx= T+ C

Ina
IC)I(—X= In|x|+C
fcosxdx:sinx+C fsinxdx:—cosx+C
fseczxdx=tanx+C fcsczxdx=—cotx+C
fsecxtanxdx:secx+C fcscxcotxdx:-cscx+C
Integral Table (Change of variable Form)

i _uni
fdu=u+C fu CIu'n+1 +C
erdu=eU+C faudu=li +C

du na
j7= In|u| +C
fcosudu:sinu+C fsinudu:-cosu+C
fseczu du=tanu+C fcsczu du=-cotu+C
fsecutanudu:secu+c fcscucotudu:—cscu+C
Method of Substitution
u=9% ff(u)du

[fabng e ax =g
Proofs: an integral is live mathematics.

b ' u=glx) g(b)
J-flabng dx =[G ) du
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Looking Ahead

Examples
[ sin® x cos x dx [iV2x+1 dx
u=sinx u=2x+1
du = cos x dx du=2dx=>dx=d—2”-
= [udu X=0 = u=20+1=1
= Lic X=4 => U=24+1=9
= EoE _ (9 du
=z sin"x+C. —jlx/?z
_ 12 329
23 |1
=1(9-1)
=
= 8
3
The Method

Choose a u for which there is (up to a constant)

a du in the correct position.
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5.5A Substitution Method, Indefinite Integrals, Readings

Example5.5.1 Integrating by substitution

Evaluate .9 Weseea u
/xsm(x +5) dx. and except fora 2,a du.

SOLUTION

letu = x* + 5, hence du = 2xdx. Eventually you can do these in your head with

1 perhaps a little 'massaging' of the integrand.
du=2xdx = Edu = xdx.

/xsin(xz—i—S) dx = /sin(x2 +5) xdx /xsin(x2+5) dx.
u ldu Thinking u=x2+5, du = 2x dx
L2
:/%sinudu = %/sm(x + 5)(2x dx)
1 c = -2cos(x*+5)+C
= —Zcosu
> +

1
=3 cos(x* +5) + C.

Example 5.2 Integrating by substitution

Weseea u

Evaluate | sinxcosx dx. and exactly, a du.

SOLUTION
In this example, let’s set u = sinx. Then du = cos x dx, which we have as
part of the integrand! The substitution becomes very straightforward:

/sinxcosxdx:/udu

12+c
=—u
2

= 1sinszrC
=3 :

Example5.5.3 Integrating by substitution

cos(5x) dx. Weseea u
and except fora 5,a du.

soLution Let u = 5x,then du = 5dx.

/cos(Sx) dx = /cos(\Sf_/)\di(_/

1
sdu

1
/fcosudu
5

! inu+C
= —SIhu
5

1
=3 sin(5x) + C.
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Exercises 5.5A

Terms and Concepts 17. | cos(3 — 6x)dx

1. Substitution “undoes” what derivative rule?

18. [ sec’(4 — x)dx

2. T/F: One can use algebra to rewrite the integrand of an in-

tegral to make it easier to evaluate.

19. [ sec(2x)dx Hint: Wolfram Alpha

Problems

20. [ tan’(x)sec’(x)dx

In Exercises 3 — 14, evaluate the indefinite integral to develop

an understanding of Substitution. 21. | xcos (XZ) dx

— — — — —

3. /3x2 (¢ —5) dx

2
22. /tan xdx Hint: tan?x = 1 - sec?x

4 / (2x—5) (¢ = 5x+7) dx Solutions 5.5

) g 1. Chain Rule.
5. /x(x +1) dx 5 T
3. 2@ —5)8+¢C
6. /(12x+ 14) (3x* + 7x — 1) dx 4 102 — S+ 7) 4 C
. 5. L (@+1)°+c
7 /2x+7dx 6. 23 +7x—1)°+C
7. 2inj2x+ 7|+ ¢C
1
8. [ ————dx
/\/m 8. V2x+3+4C

9. 2(x+3)*2 —6(x+3)Y/2+C=2(x—6)Vx+3+C

10. 2x3/2(3x2 —7) +C

X
9. ——dx _
/ \/m Let u=x+3

11. 2eV¥ 4 C
10. /Xg_xdx 12, 204 ¢
VX Simplify integrand L .
13. -5 —1+c¢
VX
11, | &g« 14, "0 4 ¢
\/),( 2
15 sin’ (x)
.=+ C
4
X cos* (x)
12. /7\/de 16. i +C
17. —lsin(3—6x)+C
1
1.9 _ —
13. / *——dx Simplify integrand 18. —tan(4—x) +C
X 19. % In|sec(2x) + tan(2x)| + C
tan® (x)
14 / In(x) dx 20. =5 +C
X 21 sin(xz) + c
: 2
In Exercises 15 — 24, use Substitution to evaluate the indefi- 25 tan(x) —x+ ¢

nite integral involving trigonometric functions.

15. /sinz(x) cos(x)dx

16. / cos®(x) sin(x)dx
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5.5B The Method of Substitution, Definite Integrals

b . u=g(x) g(b) : . - .
L f(g(x)) g '(x) dx dueo ) e -L(a) f(u)du  Proof: the integral is live mathematics.

This section has focused on evaluating indefinite integrals as we are learning a
new technique for finding antiderivatives. However, much of the time integration is
used in the context of a definite integral. Definite integrals that require substitution
can be calculated using the following workflow:

b
1. Start with a definite integral / f(x) dx that requires substitution.
a

2. Ignore the bounds; use substitution to evaluate /f(x) dx and find an an-
tiderivative F(x).
b

= F(b) — F(a).

a

3. Evaluate F(x) at the bounds; that is, evaluate F(x)

This workflow works fine, but substitution offers an alternative that is powerful
and amazing (and a little time saving).

Atits heart, (using the notation of Theorem 6.1.1) substitution converts inte-
grals of the form [ F/(g(x))g’(x) dx into an integral of the form [ F’(u) du with
the substitution of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the substitution is performed.

Theorem 6.1.4 Substitution with Definite Integrals

Let Fand g be differentiable functions, where the range of g is an interval
I that is contained in the domain of F. Then

b a(b)
/a F'(g(x))g’(x) dx = /g(a) F'(u) du.

In effect, Theorem 6.1.4 states that once you convert to integrating with re-
spect to u, you do not need to switch back to evaluating with respect to x. A few
examples will help one understand.

Example 6.1.16 Definite integrals and substitution: changing the bounds

Weseea u

2
Evaluate /0 cos(3x — 1) dx using Theorem 6.1.4. and except fora -« -

SOLUTION Observing the composition of functions, let u = 3x — 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the latter
equation by 3 to get du/3 = dx.

By setting u = 3x — 1, we are implicitly stating that g(x) = 3x — 1. Theorem
6.1.4 states that the new lower bound is g(0) = —1; the new upper bound is
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g(2) = 5. We now evaluate the definite integral:

2 5
d

/ cos(3x — 1) dx:/ cosuZ!
0 -1 3

1 5
= —sinu

-1

%(sin 5 —sin(—1)) =—0.039.

Notice how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 6.1.1 tell more of the story. In (a) the area defined by
the original integrand is shaded, whereas in (b) the area defined by the new in-
tegrand is shaded. In this particular situation, the areas look very similar; the
new region is “shorter” but “wider,” giving the same area.

Example 6.1.17 Definite integrals and substitution: changing the bounds

7/2
Evaluate / sin x cos x dx using Theorem 6.1.4.
0

SOLUTION We saw the corresponding indefinite integral in Example 6.1.4.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the latter here.

Let u = g(x) = cos x, giving du = — sin x dx and hence sinx dx = —du. The
new upper bound is g(7/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have

/2 0
/ sinxcosx dx = / —udu (switch bounds & change sign)
0 1

1
/udu
0

1
=1/2.
=Y

1

2
In Figure 6.1.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 6.1.4 guarantees that they have the same area.

y

1 y = cos(3x — 1)
0.5*\
. : : : > x
2
(a)

A

(b)

Figure 6.1.1: Graphing the areas de-
fined by the definite integrals of Example
6.1.16.

1 -+
y = sinxcosx
0.5
t X
1 ;\
—0.5 |+
(a)
y
1] y=u
0.5 |
f . u
1
—0.5 |+

(b)

Figure 6.1.2: Graphing the areas de-
fined by the definite integrals of Example
6.1.17.
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Exercises 5.5. Definite Integrals

Evaluate the definite integral.

3
1
1./ dx
. Xx—5

6
2. / XV x — 2dx
2

/2
3. / sin? x cos x dx
—7/2

1
4. / 2x(1 — x*)* dx
0

-1
5. / (x+1)e"ZHX+1 dx
—2

o
6. /71 110 dx
‘ 1
7'/2x2—6x+10dx . ..
Calculus lintroduces you to the main ideas of the calculus.[
vy Calculus Il gives you a solid foundation in the calculus and
8. /1 i~ applications and will be able to engage in an il
I intelligent conversation with an engineer.
8O T T A
1 0

: Y n take more advan h n
Solutions oucanta e more advanced calculus based t eory a d
applications courses for the rest of your life.
1. —=In2
2. 352/15 The calculus is the predominant mathematical tool which was required for the development of our modern
s 23 industrial and scientific world. While other mathematics topics give us deep insights how the universe works,
’ we would still, with perhaps a little slowdown, be pretty much where we are today with only the calculus.
4. 1/5
5 (1—e)/2
. /2 DONE (Not Really)
7. w2
8. 6
™/ If you are an arts student, CONGRATULATIONS.

You deserve a fulfilling life!
If you a serious biology or business student,
take at least one more calculus course.
If you in physical sciences or engineering,
finish the basic calculus sequence and take

another math course every term including
linear algebra and complex variables.
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