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THE SITUATION.  Let  dx  be any non-zero infinitesimal.

f(a)  is an indeterminate form, undefined. 
Compute  f(a+dx) = b+dy  instead.
Set  dy = 0.
b  is the number we need for calculus. 

x →   a
We write lim f(x) = b.

Historical Problem First we require dx ≠  0 along the X-axis. 
Then we set  dy = 0  by taking  dx = 0.
How can  dx  be  both zero and non-zero?
No problem. They occur under different circumstances.

...........

If you can't find it under the rock, 
look near the rock.
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Why an infinitesimal calculus approach?  For many years I used textbooks primarily as  a source 
of problem sets but did most the theory and derivations using infinitesimal analysis. It went well.

What is wrong with with the ϵ-δ  limit approach?

Preface

There is a most excellent equivalence relation, asymptotic equality  ≈, available for simplifying                  
calculations; it encourages input by intuition; its misuse tends not to affect the final answer. 
Did an engineering student ever use the Mean Value Theorem? 
Also traditional applied notation is used throughout:  a < x < b  not  (a, b),  f(g(x))  not  f  o g(x).

d Students  did not master solving absolute value & inequality statements before university
(High School students tend to think they had a ‘nice’ mathematics teacher if they did not do 
much with word problems, piecewise defined functions or absolute value & inequality 
statements!) 
ϵ-δ  calculations are ugly and difficult!
Often  ϵ-δ   limits are treated very lightly or not at all and students do calculus with a minimal 
understanding of limits and get through calculus by memorizing formulas and mimicking  
textbook examples. Some important basic theorems such as the  Extreme Value Theorem  or 
the Riemann Integrability o f a Continuous Function on a Closed Interval are simply too hard 
to do.
dy       is not a fraction; The differentials  dx  and  dy  are not infinitesimals.dx

Few engineers or scientists use the traditional limit approach in their work, either in their 
university courses or in their work life. Calculus courses should help these in applied science to 
use good style with a clear understanding rather than have it hinder them. 

Calculations tend to look like standard  Algebra 10 calculations. (Grade 10 algebra is often the 
last algebra they have really understood and mastered!)-Proofs of the Extreme Value Theorem and the Riemann Integrability of a Continuous on a

 Closed Interval are easy and intuitive and could be understood by a calculus student with
only a successful grade 10 algebra background.
We do prove all the hard theorems in class; no one every gave me a raspberry for doing that.
dydydydy
ddx

dydydydy
dxdxdxdxis a fraction. Writing    =    f '(x)  is only infinitesimally wrong!

What is good about the infinitesimal approach?

Why did I make this patchwork calculus textbook?
I had hundreds of pages of infinitesimal based theory and applications handout sheets. I like 
the idea of Open Commons textbooks. Last summer our department was assigned a student 
partially subsidized by a government grant. No one had work for him. I thought,"Hey, we could 
make an infinitesimal calculus book." I informed our department chair. She wanted me to do it 
in LATEX. I thought of the effort involved. It would take about three years of drudgery to learn
LATEX and type up a manuscript and do its many revisions. I worried; I'm 80 and would the

textbook or the dementia win out? I decided we could do a "3 Month Infinitesimal Calculus” 
book to get started. The department chipped in for two copies of Acrobat Pro. Dallas McIntosh, 
my student assistant,  was a great organizer and soon learned  how to work around some of it's 
pdf rigidities. 

You are invited to use this textbook, make suggestions, proofread or be an editor or          . . . .

-



Chapter 0   Beginnings & Refreshments
A purpose of a university education is to produce experts in their major fields of study.  Experts are 
required for teaching, doing original research, those who apply advanced knowledge to solving practical 
problems or those who are intellectually curious. Part of this expertise is understanding the background of 
their knowledge from its beginnings to your current level of study. That’s why we start with the counting 
numbers. In this chapter we also do a basic algebra and function review. We finish with a new yet old kind 
of number system, one which includes very small numbers called infinitesimals, which allows us to study 
calculus at both an intuitive and at the same time at at a more advanced level.

THE PATH TO CALCULUS
Real Numbers

⟶  Algebra
⟶  Functions

⟶  Continuity & Limits
⟶  Calculus!

   The Derivative
   The Definite Integral 
   The Fundamental Theorem of Calculus

0.1  The Real Numbers  We begin with a short review of the real numbers and
functions and graphing. Other topics in algebra will be reviewed as required.

Preliminaries   We start with a statement of a few logical symbols that we often will use as well as 

some properties of equals.

Logical Symbols  For the sake of brevity we often use the following logical symbols for statements  A  and  B.
⇒ “implies”.  A ⇒ B,   or  "A  implies  B"   or   "If  A  is true,  then  B  is true"
⟺  "means the same thing as"   or   "is equivalent to"   or   "if and only if".

Properties of Equals,  =
a = b  means arithmetically that  a  and  b  are the same real numbers.
a = b  means geometrically that  a  and  b  are at the same place on the number line.

3. Transitive property a = b, b = c  ⇒  a = c
You may wish to check in this lesson that wherever we use  =  that these properties are consistent with its use.

Further properties of equals  Useful when working with equations; in this context  ⟺  means 'has the same 
solutions as'.

Addition Rule           a = b  ⟺  a + c = b + c
Multiplication Rule        a = b  ⟺  a · c = b · c,  c ≠ 0

These properties are true because, for example, in the addition rule of equals you could add  - c  to both sides of 
the equation on the right and recover the equation on the left.

}  via infinitesimals

1. Reflexive property a = a  

2. Symmetric property a = b  ⟺  b = a                                                 Mathematicians say that  =  is an equivalence
relation because it has these three properties.
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The Real Numbers   We will do an informal review of the real numbers. It is assumed you know
rules of arithmetic of the real numbers and that elementary algebra is governed by to the same rules.

The set of counting numbers or natural numbers or positive whole numbers  ℕ  is the set 

 1, 2, 3, 4,  · · ·. 

The natural numbers are useful for counting discrete objects such as jelly beans or kumquats. The sum or product 
of two natural numbers is a natural number. However, the difference may not be;  2 - 2  and  3 - 5  are not natural 
numbers. To allow for such subtractions we add  0  and the negative integers to the set of natural numbers to get a 
new set of numbers.

The set of integers    contains the number  0  and the positive and negative whole numbers

· · · -3, -2, -1, 0, 1, 2, 3,  · · ·.

For the purposes of geometry and measurement it is convenient to place the integers equally spaced on a number 
line ordered from left to right.

-3 -2 -1 0 1 2 3 4
X

m

With integers it is possible to do all additions, subtractions and multiplications. However, the division of two   
integers is not necessarily an integer. To cure this problem we add fractions to the integers.

The set of rational numbers  ℚ  (for Quotients) are ratios of integers    n ,  n ≠ 0.  

Two examples are
3
4
-13
10  =  13

-10  = - 13
10  = - 39

30    

A rational number  m

n
  is placed on the number line by subdividing the intervals between integers into  n  parts and 

counting off  m  of them starting at the origin. For example,  5
3   is placed on the number line by subdividing the 

integer intervals into  3  equal parts and counting off  5  of the subdivisions to the right from the origin,  0.

0 1 5/3 2
X

1
m

Integers are in the set of rational numbers with the understanding that  m ≡  m ; we say a rational extension of the

integer  m  is the rational number   .   We need, for example, a rational extension of  7  so that we can combine 

7 1 3an integer by an arithmetic operation with a rational number;  7× 23 = ?, but    × 
2

  = 1
7×
×

2-3 =-  -3
14

-- . Nevertheless, we feel

3
-■free to write in short 7× 

2-    informally.

●

1-
..
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The square root of a rational number may not be a rational number, but rather a nonrepeating, unending decimal.  
For example  

2  = 1.414213562373095048 · · ·.

The irrational numbers are the nonrepeating, unending decimal numbers. 

Examples of irrational numbers
1.01001000100001 · · ·
1.23456789101112 · · ·

1.38159834725918 · · ·

       π  =  3.141592653589793238 · · · 
π  = 1.772453850905516027 · · ·

7
22 = 1.77281052085583665 · · ·

     Irrational numbers are difficult to place on a number line. What we do is approach the location exactly by an 
unending sequence of increasing rational numbers (as suggested by its unending decimal form). We know how to 
place rational numbers on a line. So in a theoretical way, we can also place irrational numbers on a number line 
exactly with an unending sequence of steps. 

For example,

3.1, 3.14, 3.141, 3.1415, · · ·  =  31
10 , 314

100 , 3141
1000 , 31 415

10 000 , · · ·  →  π.

3.0 π 4.0
X

3.10 π 3.20
X

3.140 π 3.150
X

⋮

3
4  =  0.75  = 7

10 + 5
102  =  0.75000 · · ·

7
11  =  0.636363 · · ·  =  6

10 + 3
102 + 6

103 + · · ·.

This is because to write  p

q
  in decimal form you use long division; if the remainder at any step is  0,  the division stops 

and the result is a terminating decimal. Otherwise the remainders can only be  1, 2, · · · , q - 1.  So after at most  q - 1  
steps, a remainder repeats and the result must be a repeating decimal repeating in groups of at most  q - 1  digits. 
For  3

4
, the decimal form terminates;  7

11
 repeats in groups of two;  2

7
  repeats in groups of six (verify this). Again we 

say the real extension of  3
4

  is  0.75000 · · ·; with it you can combine  3
4

  arithmetically with a real number, any number 

that can be written as an unending decimal.

●

Example         3 
4 + π  =  0.750000000 · · ·  +  3.141592653 · · ·   =  3.891592653 · · ·

The symbol  →  is read `approaches (exactly)'. The word exactly is appropriate because at each step the 
quality of the approximation increases by one decimal place and the unending sequence of 
approximations ultimately gives  3.1415 · · ·  =  π   exactly.

The Real Extensions of Rational Numbers  If you wish to combine a rational number with an irrational real π  
number (by addition, say), you must in theory write the rational one in unending decimal form.

Every rational number can also be written an unending repeating decimal ore sometimes as a terminating decimal. 
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  The fractional form of a repeating decimal can always be recovered. 

Example

7.4235235235 · · · ;  call it  x.  Then
 1000x = 7423.5235235 ·  ·  · 

 (- )      x = 7.4235235 · · · 

             999x  = 7416.1 

So x = 7416.1
999  = 74 161

9990 .

Terminating decimals, other than for  0, can be written in repeating decimal form in two ways:
3
4  = 0.75 = 0.75000 · · ·   
3
4  = 0.75 = 0.74999 · · ·. 

The set of real numbers  ℝ  is the set of all unending decimals. That is, every real number  r  can be 
written  in the form 

r = ± n.d1d2d3 · · · 
where  n   is zero or a positive integer. 

     Natural numbers, integers and rational numbers are in the set of real numbers because their real extension can be 
written in repeating decimal form; however, one may feel free to write them in their usual natural number, integer, 
or rational (fractional) form.

     When all the real numbers have been placed on the number line we obtain the real number line. The real number 
line is perfect for measuring because every physical measurement, as far as we know, is a real number. We say `the 
real line is geometrically complete.' The rational line is not geometrically complete; for example, with it we would 
not be able to measure exactly the hypotenuse of the right triangle shown below because the rational line does not 
have a number at     2 . 

1 1

       The real numbers are also algebraically complete because every legal arithmetic operation at the elementary
 level gives a real number.               

Note: at the elementary level you cannot take the square root of a negative number or the logarithm of  0  or 
a negative number; however within the set of complex numbers  ℂ,      = i  and  loge(-1)  = i π,  as examples.                  
You cannot ever divide by  0  or take the log of  0. 

2  -1 0 1                 2

 -1  

●

7



1. Write each integer as a rational number in two ways.
a. 7
b. -3

2. Write each as a terminating decimal. Use long division.
a.  3

4

b. 7
10

c. 4
25

3. Write each in an unending decimal form.

a.  4
9

b. 4
11

c.  4
7

4. Write each in fraction form.
a. 0.999 · · ·
b. 0.373737 · · ·
c. 71.333141414 · · ·

5. Write a sequence of rational numbers approaching  5 = 2.23606 · · ·.

6. Use the sequence of #5 to plot  5 within  0.001  of its correct place on the real line.

7. The theorems, Further Properties of Equals are often, but improperly, restated as `you can do the
same thing to both sides of an equation' without changing its solutions. Show that this not true for
squaring. That is  a = b  ⟺  a2 = b2  is not true. 

Are there other numbers? Yes there are. We do not need any more for real world calculations or measurements. 
However the inventors of calculus in the seventh century found out that the theory and calculations of calculus 
would be easy if very small numbers called infinitesimals existed. At that time infinitesimals were not known to 
exist. But they, without any confirmation of their existence, used them anyway and quickly discovered most of 
the calculus you will learn this year.

In the mid-nineteenth century mathematicians discovered the rigorous but difficult epsilon-delta calculus 
which gave calculus the reputation of being a very difficult subject.

About 1960, the mathematician Abraham Robinson proved that the earlier infinitesimals did exist. Some day 
infinitesimal calculus will be widely used again!

Exercises
Read the lesson very carefully. Make sure you understand everything. However, there is no need to memorize 
much. 
Try all the exercises below. Do not look at the solutions except to check your answers or if you need a hint. 

8



2
9

3

Solutions

1. a. 7 = 14
2  = - 42

-6

4
7

3. a. 0.444444 · · ·
c. = 0. 571428571428 · · ·

4. a. 1
c. 7 061 981

49 000

5. 2, 2.2, 2.23, 2.236, · · ·

 x = 3  has the solution set  {3}.   Squaring:          

2
9

 x2 = 9        has the solution set  {-3, 3}. 

11. For example,  1, 2, 5  or      2 , 3 , 5 ;  1,    2 , 3

13 b.  π +      = 3.14159265 · · · + 0.22222222 · · ·  =  3.36381487 · · ·.

c. + 0.1234567891011 · · · .1

a. 9
4

b. 273

8. Determine which of the following are irrational real numbers.
Hint: is the number likely to be a non-repeating decimal?

7. For example, the equation:

 

9. Find the decimal expansions of  1
n
  for  n  from  1  to 11. Identify the group of repeating

digits for each.

10.

11.

12. What are the integer, rational and real extension of the natural number  5?

13. Use appropriate extensions to work each.

a. 13 + 1-4 .  Do with and without decimal representations.

b. π +

-

c. π  
3

d. 0.767667666 · · ·
e. 7.010101 · · ·

14. Which is larger: 36/45  or  37/46?

Invent three examples of irrational numbers in decimal form which are easy to memorize. 

Invent a right triangle with hypotenuse  5. Is there one with hypotenuse  3 ?

15. Which is larger: 7.532438  or  7.532418?

9



First:  evaluate inside parentheses (including those implied by arguments of functions, 
a                  roots, exponents and fractions)
Then:  do multiplications and divisions
Then:  do additions and subtractions

Bad and Good Algebra  We conclude with a list of common algebra errors along with 

their correct counterparts. These mistakes count doubly wrong on an exam!

False Linearity    Only Correct Case  (linear function)
g(x) = k x, where  k  is a constant. 

⟹  g( x + y) =  g(x) +  g(y)

          x2 + y2     ≠  x + y
              f(x + y)  ≠  f(x) +  f(y)              
c       sin(x + y)  ≠  sin x + sin y

                    bx+y  ≠  bx + by

Wrong Fraction Property    Correct
a

b

a

c
+ ≠ a

b+ c

a

c
 = a+b

c

a

b
+ c

d +
≠ 

b

a+ c

d

a

b

+ b

c

+ c

d b d
 = a d+ b c  

Improper Cancellation    Correct: Remove a Common Factor, i.e. Cancel
2x+ x - 3

x + 2 ≠ 2x- 3
2

x (x+ 2)
x x3+ 3 x- 2

=
x3

x+
x

2
+ 3 - 2 ,  x ≠ 0

Others    Correct

x2 =   x x2 ≠ x unless  x ⩾   0

x2 = (-x)2   Example   9  = (-3)2  ≠ -3

9  = (-3)2  = |-3| = 3

APPENDIX   Some Algebra Reminders

N.B.

  

The rules of algebra are the same as the rules of arithmetic:
Associative Laws for  +  and    .             
Commutative Laws for  +  and  .  
Distributive Law
Existence of Identities  0  and  1 
Existence of inverses  -x  and  1x ,  x     0.

    Keeping these in mind helps prevent algebra mistakes.

Order of Operations   To avoid excessive use of parentheses, obey the following conventions.

≠

= -x/

10



Examples

 f
ℛ f

f

-7

2

7

-5

4

r
ℛr

r

-7

2

7

-5

1

4

r   is not a functionf  is a function

Ways of Representing a Function

I. Functions as data or table of values

Example 1  The position  x  of a cart at times  t  is show on the table below.

    T seconds 1 2 3 4 5
X meters 1 2 4 7 11

   

The domain is the set  {1, 2, 3, 4, 5].    

The range is the set  (1, 2, 4, 7, 11}.
 For each  t  there is exactly one  x.

• f  = {{ -7, -5}, {2 , 4}, {7 , 4}}
It is a function function because no different ordered pairs have the same first
element.

Example 3.  The non-function  r  diagrammed above

r  = {{ -7, -5}, {2 , 4}, {2 , 1}, {7 , 4}}
is not a function because two different ordered pairs have the same first element.

0.2   What is a Function?
Functions are the fundamental objects we study in calculus; so we need to know exactly what a function is. 
Here we review the basics.

Definition   A  function  f  associates every number  x  in its domain set     exactly one 
number  y = f(x)  in its range set  ℛ  . f

     ⟹  The data defines a function.

Note that in most experiments,  for each measurement  t,  there is exactly one result  y.   

That is why the 'exactly one' restriction in the definition of a function.

Example 2.  The function  f  diagrammed above

f

11



II. Functions as graphs

We associate an ordered pair  {x, y}  of a function with the point  (x, y)  and graph on a rectangular
coordinate system. The 'only one' function requirement means it passes the 'vertical line test.'

 For many people graphs are preferred, especially those not in the physical sciences. "A graph is 
worth a thousand  x's." 

  Let us look at Example 2 above in graphical form.

-10 -5 5 10
X

-6

-4

-2

2

4

f(x)

Example 4  The Square Root function

-1 1 2 3 4
X

-1

1

2

3

x

At  x = 4, the absence of a large dot means the graph extends to the right. No domain was specified, so we assume it is 
its natural domain,  x ≥ 0.

III.III. Functions as a formula + a domainFunctions as a formula + a domain
Example 5.Example 5.  sqrt(x) =     x          ,  0 ≤≤ x ≤≤ 4. 
This function is different than the previous function because it has a different domain.

-1 1 2 3 4 X

-1

1

2

3
y = sqrt(x)

●
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X

Y

(x1, y1)

(x2, y2)

(x, y)

Then by similar triangles
y- y1
y2-y1

  =  
x- x1

x2 -x1

or

y - y1 = y2 -y1
x2 - x1

(x - x1) Two Point Form of a line

Definition  Slope    m = Δy
Δx

 = y2 -y1

To draw a line of slope  m, start at a point on the line. Go  1  unit in the x-direction and  m  units in the y-direction.
Mark the new point. Then draw the line through the two points.

1

-

1

0

1

2

3

m = 1

m = 2

m = 3

m = 0

m = -1

Substituting  m  into the two-point form, we get perhaps the most important for calculus

y - y1 = m (x - x1)        Point-Slope Form

Substituting  (0, b)  for  (x1, y1), we get

y = m x + b        Slope-Intercept Form

Linear FunctionsLinear Functions 

     Linear functions are as important in calculus as they are in other areas of mathematics. 
As a review, we will do a derivation of a line through two points.

Let the two points be  (x1, y1)  and  (x2, y2).  Let  (x, y)  be any point on the line.

●

●

●

●

x- x1

x2-x1

●
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Example 6   Minimal Decency Curve  It is minimally OK for a person of age  A  to date someone whose age is given 

by  a =  A + 7.

0 20 40 60 80
A0

10

20

30

40

50

60

70

1
2a = A + 7

Wikipedia  The “never date anyone under half your age plus seven” rule is a rule of thumb 
sometimes used to prejudge whether an age difference is socially acceptable. Although the 
origin of the rule is unclear, it is sometimes considered to have French origin.

Example 7   Absolute Value Function   y = |x| =  -x x < 0
x x ⩾ 0

.

-2 -1 1 2
X

0.5

1.0

1.5

2.0

2.5

Y

Example 8   The Floor Function   y = Floor(x).  The Floor function rounds down to the nearest integer.

-2 -1 1 2 3 4 5
X

-2

-1

1

2

3

4

Y

Exercises
1. Find the equation of each line.

a. The line through the points  (1, 2)  and (-2, 3).
b. The line through  (2, 3) with slope  -2.
c. The line with y-intercept  3  and slope  -1.

2. Show that              , the intercept-intercept  form of a line, has the x-intercept  a  and y-intercept  b.

3. Show the details of the simplifications of the two point form of the line to the other forms

x
a

+ y

b
 = 1

.
.

.

.
..

.

Absolute values are used when only the 
size or magnitude of a quantity matters.

Jumps like these occur, in theory, 
whenever data is obtained from a 
digital readout.

1
2
_     
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4  Graph the absolute value function,  y = |x|.  Make a table of values.

Solutions 

6. a.  0 cents

b.

11 22 33 44 55 XX

11

22

33

44

Price

5. Hint

°C                °F

0                 32

          100                212

7. a =    A + 7,  A= a

A =    A + 7

       A = 7

    A = 14 years.  8    graders should be careful.

1
2

1
2

1
2

th

|

_

10.

9. A = x    +    2 100
  x

Derive the mid-point formula for the points  (x  1 , y )  and  (x 2   , y  ).2 

5. Find the relationship for the temperature  F  in  °F  in terms of the temperature  C  in °C.
When is  F = C?

6. Suppose hamburger casts  1 cent  for each full gram purchased (digital readout).
a. How much does it cost if you get  0.5 grams  for your pet roach?
b. Draw an accurate graph (price vs grams) for purchasing up to  5 grams.

7. For the basic decency curve, when is  A = a?

8. What do the results of a lab experiment using a digital readout have to do in common with the Floor function?

9. A box with a square base  x cm  by  x cm  and an open top has a  volume of  100  cm .  Find the function which
gives its surface area.

2   
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0.3  Memory Functions and Operations on them
You have encountered many examples of functions in high school and your leisure reading. It is time to 

review some of them and reincorporate them into your active collection of recognition functions. Look at 
each graph/equation pair and identify its interesting features.            

These graphs you should be able to graph quickly and fairly accurately with a short table of 
values as shown by points on the graphs:
Two data points for each line segment. Three data points for each ‘hump’ or curved segment. 

              You are expected to be able to graph these quickly and fairly accurately on exams.          

Parabola  y = x2 Square Root  y = x

-2 -1 1 2
X

1

2

3
Y

1 2 3 4
X

1

2

Y

Reciprocal  y = 1
x

Reciprocal Square  y = 1
x2

-2 -1 1 2
X

-2

-1

1

2

Y

-3 -2 -1 0 1 2 3
X

1

2

3

4

Y

Reciprocal Square Root  y = 1

x

Semicircle  y = r2 - x2

1 2 3 4
X

1

2

Y

X

Y

r

Sine  y = sin x                Cosine  y = cos x Tangent  y = tan x

X

Y

2π
X

Y

2π
X

11

Y

π/2

Memory Work

Be able to sketch the above functions quickly. These functions are ones you will be required 
to sketch rapidly and fairly accurately in exams.

Think 'curved segment':

x  yx x  y 
   0      0
   1        1
   4        2

----------

⟶ 
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Transforming and Combining Functions
     Chemistry is easy. There are only about 100 elements and a handful of ways to combine them. 
Not quite true! But this idea is even truer for basic functions study. There are nine functions on 
the above memory list. Today we will look at a few ways of transforming and combining those 
functions so that  we greatly expand the number of functions we can readily graph. These 
transformation methods  are very important.

Transforming functions

Translation (or Shifting) Principle

F(x, y) = 
0 shifted


h units horizontally
k units vertically

becomes×
F(x - h, y - k) = 0

Example  Start with a memory friend, the parabola  y = x2 (graphed black).

a. Shift  2  to the right, 3 up:  y - 3 = (x - 2)2. (graph red)
b. Shift  2  to the left:  y = (x + 2)2. (graph blue)
c. Shift  3  to the right, 1 down. (graph magenta)

-2 2 4 6 X

2

4

6

Y

Example  An easy, but important one: y = x (graphed black).
a. Shift  3  to the right. (graph blue)
b. Shift  1 up. (pink)
c. Shift  1  to the left. (red)
d. Notice anything interesting?

-4 -2 2 4 X

-2

-1

1

2

3

4
Y

So if you know the line  y = x, you know the equation of this line shifted in any direction.
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Stretching (or Scaling) Principle

F(x, y) = 0 
stretched


A times horizontally
B times vertically

becomes

F     ,  = 0

Example  Start again with the parabola  y = x2 (graphed black).

a. Make me twice as fat:  y = ( x
2 )

2. (graph pink)

b. Make me one-quarter as tall: y
1/4  = x2 (graph red)

c. Notice anything interesting?

-4 -2 2 4 X

-1

1

2

3

4
Y

Example  Your second favorite curve, the line: y = x  (graphed black).
a. Stretch by  2  vertically.  y

2  = x  (graphed red)

-4 -2 2 4 X

-4

-2

2

4
Y

So now you only need to know only one line  y = x !  All others of any slope you can get by 
a shift and/or a stretch!

x

A   

y

B
__
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Example  This time your favorite non-function, the unit circle about the origin.

x2 + y2  = 1  (graphed black).
a.  Make me thrice as big:   x

3 
2 +  y

3 
2  = 1.  (graph red)

b. Stretch me by 3 times as wide and twice as high :  x

3 
2 +  y

2 
2  = 1 (graph blue)

-4 -2 0 2 4
-4

-2

0

2

4

Y

Example   Yes, you can combine a stretch with a shift (that order is best).

a. Start with x2 + y2  = 1  (graph black).
b. Stretch me by  3  times as wide and twice as high :  x

3 
2 +  y

2 
2  = 1  (red)

c. Shift  3  to the right and  2  up:   x- 3
3 

2 +  y- 2
2 

2  = 1  (blue)

-4 -2 0 2 4 6
-4

-2

0

2

4

Y

Example  A bonus.  If you stretch by a negative number, that corresponds to a stretch plus a flip. 
(Think about why this is true)

a. Start with the exponential function  y = 2x. (black)
b. Stretch by  3  horizontally.  y =  2 x

3   (blue)

c. Flip across the  y  axis.  y =  2-
3
x

  (red)

-4 -2 2 4 X

-1

1

2

3

4
Y

X

X

●
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Combining Functions
Another way of gaining expertise at new functions is to combine two or more known functions 
by basic algebraic operations

If  f(x)  and  g(x)  are functions you know, then so are by
Addition f(x) + g(x)
Subtraction f(x) - g(x)
Multiplication f(x) · g(x)
Division f(x) ÷ g(x)

Composition f(g(x)).

We know a function well if you can compute 
with it or, perhaps even better, graph it by hand 
quickly. Some tools are graphical addition, 
subtraction, multiplication and division. Even 
graphical composition is possible.

Example   Graphical addition.  
Graph  y  =  x/2 + sin x

First graph  x/2  and  sin x  separately. 
Then add corresponding  y-values.

Quite frankly, these are often hard to do by hand. I would do it here by noting where  sin x  is  0       
or has a high or low point and plotting those points and connecting them with a reasonable curve. 
It is easy to make mistakes. You might expect a high point on the sum curve to be at the high point 
of the sin curve. Not true!

Buy a graphing calculator! However, knowing about how these combinations work is often useful 
in analyzing graphs.

Exercises

1. y = 1 - x2 , upper unit semicircle.  Find the equation for each transform. Graph each.
a. shift  1  to the right.
b. shift  3  to the left, 2  up.
c. stretch by  2  horizontally.
d. stretch by  2  horizontally, -3  vertically.

2. y =

0, x ≤ 0
x, 0 < x ≤ 1

2 - x, 1 < x ≤ 2
0,  x > 4

  Find the equation for each transform. Graph each. 

a. shift  1  to the right.
b. shift  3  to the left, 2  up.
c. stretch by  2  horizontally.
d. stretch by  2  horizontally, -3  vertically.

3. x2 + y2 = 4.   Find the equation for each transform. Graph each.
a. shift  2  to the right and  2  up.
b. compress the circle of part by a factor of  2  vertically,

2 4 6 8 10 X

1

2

3

4

5

Y

⟶
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-1 1 2 3 4 5

0.5

1.0

1.5

#4. a.  f(g(x)) = f( 1 - x2 ) = 2 1 - x2 + 3

b. g(f(x)) = g(2x+3) =     1 - (2 x + 3)2

c. f(f(x) )= f(2x+3) = 2(2x+3)+3

4. f(x)  =  2x + 3.  g(x) =     1 - x2 .  Find
a. f(g(x))
b. g(f(x))
c. f(f(x))
d. f(g(f(x)))

5. Use graphical subtraction to graph  y = sin x -    .
3
x

6. The transformation
        x  ⟶ 0.7 X - 0 .7 Y
       y  ⟶ 0.7 X + 0.7 Y

rotates  the parabola  y = x2. 
For further enlightenment 
on this, take a Linear 
Algebra course.

-4 -2 0 2 4

-4

-2

0

2

4

X

Y

7. For each of the nine graphs on your memory list, do a shift or a magnification and 
then graph the result. Be creative.

8. Graph  y =   x - sin x  by graphical subtraction.

Solutions

#2.

1 
2

#8. Hint: graph  y =     x  and  y = sin x  separately and subtract suitable y-values.

1 
2

1 
2
1 
2

#9. Hint: AB = 0  implies  A = 0  or  B = 0.

-1 1
X

-1

1

Y

_

9. Graph  (y - x)(x  + y  - 1) = 0.2 2

10 a.  Prove the Translation Principle.
b. Prove  the Stretching Principle. 

10. Graph:
a.  y = x(x - 1)
b. y = |x(x - 1)|
c. y =       x (x - 1)

11. The domain of  y = f(x)  is  a < x < b   and its range is  c < y < d.
a. What is the domain and range of  y - k = f(x - h)?
b. What is the domain and range of  y/B = f(x/A)? 

\

\

\
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y = f(x)

a

b

↑a + i
X

0.4   Discovering Infinitesimals. Counting to Infinity. 

 You encounter an unusual mathematical problem when starting calculus. It is will be often necessary there  
to evaluate a function which is undefined precisely at the point of interest. Look below for such a function at  
x = a.

     You will need to know the value of  f  at   x = a, but   f(a)  does not exist. What will suffice is the value   b, if it exists, as 
suggested by  f(x)  when  x  is very close to  a; unfortunately, ‘very close’ is not a precise or easily quantifiable idea in 
terms of real numbers. The discoverers of calculus, particularly the seventeenth century co-discoverer of calculus, 
Gottfried Wilhelm Leibniz, took ‘very close’ to mean any nonzero infinitesimal distance   i  from the point  a.  
Infinitesimals were thought to be some strange kind of number smaller in size than any positive real number.         
To find   b   he calculated  f(a +  i )  for every nonzero infinitesimal  i  and after doing some algebra with them, set   i = 0. 
He did not know what an infinitesimal was or even if such a number existed; furthermore, how could   i   be non-zero 
and then take it to be zero?  
     Nevertheless, despite the lack of clarity about what infinitesimals were, mathematicians then were skilled at 
doing the relatively easy, direct calculations desired of them and in short order discovered most of the calculus 
formulas, theorems and techniques you are likely to need for elementary applications. 
      But still, mathematicians were quite apprehensive about their lack of understanding of infinitesimals. Imprecise 
ideas like those infinitesimals have no place in subject like mathematics; one cannot trust the outcome of     
calculations based on a vague, imprecise foundation. For applications, trust is absolutely necessary because much 
of modern science and technology depends on the methods of calculus.
      About two centuries after the discovery of infinitesimal based calculus, the mathematician Weierstrass and 
others discovered the so-called ϵ -δ   limit method of doing calculus. While it was rigorous and did not use     
infinitesimals, its adoption made the theory of calculus very difficult for beginners because it did not provide a 
direct  calculation method for determining the number  b; one had to first guess  b  and then verify that it was correct 
by solving often difficult inequalities involving absolute values. Proofs of some important calculus formulas and 
theorems were too difficult to put even in the appendix of textbooks; derivations of some important application 
techniques were needlessly complicated. 
      In 1960, the mathematician Abraham Robinson showed infinitesimals had a rigorous basis. However, in demon-
strating this, he had to use very advanced abstract mathematics unsuitable for beginning calculus students. 

Y
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     Since infinitesimals make the theory, calculations and applications of calculus relatively easy, we wish to base 
our understanding of calculus in terms of infinitesimals and related numbers in a rigorous but intuitive way. We will 
begin with a search for infinitesimals. Then, after we find infinitesimals, we will look for an infinite positive integer. 
Finally, with this infinite integer we will be able to write infinitesimals and other related new numbers in decimal 
form. The decimal form of the new numbers makes them feel less abstract and immediately allows us to identify 
their algebraic properties and how to use them in the analysis of functions.

A preliminary concept - the cardinal number of a set
The natural numbers were defined in terms of an intuitive idea of the sizes of sets. We will extend that idea to 

non-finite sets where we use the term cardinal number or cardinality for the number of elements in such sets.

     Let us begin by looking at the set whose elements form an unending sequence

{a1, a 2, a 3, · · ·  an,  · · · }.

The number of elements in this set is called  ℵo, Aleph-zero. It is the smallest infinite cardinal number. An important 

principal when working with cardinal numbers is:

If the elements of two sets can be put into a 1-1 correspondence, then the sets have the same cardinal number.

o

    The set of all real numbers or equivalently the set of unending decimal numbers, -∞ < x < +∞, does not 

have cardinality  ℵo; it has a larger cardinality called   (for continuum). Real numbers often result from 

unending sequences of rational numbers. The real numbers also are required for space or time variables and 
many other measurable physical quantities.  

     For example, the sets  {1, 2, 3,  · · ·  n,  · · · }  and  {2, 4, 6,  · · ·  2n,  · · · }  both have the same cardinality  ℵo  because 
their elements, can be put into a 1-1 correspondence

1 ↔ 2,  2 ↔ 4,  3 ↔ 6,  · · ·  n ↔ 2n,  · · · .
This may seem counterintuitive because the first set appears to have more elements than the second, but it is 
according to the principle nevertheless correct and is widely used in advanced mathematics.

As a side comment, mathematics problems are often are often categorized as being either easy or hard.

An  easy problem is one which can be done in a finite number of steps. Solving a quadratic equation is an easy 

problem because its solution can be found using the quadratic formula, which requires only a few steps including 

simplification.
     A  hard problem is one which requires an unending sequence of better and better approximations which 
approach the exact solution. Solving a fifth degree polynomial equation is often a hard problem. For example,      
x5 - x + 1 = 0  is a hard problem. A more elementary example is finding the square root of  2  in decimal form. One 
way of doing this is by trial and error and with the aid of a calculator, finding the largest  n  significant digit decimal 
number whose square is less than  2  for  n = 1, 2, 3,  · · · . When you do this, you get  1, 1.4, 1.41, 1.414 · · ·  which after 
ℵ   steps gives you     2   =  1.414213562 · · ·   exactly.
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     The figure below shows there is a  1-1  correspondence between each point  x  on a semicircle  
of length  c  and a point  y  on the real number line. Thus the open interval  0 < x < c  has the same 
cardinality    as the entire line of real numbers!

y0

x

Infinitesimals Exist

Let us hunt for infinitesimals by considering the sequence of

0 1

0

0 1
3

⋮

0 1
n

⋮aa
°

As  n  increases through the natural n

⟹

The length of the open intervals de

But the cardinality of each interva

The end result is an open interval o

It contains no real numbers.

The numbers remaining must be in

0000

0

1
2

Length

1

2

1
3

1

n

0 0 

1

A positive infinitesimal   i   is a number which satisfies  0 < i  < -

  

       for every natural number  n.

⋮aa

r = 
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reases to 0. 
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nitesimals!

Cardinal Number

c

c

c

c

c
⋮aa

NOTE  I find this argument
entirely convincing but 
could not find any support 
for it in the literature.
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 Again:     The end result of going down the sequence is an open interval of length  0  and cardinality  , whose

elements are all smaller than  n
1  for every natural number  n, and which therefore must be infinitesimals! 

This observation indicates there must be a continuum of infinitesimals just to the right of the origin and to the left 
of every positive real number as shown below. This prompts the following axiom.

 Axiom  Infinitesimals exist. 

0 1 2 3 4
X

positive infinitesimals

     If you had perfect real hearing or vision, you should be able to hear or see the unending sequence of real number 
height bounces. 

    Now that we know that infinitesimals exist, the ball after it stops making real bounces continues, of course, with 
bounces of infinitesimal height for a further infinitesimal period of time (how would it know not to do so!). If you 
had hyper-hearing, you would hear an actual infinite number of bounces. (This is a thought experiment for a   

classical Newtonian ball, the kind you normally think about; so for this thought experiment we will ignore the 
physical fact that quantum mechanics for this bounded system forbids arbitrarily small bounces.) The next figure 
shows the height of our bouncing ball as a function of time.

-

 a    11 + r + r 2 + r 3 + · · ·     =            if  | r | < 1. See Exercise 2.) 1 - r

●

_

     We could proceed directly with these abstract infinitesimals to construct a new so-called hyperreal number system for 
doing calculus. However, it will be useful to write infinitesimals and other hyperreal numbers in a decimal form in order 
to get an intuitive concrete feeling for these new numbers and to help discover their algebraic properties and how they 
are used in the analysis of functions; we will need to find a positive infinite integer in order to do this. So we will start by 
looking for such a very large number (since the reciprocal of very small positive real numbers are very large positive real 
numbers, we should suspect the reciprocals of positive infinitesimals to be infinitely large positive numbers and that 
some of these might be infinitely large positive integers. 

A positive infinite integer exists!  A thought experiment    The idea of experiencing an infinite number 
of events, particularly in a finite time period, might be hard for you to conceive. Imagine that you throw a ball up 
to a height of  1 meter  and that after each time it hits the ground, it bounces up to exactly half its previous 
bounce height. Clearly the ball does an unending (as opposed perhaps to an actual infinite) number of bounces; 
every bounce is followed by another bounce half as high. You might think that the ball bounces forever, in 
theory,  and never comes to a complete stop. Surprisingly, the bouncing lasts only for about 3.08 

seconds!  (You can show this if you know a bit of physics, y  =  1    _         g t 2,  and the geometric series

-

Note  You don't actually have the option of not accepting the 
existence of infinitesimals. Each infinitesimal exists and has a 
unique place on the number line. Shortly you will learn how 
to place them there.

Note again   I'm not certain that all mathematicians would consider our 'demonstration ' of 
the existence of an infinite integers rigorous. My students and I found it convincing. I saw no 
mention of thisin the literature. If it incorrect, we would simply postulate their existence on 
the basis of Abraham Robinson's work, but not have much intuition about them.

*     

2
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1 2 3 4 5 No⋯
↑1 2 3 4

T (seconds)

1

Y (meters)

Bounce Number

      Next, let us construct a number line with an actual infinite number of integers marked off on it. Here is how you 
can do it; using our bouncing ball as a metronome will make counting to infinity seem intuitive and easy. Start at a 
point marked  0. Throw the ball up to a height of  1 meter. Every time you hear a bounce, mark off other integers at 
equal spacings and label these appropriately as  1, 2, 3, · · ·.  After you have recorded the real height bounces, you 
will have the familiar unending positive real integer line. Continue marking off until you hear or see (with your 
imagined hyper-hearing or hyper-vision abilities) infinitesimal height bounces; stop after one of these bounces and 
record it as the infinite integer  No. (For later convenience, we will want   No to be an even infinite integer; you can 
assure this by counting off the bounces in groups of two.

     Then, continuing this process of marking off the bounces, you will get a positive integer line as shown below 
which includes the positive infinite integers. So you have found an infinite integer and constructed the infinitely 
long positive integer number line in a little more than 3.08 seconds! (This required you to travel at hyper-relativistic 
speeds; again, this is a thought experiment.)

0 1 2 3 4 No-1 No No+1 X⋯

i   is any number with zeros at all finite decimal places.

1
n

=

The number  No is at a definite point on the line corresponding to a definite number of bounces. The integer line 

you just constructed records an unbroken sequence of whole numbers from  0  to  No  and beyond. This line at infinite 

whole numbers, other than the number names labeling it, looks exactly like the line at finite whole numbers.

Infinitesimals in decimal form

     Now that we have an infinite integer  No, we can write an infinitesimal in decimal form! Consider the number
io ≡ 10-N0 = 0.000 · · · 001, 000 · · · .

For convenience, we use a comma in decimal numbers to mark off groups of  No decimal places from the decimal 
point (contrast this with the ordinary comma usage used to mark off groups of 3 decimal places). io is an infinitesi-
mal because it has zeros at all finite decimal places (hence it is smaller than any positive real number which would 
have a nonzero digit at some finite place); because of the  1  at the infinite decimal place  No, it is also nonzero and 
positive. We can think of  io as our special, basic infinitesimal. You can place it exactly on the number line by 
subdividing the interval   0 ⩽ x ⩽ 1   into  10No  equal parts and then counting off one sub-interval.

Alternative Definitions    i   is an infinitesimal means

| i |  < -   for every natural number  n

 or equivalently
 | i |  < r  for every positive real number  r

 or equivalently
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 0 = 0.000 · · · 000, 000 · · ·
      io = 0.000 · · · 001, 000 · · · 
    3io = 0.000 · · · 003, 000 · · · 
- 1

3 io = -0.000 · · · 000, 333 · · ·

2 io = 0.000 · · · 001, 414 · · ·
 io

2 = 0.000 · · · 000, 000 · · · 001, 000 · · ·

io  = 0.000 · · · 001 · · · 000, 000 · · ·
The first  1  is in the  2N0

th  place. 
The  1  is in the  (N0 /2)th place; since  N0 is even. 

- 2  i0 0 i0 3 i0

X
i o

io
2 tan io

is much larger than  io; 

             0 = 0.000 · · · 000, 000 · · ·  is an infinitesimal and is the only infinitesimal that is a real number. There are 

many infinitesimals, both positive and negative, in addition to   0   and   io.

Examples  Infinitesimal numbers in decimal form are now easy to write down.

 Observe on the infinitely magnified real line that  io
2 is much smaller than  io and that i   o 

these two numbers and others such as  tan io are infinitesimals which are not real number multiples of   io.

Note also that the term real, as in real number, refers to the set of unending decimals we introduced in section 0.1. 
However, the nonzero infinitesimals are also real in the sense that there is room for them on the number line. They 
are also not unreal in the sense that the imaginary or complex numbers of the form  a + bi  ( i 2 = -1, b ≠ 0  ) are. They 
are unreal mainly because real world measurements only require real number precision.

    The task in the next section is to learn how the infinitesimal numbers can be combined with the real numbers to yield 
the set of so-called hyperreal numbers. Then we will be ready to do calculus. 

     Before that you will want to understand infinity.

Getting Comfortable with Infinity !

      In many applications, you are interested in what happens for large (infinite) values of space or time.
First, how can you get there in order to get a good look at infinite places? Perhaps once when you were young you decided 
to run away from home. After several days of walking you realized you barely got out of the city. Perhaps if you were 
precocious, you wanted to get away from it all by walking to infinite places. But you eventually realized you were making 
almost no progress.
    If you were precocious in an Einsteinian way, you may have realized the problem was with the old ticktock watch you 
used as a metronome to pace yourself. Then you realized that if you used our bouncing ball as a metronome, you could 
get to see anywhere in your infinite places in about 3.08 seconds!
     To your surprise, space there looked just like back home. But the street signs were very long. A special moment was passing  

1,000 · · · 000 Street, known to the locals there at infinity as  'Io     Street'.

      With the same metronome many hard problems become easy. You can calculate and write down all the real or hyperreal 

digits of the square root of  2  or even  π.  Even easier is placing  i o   exactly on the number line by subdividing the interval from

0  to  1  into   Io  o  ■ equal subdivisions and then counting off  1.

         You now have some superpowers you may not have expected as a bonus for taking calculus!

If you had enough fingers ...■

|
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Exercises  Numbers 2, 5, 8, and 12 which are optional. 
1. Which of the following are infinitesimals?

a. 0 b. 3 i o

2 c. -π io

d. 1
10 000 io

e. 10-1000 f. 1000 io

g. io

io
2 h. io

i o

i. io
1000

1
2

j. 0.00000000015 k.  0.0033  · · · 333,000  · · ·    l.  0.0000  · · · 000,000  · · · 000,0700  · · ·

1
2

2. a. Show that our bouncing ball stops bouncing after about  3.08 seconds. Use the formula  y =   gt 2 from physics and

aa  the geometric series,    1 + r + r 2  + r 3  + · · · =   1
1 
- r    , | r    < 1.   g ≐ 9.80 meter

second2.

b. Argue that the height of the  N
th bounce,  yN = ( )N -1

,  is an infinitesimal for  N  an infinite integer.

c. Show that after the ball stops making real height bounces, the ball continues bouncing making infinitesimal
height bounces for only a non-zero infinitesimal period of time.
3. Write each in decimal form. Note why each is an infinitesimal.

a. 1
2 io b. 5io c. 1

2 io + 5io d. π io

e. 2 π  io f. (π + 1) io g. io + 2 io
2 h. io + 2 io

2 + 3io
3

5. There is a website www.lightandmatter.com/calc/inf which can work problems involving  io. In it, take d
= io = 0.000 · · · 001, 000 · · · . See which of the numbers in Exercise 1 can be put in decimal form using this
calculator; check which answers have zeros at all finite places. Also evaluate  sin io and  tan io.

6. Explain why the set of natural number multiples of  io, { io, 2io, 3io,  · · · },  is a set of infinitesimals.
7. On the line below show where the negative infinitesimals are.

-3 -2 -1 0 1 2 3 4 X

8. Suppose we had chosen  No one less and hence an infinite odd integer. Then write  io  in decimal form.
9. Write  io     in fraction form.

10. a. In the phrase used by the former TV broadcaster Dan Rather, 'a nit on the nut of a gnat', is the nit
   an infinitesimal?

b. The shortest possible physical length is Planck's Length, 1.616⨯10-35 meter. Is this an infinitesimal
11. Experiment  Listen to a hard ball dropped on a rigid surface. For a more dramatic and long lasting similar effect,

spin a thick vertically held porcelain saucer on a hard surface to experience a similar phenomenon as it wobbles
upside-down with an increasing frequency to a stop (Do this and you will appreciate why cafeterias often only
give you paper plates!). Try this or view a YouTube video on Euler's disk.

12. Explain why the three definitions given for an infinitesimal are equivalent.

Things you can now do in 3.08 seconds  Think about these.
a. A (seeming) paradox of Zeno says you can never go from point A to point B because you first have to go half

way to B, then half of the remaining way, and so on, never getting to B. Explain why this is not actually a paradox.
b. Describe the thought experiment for isolating the set of positive infinitesimals quickly as suggested by the

cidea of the demonstration of the existence of infinitesimals.

14. Suppose you do not like or believe in infinitesimals. Planck's Length, 1.6 x10^-35 m, is the shortest possible
length and Planck's Time is  5.39 ×10^−44 s. Could you get away with taking an infinitesimal to be any real number
less than  1×10^-1000, say, for all practical purposes?

13.
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Solutions

1. a, b, c, f, h, i, l

2. a. Time for one half-bounce:

s = 1
2 g t 2  ⟺  t = 2

g
s ;  s = 1

2 n-1

       Total bounce time:

T  = 2 2
g

1  + 2 2
g

1
2 + 2 2

g
 1

2 
2
+ · · ·

= 2 2
g

1+ 1
2 +  1

2 
2
+ · · ·

     = 2 2
g

1

1-
1
2

A geometric series  

Sum of the geometric series

g ≐ 9.80 meters
second

      ≐ 3.0847 seconds

3. a.  0.000 · · · 000,5000 · · · b. 0.000 · · · 005,000 · · · c. 0.000 · · · 005,500 · · ·
d. 0.000 · · · 003,141  · · · e. 0.000 · · · 006,281 · · · f. 0.000 · · · 004,141 · · ·
g. 0.000 · · · 001,000 · · · 002,000  · · ·    h.  0.000 · · · 001,000 · · · 002,000 · · · 003,000 · · ·

Each number in this exercise has zeros at all finite places and so is an infinitesimal.

4. a. F,    b. F,    c. T,    d. F

7.    
there

-3 -2 -1 0 1 2 3 4
X

8. io  = 10-No  =  10-
No

2  = 10
-(No+1 ) + 1

2  = 10 10- (No+1)/2  = 0.000 · · · 003162 · · ·  where the  3  is in the  ((N0 + 1) /2)th 
place.

10. a. No.        b. No.

13. b. Start with the open interval  0 < x < 1. Use our bouncing ball  as a metronome for
 remove the real numbers  > 1

n . The result, taking only about  3.08 seconds, leaves only infinitesimals!
n = 1, 2, 3,  · · · ,

2

Review   Our special hyperreal numbers:
N  o   ,  our bouncing ball infinite integer 

NI   = 10  o   , our special infinite number for decimal hyperreals 
i    = 10    ,  our special infinitesimal number
o
o

-No
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infinitesimal based symbols we still use today.
In fact, almost all the calculus you will learn
was discovered using his infinitesimal based
methods.

*Isaac Newton also invented calculus to solve
physics problems. His calculus notation was

*In 1960 he showed that infinitesimals exist and they
could be included in an extended real number system
in a mathematically satisfactory way.

*Infinitesimal calculus now is often called non-
standard analysis. A somewhat elementary

very difficult for others to understand.

presentation of non-standard calculus is given in
James Henle and Eugene Kleinberg,

Infinitesimal Calculus, MIT, 1980.

    Fathers of Infinitesimal Calculus
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            4  = 4.000 · · · 000, 000 · · ·
1
2
7
3  = 2.333 · · · 333, 333 · · ·
3

11  = 0.2727 · · · 727, 2727 · · ·
            π  = 3.14159 · · · ???, ??? · · ·  

Long division requires the 3's at infinite places also.               

We chose No to be an even infinite integer. 

We don't know what all the digits are, but they exist.

There is a technical difference between a real number  r  and its hyperreal form, written  r*.  For example
r = 2.666 · · ·  ≠  r* = 2.666 · · · 666,666 · · · .          

because  r* has digits at infinite places and  r  does not. (We say, "The hyperreal extension of the real 
number  r = 2.666 · · ·  is the hyperreal number  r* = 2.666 · · · 666,666 · · · ".  However, we will not always 
show or say their distinction because in context we always know with which form we are dealing. )

     There are three types of hyperreal numbers, categorized according to their relative sizes: the 
infinitesimals which we met in the previous section, the finite hyperreal numbers, and the infinite 
hyperreal numbers.

    These three categories combined are called the set of hyperreal numbers  ℝ*. Our next task is to 
construct these numbers. We begin by reviewing the infinitesimals which we already familiar

1. The infinitesimals  An infinitesimal  i  is a hyperreal numbers with zeros at all finite decimal places; so it
is smaller in size than any nonzero real number. 0 = 0.000 · · · 000, 000 · · ·  is an infinitesimal and is the only
infinitesimal that is (the hyperreal extension of) a real number. There are positive and negative
infinitesimals.

0.5   A Hyperreal Number System

For the theory of calculus it will be convenient to have a much finer and a much longer line than the 
real number line. To do this, we will need the infinitesimals we discovered in the last section. 

We will use certain arithmetic combinations of our basic infinitesimal  io = 0.000 · · · 001, 000 · · ·  and the real 
numbers to construct a new set of numbers called the hyperreal numbers (`hyper' in this context means more 
than) which includes all these combinations; we will use these combinations to do calculus 

computations. Since we have the decimal form of  io, we will then be able to write all the hyperreal 
numbers in decimal form.

The first part of this section is somewhat optional. There are three main reasons for studying it. 
     First, some students have trouble in believing in infinitesimals and other hyperreal numbers unless they 
can see these numbers and computations with them in a somewhat familiar concrete decimal form.
     Second, it becomes clear the hyperreal numbers have the same arithmetic properties as the real numbers. 
Hyperreal arithmetic operations in decimal notation are only a step more difficult than those for the real 
numbers in unending decimal form.
T   Third, you should be able to explain to loved ones the interesting concepts you are learning in calculus!

I. The hyperreal numbers and their decimal representations    First, the real
numbers in hyperreal form. They must have digits at infinite places so that they are in hyperreal form.

= 0.500 · · · 000, 000 · · ·
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Examples of infinitesimal hyperreal numbers

                  0 = 0.000 · · · 000, 000 · · ·
      io  = 0.000 · · · 001, 000 · · · 
 3.1 io = 0.000 · · · 003, 100 · · · 

- 1
3 io = - 0.000 · · · 000, 333 · · ·

2 io = 0.000 · · · 001, 414 · · ·

    Near  x = 0  there a family of infinitesimals which includes all multiples of  io. The line near  x = 0  is shown 
infinitely magnified by the amount  10No  (the arrowheads indicate infinitely magnified parts of the hyper-
real line) in order to be able to see the infinitesimals. Note that  io

2 is much smaller than  io and that  io  is 
much larger than  io.

- 2 i0 0 i0 3 i0

X
i o

io
2 tan io

2. Finite hyperreal numbers of the form  r* + i,  r ≠ 0  Every real number  r  (in hyperreal form) is
surrounded by hyperreal numbers infinitesimally close to  r.  The general form of such finite hyperreal
numbers is  h = r* + i, r ≠ 0 , where  i  is an infinitesimal. Below are a few of the hyperreal numbers
infinitesimally close to  0. It is a homework exercise to write each explicitly in the form  r* +  i. For
example,

1
3 + i  =  0.333 · · ·

⋮

· · · 331, 000 · · ·
· · · 332, 333 · · ·

· · · 333, 333 · · ·

· · · 333, 533 · · ·

· · · 334, 333 · · ·

⋮

Examples of finite hyperreal numbers

   2 + io   =  2.000 · · · 001, 000 · · ·  
1
3 + io  =  0.333 · · · 334, 333 · · ·

            2- 1
3 io  =  1.999 · · · 999, 666 · · ·  

   17 + 2 io
2  =  17.000 · · · 000, 000 · · · 001, 414 · · ·  an irrational hyperreal number

The decimal expansions above are done by ordinary decimal calculations in hyperreal form. For example, 
for  2 + io

2.000 · · · 000, 000 · · ·

(+) 0.000· · · 001, 000 · · ·

2.000· · · 001, 000 · · ·

    The infinitely magnified hyperreal line near  x = 2  is shown below with a few nearby points plotted.

2- 2 i0 2+i02 2+2i0
X

           io
2  = 0.000 · · · 000, 000 · · · 001, 000 · · · 

 5692 io +      2 io  = 0.000 · · · 0005693, 414 · · ·

Important Observation  There are as many hyperreal 
numbers infinitesimally close to every real number  r  as 
there are in the set of all real numbers. This means you can 
do all analogs of real number algebra infinitesimally close 
to  r. Understand this!
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3. Infinite hyperreal numbers  There are positive and negative infinite numbers. The reciprocal
of an infinitesimal must be an infinitely large number. Our special infinite integer  Io  is

Io ≡ 1
io

 = 1
10-No

 = 10No  = 1,000 · · · 000

The  1  is in the (No + 1)th place as shown by the comma. 

     An infinite hyperreal number in decimal form has a digit at an infinite place to the left of the decimal point. 

Examples of infinite hyperreal numbers

     I0 + 5  = 1,000 · · · 005  infinite integer
   2I0

2 + 1
3  + 5io = 2,000 · · · 000,000 · · · 000.333 · · · 338, 333 · · ·   infinite rational number

-I0 - π io = -1,000  · · · 000.000 · · · 003, 141 · · ·  negative infinite irrational 

Below is the hyperreal line near Io as well as a infinite magnification of it.

I0-1 I0 I0+1 I0+3I0+2
X

I0- 2 i0 I0 I0+i0 I0+2i0 I0+3i0

X

As a summary of the hyperreal line, showing the three above categories of hyperreal numbers, see the 
figure below. 

-Io -Io+1 -2 -1 0 1 2 3 4π

io π+io

Io Io+π

Io+ io I0+ io+π

The hyperreal line is both longer than and finer than the real line!

X...■... ■■
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Longer: You can explore the end behavior of functions at infinite values of space or time.

Finer:  Surrounding the hyperreal form of every real number  r, there is a continuum of points   
infinitesimally close to it. This allows you to explore computationally the behavior of a a function 
near  r  in great detail. 



1
3

0.333· · · ???, ??? · · ·
(+) 0.000· · · 001, 000 · · ·

0.333· · · ???,??? · · ·

But   1
3 

*
 +  io =  0.333 · · · 333, 333 · · ·  +  0.000  · · · 001, 000  · · ·  =  0.333 · · · 334, 333 · · ·  does work:

0.333· · · 333, 333 · · ·

(+) 0.000· · · 001, 000 · · ·

0.333· · · 334, 333 · · ·

Formulas  All formulas or identities from real number algebra translate directly into hyperreal algebra 

formulas or identities. 

(x + a)2 = x2 + 2 a x + a2 
even if  x  and  a  are hyperreal numbers. This is because this hyperreal formula is derived using the same 
properties enjoyed by both the real and hyperreal numbers. 

sin2θ  + cos2θ  =  1

even if  θ  is a hyperreal number. Let us show this. By the unit circle definitions of the trig functions,             
cos θ = x  and  sin θ = y,  where  (x, y)  is the point on the unit circle  x2 + y2 = 1  at the end of the arc length  θ.  
We define the trig functions in the same way whether the arc is described by real numbers or by hyperreal 
numbers. So if  θ  is a hyperreal number, so are  x = cos θ  and  y = sin θ  and therefore 

x2 +  y2 = cos2θ  + sin2θ  =  1  
in this case also.

1
X

1

Y

x

y

(x,y)

θ

θ

Algebra with the Hyperreal Numbers  ℝ*   It is clear that the hyperreal numbers, 

because they are decimal  numbers, calculations with them work just like calculations with the real 
numbers. So the algebra of hyperreal numbers works just like that for the real numbers.

Numbers  One caution is that in theory when we are doing arithmetic or algebra with hyperreal 

numbers, all real numbers must in theory be written in their hyperreal extension form. For example,

+ io =  0.333 · · ·  +  0.000  · · · 001, 000  · · ·

does not work because the decimal numbers have different lengths:
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          For example

2-4  is the least element of the finite sequence  {1, 2-1, 2-2, 2-3, 2-4}.

2No  is the greatest element of the infinite sequence  {1, 21, 22,  · · · , 2No}.
          But this cannot always be done for a non-terminating sequence:

f(2+3io ) = (2 + 3 io )2 + 3(2 + 3io ) + 5
       = 4 + 12io + 9io

2 + 6 + 9io + 5
       = 15 + 21io+ 9io

2

       = 15.000  · · · 021,000 · · · 009,000 · · ·.

All the real functions of a real variable we will use have a hyperreal extension. 

     An example of an explicit hyperreal function which is not the hyperreal extension of a real function is  
g(x) = 2x + 3io.

g(2) = 2·2 + 3io

          = 4.000 · · · 003,000 · · ·
a hyperreal number. We will not need such functions in this course and only once, perhaps, in the next 
course.

{1, 2-1, 2-2, 2-3, · · · }  does not have a least element!

Functions  A real function is one involving only explicit real numbers and variables. For example,  

f(x) = x2 + 3 x + 5  is a real function and  
f(2) = 22 + 3·2 + 5 = 15

a real number. 
     In calculus we will often want to explore a function such as  f  infinitesimally close to a real number  r.  
To do this we will compute  f(r*+ i)  for every infinitesimal  i. In order to do this we must translate  f  into a 
hyperreal function so that  x  can be a hyperreal number; to do this, the real numbers in  f  must, in theory, 
be written as hyperreal numbers. We write

f*(x) = x2 +  (3.000 · · · 000, 000 · · ·  )x  +  5.000 · · · 000, 000 · · · 
We normally do not show this hyperreal extension  f*  of the real function  f  explicitly. Such a hyperreal 
function of a hyperreal number is a hyperreal number. For example

Sequences  Unending hyperreal sequences behave just like those of unending real sequences in the 

sense that the same questions that can be asked and answered about the real sequences also apply to the 
hyperreal ones. Perhaps more surprising, this is also true for closed sequences.

Closed Sequence Principle  Every mathematical question which can be answered for a finite sequence
 r1, r2,  · · · , rn  can be answered for a closed infinite terminating sequence  h1, h2,  · · · , hN.
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Exercises

1. Write each hyperreal number in both fractional and decimal form. Use commas appropriately.
1
8

1
9

1
9c. io

d. 2 + 3io

a. b.

e. 2- 3io

b. (3 + 2 io )2 d. 3Io
2 + 5 Io + 7

2. Write each in decimal form.
a. 3 io+ 2 io

7
33. Show by hyperreal long division that   = 2.333 · · · 333, 333 · · ·.

5. A positive hyper-infinitesimal is a number smaller in size than any positive infinitesimal. Starting with the
hyper-infinitesimals, the infinitesimals and the real numbers, you can construct the hyper-hyperreal 
numbers and the hyper-hyperreal number line. Invent a decimal representation for the hyper-hyperreals. 
Give a few examples. (You will see in this course that infinitesimals are sufficient for doing the calculus of 
real-valued functions, but in the next course that hyper-infinitesimals are required for the calculus of 
hyperreal valued functions.)

f. 5I0 + 71 + 5 io

c. 2 + 3 io

5

Find the hyperreal extension of each real function.
a.

b. g(θ) = tan θ

c. c.  h(x) = 2x   Hint: recall how you define  2x  for  x  a real irrational number.

■4.

5.

■

a.  f(x) = x 
3 - 1 x + 5

 3
_

Solutions 

1
81. a.  0.1250 · · · 000, 000 · · ·  =

c. 0.000 · · · 000, 111 · · ·  = 1
9, 000 · · · 000

e. 1.999 · · · 997, 000 · · ·   =  1,
1,

 999
000

 ·
·
 ·
·
 ·
·
 997
000

2. b.  9.000 · · · 012, 000 · · · 004, 000 · · · d. 3,000 · · · 005, 000 · · · 007

3.

3) 7.000 · · · 000, 000 · · ·
2.333 · · ·     333, 333 · · ·

5. a.  It is OK as written with the understanding that  1/3  and  5  are understood as hyperreal numbers.
b. It is OK as written with the understanding that  θ  is a hyperreal angle.

p
q

q

       2     =  2 
p 

Find a sequence of hyper-rational numbers approaching  x  and then compute the sequence composed of 
raising each element as a power of  2. This sequence approaches  2x. 

c. 2    makes sense even if  p  and  q  are hyperreal integers.
p
q
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0.6  At the End of a Hyperreal Calculation
       We will want the hyperreal numbers in order to do some `hyper-precise' calculations with the hyperreal 
extensions of real functions. However, at the end of a calculation a real number is all the precision we need. 
a    So for an infinitesimal answer we drop the digits at infinite places; ‘Every infinitesimal rounds off  to  0’.  
For a finite hyperreal number answer  r* + i, we also drop the infinitesimal part, rounding off  to the nearest 
real number  r. We do not distinguish between positive infinite answers (to us mortals, all positive infinite 
numbers are just equally incredibility large); we say that any positive infinite number rounds off to plus 
infinity, written  +∞, and likewise negative infinite numbers round off to  -∞. 

     You now should have a clear precise understanding of the meaning and use of the symbol  ∞.

Rules for Rounding Off     The symbol  ≈>  denotes rounding off. 

1. Infinitesimals
2. Finite hyperreal numbers

3. Infinite numbers

  i   ≈>  0
  h  =  r 

* + i   ≈>  r  

  I  ≈>  +∞,  -I  ≈>  -∞   (I  positive infinite)

Examples  Rounding off is often easy. 
17.250  · · · 000,000  · · ·  ≈>  17 1

4

6.781 · · · 034, 172 · · · ≈>  6.781 · · · 
cos io  ≈>  1

 3io ≈>  0
 5 + 2io  + 7io

2 ≈>  5

7I0 - 84  ≈>  +∞

0.333  · · · 33, 433  · · ·  ≈>  0.333  · · ·  =  1
3 cos I0  exists, but do not know its value. 

↖
io

I0     ⟶

2 4 6 8 10 12
X

-1

1

cos x

     If you do not prefer the phrase ‘rounds off to' related to the optional understanding of the hyperreals as 

decimals, you can use for  ≈>  by saying 'associates with or 'associates with the extended real number'

Examples  Let  x  be a real number and  dx  a positive infinitesimal

 x + dx  ‘associates with’  x
1

dx   

Example  The following hyperreal numbers associate with the same real number.

            7.333 · ·  

⋮

· ·331, 000 · · ·
· ·332, 333 · · ·
· · 333, 333 · · ·
· ·333, 533 · · ·
· ·334, 567 · · ·

⋮
    ≈>   7.333 · · ·   =   22

3
.

We have a great symbol,  ≈    > , for 'associates with'. 
Need a better phrase for 'associates with'.
GRAND PRIZE. One free PDF of this book!

 ‘associates with’  +∞

●

●
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The Extended Real Numbers  These numbers are widely used in answers in pure and applied

mathematics. Their meaning is clear in the context of associating hyperreal numbers with a real number. 
Verifying the extended real arithmetic facts is left as an exercise.

The extended real numbers are the real numbers plus the symbols  +∞  and  -∞. 
The result of finishing any hyperreal calculation can only be one of:

1. a real number  r
2. +∞  or +∞
3. does not exist.

When we do calculus, we will agree that an answer can only be an extended real number 

or that the answer does not exist.

Extended Real Arithmetic Facts  For  r  a real number
        r + (+∞) = +∞            r + (-∞) = -∞

          r · (+∞) = +∞, r > 0              r · (+∞) = -∞, r < 0

   +∞ + (+∞) = +∞              -∞ + (-∞) = -∞

    The early users of calculus often used infinitesimals and other hyperreal numbers in their theory and 
calculations (calculus then was often called infinitesimal calculus). In fact, just about all the formulas and 
techniques of calculus you are likely to meet were discovered using infinitesimals. Infinitesimals came 
under suspicion because no one understood them in a rigorous way or even had a confident intuition 
about them (decimal numbers were were only beginning to be used in the seventeenth century). By the 
twentieth century, mathematicians stopped using infinitesimals and used Weierstrass’ rigorous, but 
difficult, ϵ-δ method instead. Even so, most scientists and engineers continued using infinitesimals 
because of their intuitive appeal and the way they simplified derivations and calculations. The theory of 
hyperreal numbers was put on a rigorous foundation in the mid-twentieth century. However, that rigorous 
treatment is too difficult and tedious for most calculus beginners.
     Nevertheless, despite our very elementary introduction to the hyperreal numbers, your knowledge of 
the hyperreal number system now should be as complete and intuitively understood as your knowledge of 
the real number system, and furthermore, because mathematicians have given the hyperreals their official 
endorsement, you can use them with confidence.

Final note We will normally only use the hyperreal numbers symbolically. 

That is, we will write our finite hyperreal numbers in the form x + dx 

where x is a real number in hyperreal form and dx is an infinitesimal.    

We will have no need to work with their decimal form (we emphasized 

their decimal form so you would feel comfortable with them and help 

recognize they have the same algebraic properties as the real numbers). 

You will never see hyperreal  numbers in decimal form again!
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A Short Axiomatic Summary of the Hyperreal Number System
Pure mathematicians, when describing a mathematical system, state its definitions and list its axioms 

(statements taken to be true)  and then derive from them theorems (true statements about the system).  

For beginners it is usually better to develop a good intuition about the system as we did in the previous    
two sections for the hyperreal number system. However, once you understand the hyperreal system, the 
following provides a quick summary and review.

Definition   An infinitesimal  dx  is a number smaller in size than every positive real number  x.

Axiom  Infinitesimals exist.  (About 1969 Abraham Robinson proved infinitesimals exist.)

Axiom  The hyperreal numbers, consisting of all algebraic combinations of the real numbers (in 
hyperreal form) and infinitesimals, satisfy the usual laws of the real numbers.

     Examples
2dx + 5 dx2 =  dx(2 + 5 dx)
(3 + dx)2 =  9 + 6 dx +  dx2

1 + 2 dx
dx  =  1

dx  + 2,  dx ≠ 0

Definition  ≈>  associates hyperreal numbers with extended real numbers:
1. infinitesimals  dx  ≈>  0
2. finite numbers  x + dx  ≈>  x
3. infinite numbers  (X positive}

X ≈> +∞
-X ≈> -∞

Examples
2dx + 5 dx2  ≈>  0

(3 + dx)2 =  9 + 6  dx + dx2 ≈>  9
1

dx  ≈> +∞,  dx > 0.

Definition  Two hyperreal numbers  h1  and  h2  are asymptotically equal, written  h1 ≈ h2  if
h1

Examples

h2 = 1 + ϵ  where  ϵ   is an infinitesimal. 

Theorem  A ≈ B, C ≈ D    ⟺

≈

1. A C ≈  B D
A B2.
C D

2dx + 5 dx2  ≈  2dx  ⟶  Proof 

(3 + dx)2 =  9 + 6 dx +  dx2 ≈  9

X2 - 2X  ≈ X ,   X  an infinite hyperreal number.

At the end of a hyperreal 
calculation, we want an 
extended real number.

2

100 200 300 400 500 X

50 000

150 000

250 000

Y

x 
2

x
2- 2x

X

2 dx + 5 dx
2 dx

2
= 1 +   dx  = 1 + 2

5
ϵ

↓

_

Looks like asymptotic equality 
at infinity shows up early!
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Exercises   Semi-memorize the Axiomatic Summary.

1. Provide five different  ≈     answers for each.

a. 3dx - dx
b. 7 - 4 dx
c. 2X - 4X  +2  7

3

Note:   ≈  allows us to make simplifications 
while doing calculations. It is more flexible 
than  =  but in the end results in the same 
extended real answer!

c. I0

f. 2
15

Io

a. 7.333  · · · 333, 733  · · ·

d. sin io

g. tanπ2 - io ,  tan π2 + io ,  tan π2 

b. 0.000  · · · 012, 345  · · ·

e. sin I0

h. sin(π I i. io
io

Round off each2.

o)

3. For each expression:
           First simplify by hyperreal algebra  (assume  dx  is not  0)  
          Then round off,  taking  dx = 0).

a. (1+dx)2- 1
dx b. (x+dx)2- x2

dx

c.  1
dx ( 1

1+dx - 1) d.  1
dx ( 1

x+dx - 1
x

)

e.  1+dx - 1
dx f.  x+dx - x

dx

g.  dx3

dx h. dx
dx

4. The problems in #3 are actual calculus
problems. (Don't worry what they mean
now.) See if you can relate them to the
process illustrated in the diagram from
the front cover

    In each part identify  f(x)  and a.            
a     What is the problem if  dx = 0?

y = f(x)

↑

b→

a+dx

b+dy

x

Y

 a

→

...........

5. For each expression:

X  is a positive infinite number.          
First simplify by hyperreal algebra if required. 
Then round off.

a. X

X+ 1 b. X2

2 X+1

c.  X3

3 X2+ 2 X+ 1 d. X

X3 - 5 X2

e.  X +dx f.  X+ 5 - x

X2

g.  

X-dx

1-X

X+ 5 h. X2 + 7 - X
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Solutions 

1. b.  7 - 4 dx  ≈  7 - 4 dx
7 - 4 dx  ≈  7
7 - 4 dx  ≈  7 + 24 dx  
7 - 4 dx  ≈  7 - 24 dx
7 - 4 dx  ≈  7 - 24 dx + dx2

2. a. 7.333  · · ·  c. +∞
d. 0

g.  +∞, -∞, DNEh. 0
f.  1

-π π
X

-1

1

tanx

       1 + dx - 1
dx

1 + dx + 1
1 + dx + 1 rationalize

= 
(1 + dx) - 1

     dx( 1 + dx + 1)

= 
   dx

     dx( 1 + dx + 1)

= 
      1

  1+ dx + 1)

rounded off≈> 1
2

simplified

b. 0
e.e.** e.

* Walk to    I   and have a look.o

4e.  a = 1  won't work (why?). Go to  1 + dx  instead.

at  b +dy

at  b =    .

1
2
1
2

1
2
_

c. +∞ 5 d. 0

e. 1
g. DNE

5 a.    XA 
X + 1

    1
1 + 1/X

    1
1 + 0

  1

=

≈

≈>

5 b. +∞

1+dx - 1
dx

3 e.

= 

= = = 

__
_
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Chapter 1   Continuity and Limits 
Limits is the new computation we need to do calculus. In fact, any mathematics using limits is 

called calculus. We begin with the the study of continuity, a topic about which you have some 
intuition. Once you have a precise understanding of continuity, limits will be easy.

1.1  Continuity 
Introduction
     Your intuitive understanding of continuity may be something like this: "A function is continuous at a 
point  P  if you can draw its curve through the point without lifting (or putting down) your pencil there". 
This understanding comes from the ordinary literal meaning of the word continuous, namely 
not having any breaks.                               Y

     However, it would not be a good, generally applicable definition of continuity; this definition works quite 
well for jump discontinuities as illustrated on the first graph below. For other types of continuity the ‘without 
lifting your pencil’ definition often is inadequate (see the other graphs below). We clearly need a definition of 
continuity which is stated in precise mathematical language and which works for all functions.

-2 -1 1 2 3 X

1

step x

-10 -5 5 10
X

1

sin(x)/x

-2 -1 1 2 3
X

1

x= 0, y= 0  
y= sin(1/x)

-2 -1 1 2 3
X

1

random[0,1] (x)

Hole discontinuity Oscillatory discontinuity          Scattered values discontinuity

     This expectation is called the continuity of the temperature function.

x    x+Δx

T
T+ΔT

Jump discontinuity
Clearly not continuous
              at  x = 0.ab     

  Lift your pencil 
zero distance at  

x = 0?

What happens at
  x = 0? Not clear.

Not continuous 
     anywhere.

      As a clue for a good definition of continuity, let us look at what continuity means in science. The concept 
of continuity is important for science as well as the theory of calculus. Without continuity it would be 
impossible to do measurements in science. As an example, consider the problem of measuring the 
temperature  T  of a rod at a point  x. It is impossible to place a thermometer exactly * at the point  x. Instead, 
despite our best human efforts, we find it placed at the point  x + Δx, where  Δx  is the error in placement. 
Associated with this  Δx  there will be an error  ΔT  in the temperature  T  we wish to read. Hopefully, if  Δx   
is small,  ΔT  will also be small; otherwise we could have no confidence in our measurement  T.   

* Shaky hand 
Imperfect vision
Quantum mechanics
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The hyperreal definition of  Continuity

     The temperature example suggests that we define the continuity of a function  y = f(x)  at  x = a  to mean 
that if  Δx  is small, then  Δy  will also will be small. Fortunately we have an unambiguous definition of small, 
namely a number is small if it is an infinitesimal.

y = f(x)

a
X

Y

Δx

Δy

Definition of Continuity   f  is continuous at (the real number)  x = a  means
1. f(a) = b  exists.
2. For every infinitesimal  dx,  dy = f(a+dx) - f(a)  is an infinitesimal.

y = f(x)

a
X

Y

dx
dy

    Two numbers are said to be infinitesimally close if their difference is an infinitesimal. So the above precise 
definition means that  f  is continuous at  x = a  if whenever  x  is infinitesimally close to  a,  y  is infinitesimally 
close to the value  f(a). We also require  f(a)  to exist so there is no ‘hole’ in the graph at  x = a. For convenience, 
on a graph we usually show infinitesimals such as  dx  and  dy  improperly as small finite numbers rather than 
as infinitesimals, which would require an infinite magnification of the axes to see. 

      We will use the symbols  dx  and  dy  for infinitesimals when doing calculus hyperreal calculations. 
As you would expect, dx  means an infinitesimal change in  x  in comparison with  Δx  which means a         
real number change in  x.

      The definition of continuity and and the proofs of the continuity of some familiar functions and 
the proofs of continuity theorems is the legitimate beginning of serious calculus. Make sure you  
master continuity. 
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1
2

Proving the continuity of functions using the definition

Let us begin by proving the continuity of the examples which range from easy ones to harder ones.

Example 1  Prove that  f(x) =     x + 1    is continuous at  x = 1. 

 dx and dy shown infinitely magnified

X

Y

dy

dx

1

1.5

y = 1
2

x + 1

Proof
1. f(1) = 3

2 ,  exists

2. Let  dx  be any infinitesimal. Then
dy = f(1+dx) -  f(1)
      = 1

2 (1+dx) + (1 - 3
2 )

      = 1
2 dx,   

      an infinitesimal. half of an infinitesimal is an infinitesimal         

 End of Proof

Example 2  Show that  f(x) = x
3   is continuous at  x = 0. 

X

Y

dx

dy

3

Proof
1. f(0) =      03

= 0,  exists
2. Let  dx  be any infinitesimal. Then

dy = f(0+dx) - f(0) 

 =  0 + dx
3

- 0

      = dx3 , 
      an infinitesimal. (the cube root of a small number is a small number)

  End of Proof

y = / x\

__
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Example 3 Show that j(x) =
0 , x ≤ 0
1
2n
, 1

2n
< x ≤

1
2n-1
, n = 1, 2, 3, · · ·

2n, 2n-1 < x ≤ 2n, n = 1, 2, 3, · · ·
is continuous at x = 0.

y = j(x)

dx
dy

11
X

11

Y

Unmagnified
graph.

dx & dy

shown

exaggerated.

y = j(x)

dx
dy

2-No
X

2-No

Y
Infinitely
magnified

graph.

dx & dy

shown

correctly.

Proof

1. j(0) = 0,  exists
2. If  dx  is any negative infinitesimal. Then

dy = j(0+dx) - j(0)
      = 0 - 0
      = 0, 
      an infinitesimal.

     If  dx  is a positive infinitesimal, then
dy = j(0+dx) - j(0) = j(dx),
         an infinitesimal between  0  and  dx.  End of Proof

     If we examine the above curve infinitely magnified about the origin, it still looks exactly like the original 
curve near the origin. It clearly is not `hypercontinuous' at x = 0  because there are infinitesimal sized jumps 
just to the right of the origin. However, we can draw it through the origin any infinitesimal amount without 
lifting our pencil a real amount. What really matters is that if  dx  is an infinitesimal,  dy  is an infinitesimal.  
Be clear about this.

Example 4  Show that the unit step function  S(x) =  0,
1, 
x
x 
≤
> 
0
0

  is not continuous at  x = 0.

y = S(x)
1

dx

dy

X

Proof 
1. S(0) = 0, exists
2. Let  dx > 0  be an infinitesimal. Then

dy = S(0+dx) - S(0)
     = 1- 0
     = 1,  
     not an infinitesimal. 

       So  S  is not continuous at  x = 0.
End of Proof
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Example 5  Prove that the Heaviside function  H(x) =  0, x < 0
1, x > 0   is not continuous at  x = 0. 

Proof

X

y = H(x)
1

1. H(0)  does not exist. So  H  is not continuous at  x = 0.
End of Proof

     In the first three examples it was clear that if  dx  is an infinitesimal, then so was  1
2 dx,  dx3 ,  and a number 

smaller in size than  dx.  In more complicated problems it is useful to have a theorem which helps us spot 
immediately when  dy  is an infinitesimal.

Relative Size Theorem  Let (with or without subscripts)  i  be a positive infinitesimal,  h  be a positive finite 
hyperreal number, and  I  be a positive infinite hyperreal number. Then

1. The following are infinitesimals
i1 ± i2      (frequently used)
i1 · i2

h · i (frequently used)
i

h

h

I

             i n,  n  a positive integer

i
n ,  n  a positive integer

2. The following are finite hyperreal numbers
h1 + h2  (also  h1 - h2  unless  h1 and  h2 are infinitesimally close )
h1 ·h2
h1

h2

h ± i
3. The following are infinite hyperreal numbers

I1 + I2

I1 · I2

I

h

4. The following are indeterminate forms; this means that examples can be given for each where the
result could be more than one of an infinitesimal, a finite hyperreal, or an infinite number. 

i1

i2

I1 - I2

i · I
I1
I2

If  the  h  or  i  or  I's  are negative, the results of this theorem are readily modified.

· Ih

These in red are most frequently   
used in beginning calculus.

.
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     We shall not prove much of this theorem because the results are rather intuitive. For example,  h· i  is an 
infinitesimal. Intuitively this says that a medium sized number times a small number is a small number, e.g.,  
'2 ⨯ 0.001 = 0.002'  or  (275 + 2io)io = 0.000 · · · 00275,000 · · · 002,000 · · · .  An elementary proof is the observa-
tion that multiplying an infinitesimal which has zeros at all finite decimal places by a finite number results in 
a number with zeros at all finite places, an infinitesimal. A more formal proof would be to prove  |h i |  is 
smaller than any positive real number.
     I1 - I2  is indeterminate because, for example,  I - 2I  is negative infinite,  I -          I = 0,  and  3I - I  is positive 
infinite. You should do examples to illustrate some of the others.

     In the following examples we use the above theorem to determine whether  dy  is an infinitesimal. We 
also will determine the continuity at any suitable domain value  x  rather than only at a given point  x = a;  
it usually is not much more difficult to do so.  x  is understood as the hyperreal form of the real number  x.

Example 6  A polynomial function  Prove that  f(x) = x2- 3x + 3  is continuous for all  x.

Proof .

1. f(x) = x2- 3x + 3,  exists.
2. dy = f(x+dx) - f(x)

 = (x + dx2- 3(x+dx) + 3) - (x2-  3x + 3)

 = x2 + 2x dx + dx2- 3x - 3dx + 3 - x2+ 3x - 3
 = 2x dx - 3dx + dx

2 
 = (2x - 3 + dx) dx,   type  h·i  or, if  x = 3

2 ,  i1 · i2

 an infinitesimal.   End of Proof

Example 7  A rational function  Prove that  f(x) = 1
x   is continuous for all  x ≠ 0.

Proof  
1. f(x) = 1

x
,  exists for  x ≠ 0.

2. Let  dx  be any infinitesimal. Then
dy = f(x+dx) - f(x)

 = 1
x +dx

- 1
x

= x- (x+dx)
x x +dx)

 = -dx
x(x+dx)

 = - 1
x(x+dx)

dx,

get a common denominator

type  h i  since  x  is not the real number  0. 

Note also that if  x ≠ 0, then  x + dx ≠ 0.

 an infinitesimal.  End of Proof

47

NOTE  These Grade 10 type calculations are about 
as difficult as the algebra gets in this course. The 
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Example 8  An algebraic function  Prove that  f(x) = x  is continuous for all  x > 0.

Proof  
1. f(x) = x,  exists for  x > 0.
2. Let  dx  be any infinitesimal. Then

dy = f(x+dx) - f(x)

 = x + dx - x

 = x+dx - x

1
· x+dx + x

x+dx + x

rationalizing the numerator

 = x+dx

x+dx + x

 = 1

x+dx + x

dx, type  h i  since  x > 0

 an infinitesimal.   End of Proof

One-Sided Continuity  A function is not continuous at an endpoint of a domain interval because  dx

either cannot be positive or cannot be negative to the left or right of a point  x = a.  Nevertheless, it may be 
meaningful to talk about one-sided continuity there because you can start or stop with your pencil down. 
Also at points of discontinuity, the concept of one-sided continuity may be meaningful.

Definition   A function  f  is continuous from the right at  x = a  means
1. f(a) = b  exists.
2. For every infinitesimal dx > 0,  dy = f(a+dx) - f(a)  is an infinitesimal.

y = f(x)

a

f(a)

X

Y

dx
dy

Definition   A function  f  is continuous from the left  at  x = a   means
1. f(a) = b  exists.
2. For every infinitesimal dx < 0 ,  dy = f(a+dx) - f(a)  is an infinitesimal.

y = f(x)

X

Y

dx

dy

a

f(a)

a

f(a)

Theorem   f  is continuous both from the left and the right at  x = a  means  f  is continuous at  x = a.
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Example 9  Use the above theorem to determine graphically the continuity of the unit step function  
S(x) =  0, x ≤ 0

1, x > 0
.

X

y = H(x)
1

By inspection:
S(x)  is continuous from the left at  x = 0.
S(x)  is not continuous from the right at  x = 0.
Therefore  S(x)  is not continuous at  x = 0.

Example 10  Determine graphically the continuity of the function  f(x) = 1, x ≤ 0

1 + x , x > 0
 . 

X

y = f(x)

1

1

By inspection:
f  is continuous from the left at  x = 0.
f  is continuous from the right at  x = 0.
So  f  is continuous at  x = 0.

We could of course have proved the two previous examples analytically

Basic Continuous Functions Theorems  Here we list of some basic functions that are continuous in preparation for the 

next section where we prove the continuity of whole classes of functions. We will only prove the second one and give a graphical 
understanding of and an analytic proof of the fourth. The first and fifth ones are left as exercises. We also saw how root functions are 
proved continuous in the examples and exercises. 

1. f(x) = c  is continuous for every  x = a.

2. f(x) = x  is continuous for every  x = a.
3. f(x) = x

n   is continuous for every  x = a  if  n  is odd and for every  x = a > 0  if  n  is even.
4. f(x) = sin x  is continuous for every  x = a.
5. f(x) = cos x  is continuous for every  x = a.
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Proof of 2

X

dy

dx

x

y = x

1. f(x) = x,  exists
2. Given any infinitesimal  dx.

dy =  f(x+dx) - f(x)
 =  x + dx - x

 =  dx,       
      an infinitesimal.     End of Proof

Proof of 4
    In this proof we need the geometrically motivated definition of the sine function you learned in high 
school:  sin t = y  where  t  is the arc length of the unit circle as shown. Note that in this problem  t,  not  x, 
is the independent variable. Also, we will show infinitesimal quantities as not very small real lengths.

X

Y

ty

1
t

Definition: sin t = y

1. y = sin  t,  exists.
2. Given any infinitesimal  dt.

dy = sin(t + dt) - sin  t

≤ PQ
           ≤ dt,

see drawing above for the unit circle definition of  sin t

see drawing below 
because the altitude of a right triangle is smaller than its hypotenuse
because the line segment PQ  is the shortest curve joining P and Q 

           an infinitesimal.

_
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t X

t
y

dt

1

P

Q

dy
dt

P

Q

dy
dt

Enlarged View

End of Proof

1
2

#6.  Prove that  f(x) = x

x+ 1   is continuous for all  x ≠ -1.

#7.  Prove that  g(x) = 2 x   is continuous for all  x > 0.

#8.  Prove that the function  cr(x) = x
3

   is continuous for all  x ≠ 0.   
Hint:  use  (A - B)(A2 + AB + B2) = A3- B3  to rationalize the numerator.

#9.  Prove the theorem, Basic Continuous Functions #1.

#10.  Prove the theorem, Basic Continuous Functions #5.

#11.  Prove that  f(x) = x   is continuous from the right at  x = 0.

#12.  Prove the continuity of each of the following more difficult functions. 
a. f(x) = x4  at for all  x.  Hint: (A + B)4 = A

4 + 4 A
3

B + 6 A
2

B
2 + 4 A B

3 + B
4

b. g(x) = x2

x+1   for all  x ≠ -1

c. h(x) = x
2 + 1  at  x = 3

Y   

     In conclusion, using the hyperreal definition of continuity is often quite easy, involving only elementary 
algebra skills and the ability to spot an infinitesimal quantity quickly using the Relative Size Theorem.

Exercises   In exercises 1 to 8 use our precise hyperreal definition of continuity.

#1.  Prove that  f(x) = x2  is continuous at  x = 2.

#2.  Prove that  f(x) = x2- 2x + 1  is continuous at  x = 3.

#3.  Prove that  f(x) = x3- 3  is continuous at  x = 2.  Hint: Use  (A + B)3= A3 + 3A2B + 3AB2 + B3

#4.  Prove that  f(x) = 1
x-  is continuous at  x = 1.

#5.  Prove that  f(x) =     
1           is continuous at all  x ≠ -.

2x - 1

.
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#13.  a.  Understand why  f(x) = sin
1
x

x ≠ 0

0 x = 0
  is not continuous at  x = 0.  Verify by graphing.

b. Prove that  g(x) = x sin 1
x

x ≠ 0

0 x = 0
  is continuous at  x = 0.  Verify by graphing. 

#14.  The function  f(x)  below has randomly produced values between  0  and  1  for  x > 0; f(x) = 0  for  x ≤ 0.  
Which of the functions are continuous at  x = 0?

1
X

1

f(x)

1
X

1

x f(x)

1
X

1

x
2 f(x)

#15.  Show by example that  i1

i2
  is indeterminate.

#16.  a. Use the hyperreal calculator on the website www.lightandmatter.com/calc/inf to explore 
the continuity of  y = 2x  at  x = 0  taking  dx = d = io where  d  is the symbolic infinitesimal used in the 
calculator.

b. Use the result of part a to show that  y = 2x appears continuous for all  x.

#17.  Give an example of a function which is continuous only at  x = 0.

Solutions

#1.  Proof  f(x) = x2  is continuous at  x = 2.
1. f(2) = 22 = 4,  exists.
2. Let  dx  be any infinitesimal.

dy = f(2 + dx) - f(2)
 = (2 + dx)2 - 4
 = (4 + 4 dx + dx2) -  4
 = (4 + dx)dx, type  h i
 an infinitesimal.           End of Proof

#3.  Proof  f(x) = x3 - 3  is continuous at  x = 2.
1. f(2) = 23- 3 = 5,  exists.
2. Let  dx  be any infinitesimal.

dy = f(2 +dx) -  f(2)
 = ((2 + dx)3- 3) - 5
 = (8 + 12 dx + 6 dx2 + dx3 - 3) - 5 expansion of  (A + B)3

 = (12 + 6 dx + dx2)dx, type  h i
 an infinitesimal. End of Proof
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#5.  Proof  f(x) = 1
2 x - 1   is continuous for all  x ≠ 1

2 .

1. f(x) = 1
2 x - 1 ,  exists. 

2. Let  dx  be any infinitesimal.
dy = f(x +dx) - f(x)

 = 1
2 (x+dx) - 1

- 1
2 x- 1

 = (2 x - 1) - (2 (x+dx )- 1)
(2 (x+dx) - 1) ( 2 x- 1

  

 = - 2
2 (x+dx) - 1) ( 2 x- 1

dx,   type  h i,   x ≠ 1
2

 an infinitesimal.  End of Proof

#7.  Proof  f(x) = 2 x   is continuous for all  x > 0.
1. f(x) = 2 x ,  exists for  x > 0
2. Let  dx  be any infinitesimal.

dy = f(x+dx) -  f(x)
 =  2 (x+dx) - 2 x

 =  2 (x+dx) - 2 x  ·
2 (x+dx) + 2 x

2 (x+dx) + 2 x

rationalizing the numerator

 = 2 (x+dx) - 2 x

2 (x+dx) + 2 x

 = 2

2 (1+dx) + 2
dx,  type  h i  if  x > 0

 an infinitesimal. 
End of Proof

#12 c.  Proof  f(x) = x
2 + 1   for all x.

1. f(x) = x
2 + 1 ,  exists.

2. Let  dx  be any infinitesimal.
dy = f(x+dx) - f(x)

 = (x+dx)2 +1 - x2 +1

 = (x+Δx)2 +1 - x2 +1
(x+dx)2+ 1 + x2+ 1

(x+dx)2+ 1 + x2+ 1
         rationalizing the numerator

 = (x+dx)2+1- x2+1

(x+dx)2+ 1 + x2+ 1

 = 2 x dx+dx2

(x+dx)2+ 1 + x
2+ 1

 = 2 x+dx

(x+dx)2+ 1 + x2+ 1
dx,  type  h i  or  i1 i2 if  x = 0

 an infinitesimal.       End of Proof
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#13b.  Proof
1. f(0) = 0,  exists.
2. Let  dx  be any infinitesimal. then

dy = f(0+dx) - f(0)
= dx sin 1

dx ,

          an infinitesimal.

an infinitesimal times a number between  -1  and  1 

Note the  dx = 0  and  dx ≠ 0  cases.

    End of Proof

-1
X

11

Y

y = x sin1
x

#17.  

-1
X

1

Y
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1.2   Getting Proficient at Determining Continuity

Recall   f  is continuous at (the real number)  x  means

1. f(x)  exists.
2. For every infinitesimal dx,  dy = f(x+dx) - f(x)  is an infinitesimal.

y = f(x)

x
X

Y

dx

dy

Continuity Theorems
The following set of theorems was introduced in the previous section. 

1. f(x) = c  is continuous for every  x.
2. f(x) = x  is continuous for every  x.
3. f(x) = x

n   is continuous for every  x  if  n  is odd and for every  x  >  0  if  n  is even.
4. f(x) = sin x  is continuous for every  x.
5. f(x) = cos x  is continuous for every  x.

The next set of theorems apply to any continuous functions  f  and  g.

General Continuity Theorems  Let  y1= f(x)  and  y2 = g(x)  be continuous at  x.  Then so are: 

1. y = f(x) + g(x)
2. y = f(x) - g(x)
3. y = c f(x)
4. y = f(x) g(x)
5. y = f(x)

g(x)
  provided  g(x) ≠ 0

6. y = f(g(x))  provided  f  is continuous at  g(x).  (f  need not otherwise be continuous at  x)

Proof of 1  

1. f(x) + g(x)  exists, because by the continuity of  f  and  g,  f(x)  and  g(x)  exist.
2. Let  dx  be any infinitesimal. Let  y1 = f(x)  and  y2 = g(x)  and  y = y1 + y2.  Then

dy =  (f(x+dx) + g(x+dx)) - (f(x) + g(x))

=  (f(x+dx)) - f((x)) + (g(x+dx) - g((x))
=  dy1 + dy2          since  dy1 = f(x+dx) - f(x), etc.
=  an infinitesimal.

End of Proof.

Basic Continuity Theorems

Using the definition of continuity is tedious. We will prove theorems that speed up determining 
the continuity of combinations of functions of known continuity.

55



Proof of 4 
1. f(x) g(x)  exists because by the continuity of  f  and  g,  f(x)  and  g(x)  exist.
2. Let  dx  be any infinitesimal. Then

dy = f(x+dx) g(x+dx) - f(x) g(x)
= (f(x)+dy1) (g(x)+dy2) - f(x) g(x)          since  dy1 = f(x+dx) - f(x)  ⇒ f(x+dx) = f(x) + dy1, etc.
= f(x) g(x) + f(x) dy2 + g(x) dy1 + dy1dy2 -  f(x) g(x)
= f(x) dy2 + g(x) dy1+ dy1dy2  = an infinitesimal

End of Proof.

Note.  The proofs of the General Continuity Theorems using Cauchy's ϵ-δ definition are so 
difficult that some are often put into an appendix of textbooks or omitted entirely.

Proof of 6 

1. f(g(x))  exists. Why?
2. Let  dx  be any infinitesimal. Then

dy =  f(g(x+dx)) - f(g(x))
= f(g(x)+dy2) - f(g(x))
= f(g(x)) + dy1

*- f(g(x))  by the continuity of  f  at  g(x),  dy1
*  is an infinitesimal.

= an infinitesimal.
End of Proof

Graphical Demonstration of 6

1. By the continuity of  v  at  x, v(x)  exists.
By the continuity of  u  at  v(x), v(u(x))  exists.

2. Let  dx  be any infinitesimal, then by the continuity of  u(x), du  is an infinitesimal.
Since  du  is an infinitesimal, by the continuity of  v  at  u(x), dy  is an infinitesimal.

X

U

x x+dx

u
u+du

u = u(x)

dx

du

U

Y

u u+du

y
y+dy

y = v(u(x))

du

dy

u = u(x)  makes the infinitesimal
dx  into the infinitesimal  du;

u is continuous at  x.

y = v(u(x))  makes the infinitesimal   
du  into the infinitesimal  dy;    

y  is continuous at  u(x).

   So for every infinitesimal  dx, dy  is an infinitesimal.
End of Demonstration
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Continuity over an Interval  

     The function  y = x   we proved continuous for all  x > 0.  Since  x   is also continuous from the 
right at the domain endpoint  x = 0,  we agree to say that it is continuous on the interval  x ≥ 0.  In 
general we say that a function is continuous over an interval if it is continuous at each point in the 
interval that is not an endpoint, and the appropriate one-sided  continuity holds at any endpoints of 
the interval. (This is because we do not care about the continuity of a function where it does not exist.)

Using the Continuity Theorems 

     From the Basic Continuous Functions Theorems we know that the functions  c  and  x  are continuous 
for all  x.  Then by General Continuity Theorems part 3 so is  5x  (taking  c = 5) and consequently by part 
1 so is  5x + 4  (taking  c = 4).
     Likewise, since  x  is continuous for all  x,  by part 4 so is  x·x = x2  and  x·x2 = x3  and, in general,  xn  
where  n  is a positive integer.  Clearly:

Polynomial functions are continuous for all  x

     A rational function is one of the form  y = P(x)
Q(x)

  where  P  and  Q  are rational functions.  Then by 

General Continuity Theorems part 5 we have the following, noting that points where  Q(x) = 0  are not in 
the domain set. 

Rational functions are continuous at each domain point

     An algebraic function is one involving finite combinations of rational functions and roots. By Basic 
Continuous Theorems part 3 the continuity of  x

n   is known. Again and using the convention about 
appropriate one-sided continuity at endpoints:

Algebraic functions are continuous at each domain point

Example  The algebraic function  r(x) = 3x2 -  4 + x
x2+ 4   is continuous for  x ≥ 0.

The elementary functions are the basic continuous functions and finite combinations of them through 
addition, subtraction, multiplication, division, composition, algebraic inverses (e.g., log x and arcsin x) 
and piecewise defining except possibly at join points. The elementary functions are normally 
continuous at all domain points (except at join points of piecewise defined functions). However, 
inverse functions can be unpredictable because of how they are chosen (check out  arccot x  on your 
computer, calculator and other calculus textbooks). 
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Example  Below are two widely accepted versions of the function  y = arccot x.  The first is not continu-
ous at  x = 0;  the second is. (You will have to wait for Calculus II to appreciate why this can happen.)

-1 1
X

π /2

arccot x

Mathematica
Form

-1 1
X

π

arccot x

a Textbook
Form

Example  The elementary function  r(x) = sin(3x2 -  4 + x

x2+ 4 )  is continuous for  x ≥ 0.

Example  The piecewise defined function  S(x) =  0, x ≤ 0
1, x > 0

   is continuous except at the join point  x = 0.

-2 -1 1 2 3
X

1

Y

Exercises  In exercises 1 to 7 prove the continuity of each stating the appropriate Basic Continuous 

Functions Theorems and General Continuity Theorems used.

#1.  f(x) = 5 sin x 
#2.  f(x) = x + cos x 
#3.  f(x) = 2x + 5 
#4.  f(x) = 5 sin x (2x + 5) 

#5. f(x) = x + cos x

5 sin x
 

#6.  f(x) = 7x3 + x + cos x
5 sin x

#7.  Prove General Continuity Theorems, 2. 
#8.  Prove General Continuity Theorems, 3. 
#9.  Prove General Continuity Theorems, 5. 
#10. In the proof of General Continuity Theorem 1, why does the existence of  f(x)  and  g(x)  imply the 
existence of  f(x) + g(x)?

              #11. Where is the function below not continuous?

1 2 3 4
X

-1

1

2

3
Y

y =
x

3 - x2 - x + 1
x - 1
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Solutions

#1.  By Basic Continuous Functions Theorems part 1,  5  is a continuous function and by part 4,  sin x  is 
a continuous function. Then by General Continuity Theorems part 4, so is their product  5 sin x.

#5.  By exercises #1 and #2,  5 sin x  and  x + cos x  are continuous functions. Then by General Continuity 
Theorems part 5, so is their quotient  x+ cos x

5 sin x
 at all domain points (x  not a multiple of  π).  

#6.  Hint: start by looking at part of the function in #5. Where is it not negative?

-10 -5 5 10

-4

-2

2

4

Graph near  x = -1

-0.75 -0.70 -0.65 -0.60

-0.08
-0.06
-0.04
-0.02

0.02

#9. Proof 
1. f (x)

g(x)
 exists if  g(x) ≠ 0.

2. dy = f (x+dx)
g(x+dx) -

f (x)
g(x)

= f (x)+dy1
g(x)+dy2

- f (x)
g(x)

=
f (x)+dy1 g(x) - f (x) (g(x)+dy2)

(g(x)+dy2) g(x)

          = f (x) g(x)+g(x)dy1- f (x) g(x) - f (x)dy2

(g(x)+dy2) g(x)
 

           = g(x)dy1- f (x)dy2
(g(x)+dy2) g(x)

 Type  i

h
.  g(x) + dy2 ≠ 0.  Why?

           = an infinitesimal.
End of Proof

#10.  By the Closure Property of the real numbers for addition.
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1.3  The Theory of Limits.  Limit Theorems 
     In this section we define limit in terms of continuity, develop an intuitive understanding of limits,    
and learn how to evaluate 'easy' limits. In the next section we will learn how to evaluate limits in 
general.

    In computations, a calculus related function often does not exist at the point of interest but is  
otherwise well behaved near that point. Dealing with this problem involves what is called `finding 
the limit', the main new computation required to do calculus. Let us begin with two elementary 
examples that clearly illustrate the general problem.

Example 1  f(x) = x-1
x-1.

X

Y

f(x) =
x - 1
x - 1

1

1

     We first observe that the graph of  f  has a `hole' in it at  x = 1.  This is because  f(1) = 1-1
1-1  0

0= {   },  

which is indeterminate or undefined. It is called an indeterminate form because its value is not
uniquelyis         determined; consider the long division below. We get  7  with  0  remainder.

           7
    0 ) 0

  0
   0

0
0
   So   { }  =  7.  Need we say more! (We enclose indeterminate forms with braces to show they are not

numbers.)

     We cannot just cancel the  x - 1  factors because that would give us  f(x) = 1, technically a different 
function (because it has a different graph - no 'hole' in it). What we say to describe the situation that 
while  f(1)  is not defined, infinitesimally near  x = 1  f(x)  is infinitesimally close to  1,  is 'the limit as  x  
approaches  1  of  x-1

x-1   is  1'  and write

limx→ 1
x-1
x-1  = 1.  

     This example illustrates the unique difficulty that occurs in beginning calculus, the problem of 
finding the derivative of a function, which you will encounter in a few more lessons. The limit is  
essentially the value that fills in the 'hole' in the graph to make the resulting function 
continuous there.

-

■
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Example 2  f(x) = 
x2- 1
x-1 , x ≠ 1

3, x = 1
.   Its graph is shown below.

X

Y

y = f(x)

1

2

     Clearly, from the graph of  f,  we expect  limx → 1 f(x) = 2,  the value that would fill in the 'hole'.  
If we were to redefine the function so that  f(1) = 2,  then the function would be continuous. 
We do not encounter this type of difficulty frequently in the calculus. But again we write

limx→ 1
x2- 1
x-1  = 2.

     When we state the formal definition of limit, we will want to cover both types of problems. Intuitively  
limx→a f(x), if it exists, is the rounded off value of  y = f(x)  infinitesimally close to  x = a.

     In both of the previous examples we were able to define or redefine the function at  x = 1  so that the 
'hole' is filled in, that is, so that the curve is continuous. This suggests the following precise definition of 
limit.

Continuity Definition of Limit  The limit as  x  approaches  a  of  f(x)  equals  b,
written  limx → af(x) = b  means the function

F(x) =  f (x), x ≠ a
b, x = a   

is continuous at  x = a.

y = f1 (x)

a

b

Y

y = f2 (x)

a

b

Y

y = f3 (x)

a

b

Y
F(x) is the same 
for the three 
versions of  f(x)

y = F(x)

a

b

Y

Note: this definition does not provide general method of finding the limit  b  although you can some-
times guess it by looking at the graph and answering the question, "When  x  is infinitesimally close to  
a, what real number  b  is  y  infinitesimally close to or what value of  F(a)  would make  F(x)  continuous 
at  x = a? In the next section, we will give a hyperreal definition of limit which is more useful in 
determining  b  in all circumstances.

     This definition allows us to immediately translate continuity theorems into limit theorems.

●

●

●

61



 Example 3  Let us find the limit of the previous example using this definition.  f(x) = 
x2- 1
x-1 , x ≠ 1

 3,     x = 1
 .

X

Y

y = f(x)

1

2

Proof  From its graph it looks like  limx→ 1f(x) = 2. To prove this, consider

F(x) =  
x2- 1
x-1
, x ≠ 1

2, x = 1

         =  
(x-1) (x+1)

x-1
, x ≠ 1

2, x = 1
factoring

=   x+ 1, x ≠ 1
2, x = 1

     can cancel since  x ≠ 1

         =  x + 1        in both cases since  x + 1 = 1 + 1 = 2  when  x = 1

which from the previous section we know to be a continuous function at  x = 1.    End of Proof 

Note about terminology   The notation  limx → af(x) = b  read 'the limit as  x  approaches  a  of  f(x)  is  b'  
suggests one finds  b  by checking the values of  f(x)  as  x  gets closer and closer to  a. An organized way 
of doing this is computing the value of  f(x)  for a sequence of real number x-values approaching  a:       
x1,  x2,  x3,  x4,  · · ·  →  a.  Then  f(x1 ),  f( x2 ),  f(x3 ),  f(x4 ),  · · ·  ⟶  b.  The limit exists only if the same result  
b  is obtained for every for every such sequence.
     As a hyperreal literate person, you might wonder why anyone would spend lots of time piddling 
around with real numbers when  b, if it exists, is just the rounded off value of  f(a + io), say. You are right 
of course. However, hyperreal numerical computations are often difficult to do because hyperreal 
calculators are not readily available. Also, since limit notation is universally used, we will too. It will 
turn out that using sequences of real numbers approaching  x = a  can actually be a practical way of 
finding the approximate value of an otherwise intractable limit.

Limit Theorems  There are three basic theorems regularly used for the efficient evaluation of limits. The 

first says that the limit of a continuous function is always easy to find. The next two follow directly from this 
theorem and the continuity theorems of the previous section. 

Limit of a Continuous Function Theorem (Easy Limits Theorem)  Suppose  f  is continuous at  x = a. 
Then

Proof

limx → a f(x) = f(a) 

F(x) =   f (x), x ≠ a
x = a

         =  f(x),  which is continuous at  x = a. End of Proof

     This theorem says if a function is continuous, then finding limits is easy; you just 'plug' the value of  

a  into  f(x).  

f (a),
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Example

lim
x→ 2

x3 + 3 x + 2

2 x - 1
=

23 + 3 ·2 + 2

2 ·2 - 1
=

16

3

Basic Limit Theorems
1. limx → a c  =  c
2. limx → a x  =  a

3. limx → a x
n   =  a

n ,  n  a positive integer;  a > 0  if  n  even.
4. limx → a sin x  =  sin a
5. limx → a cos x  =  cos a

Proofs These all follow from the ‘Easy Limit Theorem.’ Mentally verify this.  

General Limit Theorems  Suppose  limx → af(x)  and  limx → ag(x)  exist. 

Then 1. limx → a (f(x) + g(x))  =  limx → af(x) + limx → ag(x).
2. limx → a  (f(x) - g(x))  =  limx → af(x) - limx → ag(x).
3. limx → a  (c f(x))  =  c·limx → af(x).
4. limx → a  (f(x)g(x))  =  limx → af(x)·limx → ag(x).
5. limx → a 

f(x)
g x( )  = limx → af(x)

limx → a g(x)
,  provided  limx → a g(x)≠ 0.  

6. limx → a  f(g(x))  =  f(limx → ag(x)),  provided  f  is continuous at  g(a).   limx → af(x)  need not exist.

Proofs  These all follow from the ‘Easy Limit Theorem’. Mentally verify this.  

Example  4    
limx→ 5 x3+ 4

2 x + 3 continuous at  x = 5

=  53+ 4
2·5+ 3 Limit of a Continuous Function Theorem

=  129
13

Two Important Trig Limits

limθ→ 0
sinθ

θ
= 1

     Let us graph the function  sinθ
θ

  is shown below. It looks like the limit is  1. This limit is so important it 

deserves a a careful examination.

θ

1

sin θ

θ

2π

●●●●●
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     The usual proof in calculus textbooks is a geometric one using the formula for the area of a circle:  
A = π r2. Unfortunately you were told that formula early in school without proof. You will derive the 
formula in second semester calculus. The 'usual proof' is an exercise.

     We will do a detailed geometric look at what happens to the ratio  sinθ
θ   as  θ → 0.

Let us go back to the unit circle with the main three trig functions identified. 

Next, another look, 3 angles approaching  0.

0.4 radian

1

0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0.2 radian

1

0.2 0.4 0.6 0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.1 radian

1

limx→ 0 sin (2 x)
x

want to use above limit

=  2· lim2 x→ 0 sin (2 x)
2 x

doctoring up

=  2 limθ→ 0
sin θ
θ

letting  θ = 2x

1

A B

C
D

cos θ

ta
n 
θ

si
n 

 θ θ

=  2=  

=  2

Can you see what happens to the arc BC as
θ → 0?

1 - cos θ
↑

1 - cos θ
↑

1 - cos θ
↑

1 - cos θ
↑

θ

It looks like as  θ → 0, both the  sin θ   line and the  arc θ   approach the  tan θ   line.   
Look at the above graph with  θ = 0.4, 0.2 and 0.1 radians. This type of understanding is 
a valuable tool as you go through future calculus.

Example

. 1

X

Y

64
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Another important trig limit is

limθ→ 0
1 - cos θ

θ

Proof

lim θ → 0
1- cos θ

θ

= lim θ → 0
1- cos θ

θ
·

1+ cos θ
1+ cos θ

= lim θ → 0
1- cos2 θ

θ (1+ cos θ)

= lim θ → 0
sin2 θ

θ (1+ cos θ)

= lim θ → 0
sin θ

θ
·

sin θ

1+ cos θ

= 1 ·
0

1+ 1 = 0 End of Proof

Intuitive Summary  Recall that
 limx → af(x) = b

means that the values of  f(x) 'just to the left' and 'just to the right' of  x = a  are infinitesimally 
close to the common value  b. A better notation than  limx → af(x) = b  might be  NV(f(a)) = b, 
the neighboring value of  f  at  x = a  is  b; but it won’t catch on.

     If you know that the limit exists, you need check only one value of  x  infinitesimally close to  
a. If  two different values of  x  infinitesimally close to  a  round off to different numbers, then
limx → af(x)  does not exists.

■
■■■

■■■■■■■
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Exercises 

In exercises 1 to 3, use the definition of limit to prove the limit statement.  Model like Example 3.
#1.  Prove  limx→ 3

2 x- 6
x-3  = 2

#2.  Prove  limx→ 4
x2- 7 x + 12

x-4
 = 1

#3.  Prove  limx→ 1
x2- 3 x + 2

x2- x
 = -1

In the following use the Basic Limits Theorem to evaluate each quickly. 
#4.  limx →5 17 =
#5.  limx → π sin x =
#6.  limx → 1  (2 x + 1) cos x =

In numbers 7 to 9 use the Limit of a Continuous Function Theorem.

#7.  limx → 0  (x + 1 )2cos(2x) =

#8.  limx→ 0 (x + 1)2 cos(2 x) + 5  sin x =

#9.  limx→ 4
x2- 7 x - 12

x-3  =

            Note there is no practical difference between using the two Limit Theorems and and the 
            Limit of a Continuous Function Theorem.

#10.  Verify that the Basic Limits Theorem reflects special cases of the Limit of a Continuous Function 
Theorem.

sin θ
θ

 = 1,  trig identities, and the Continuity In the following evaluate each limit using  limθ → 0 

Theorems.

#11.  a.  limx→ 0
sin(5 x)

2 x
b. limx→ 0

sin(3 x)
sin(4 x)

#12.  a.  limx→ 0
tan x

x
b. limx→ 0

x

sin x + tan x

#13.  a.  limx→ 0 x csc x b. limx→ 0 tan x

#14.  a.  limθ→ 0
1- cos(2θ)

θ
b. limθ→ 0

1- cosθ
θ2

a.Δθ  =  |AB|.
#16. a.  Prove   limx → 2 

x2-
x

3 x + 2
-2 ≠ 5  by showing  the corresponding  F(x)  is not continuous at  x = 2.

b. Discover a way of choosing  F(2)  so that  F  is continuous at  x = 2.
-_

_

_
■

Assume the area of a sector formula:   A =    r2  θ. Consider the unit circle.

1

A     B

C
D

cos θ

tan θ
sin θ

θ

θ

Observe:

Area triangle OAC  ≤ area sector OBC  ≤  area triangle OBD.

Using this as the starting point, derive the limit formula. 

O

#15. Prove geometrically that ■1
2

lim h -> 0 
sin

h
 h__
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Solutions
Use  the definition of limit to prove each limit statement.  Model your solutions after example 3.

#1.  Prove  limx→ 3
2 x- 6

x-3  = 2 

Proof  Consider

F(x) = 
2 x-6
x-1 , x ≠ 3
2, x = 3

        =  
2 (x-3)

x-3 , x ≠ 3
2, x = 3

factoring

=   2, x ≠ 3
2, x = 3 can cancel since  x ≠ 1

        =  2  

which we know to be a continuous function at  x = 3.  End of Proof

#3.  Prove  limx→ 1
x2- 3 x + 2

x2-x
 =  -1

Proof  Consider

F(x) = 
x2- 3 x + 2

x2- x , x ≠ 1

-1, x = 1

        =  
(x-1) (x-2)

x (x-1) , x ≠ 1

-1, x = 1
factoring

        =  
x-2
x
, x ≠ 1

-1, x = 1
can cancel since  x ≠ 1

        =  x-2
x

since  x-2
x

 = -1   when  x = 1

which is a continuous function at  x = 1.           End of Proof

#5.  limx→πsin x = sin π = 0  (Easy Limit)

#7.  limx→ 0 (x + 1)2cos(2x) = (0 + 1)4cos(2·0) =  1  (Easy  Limit)

#9.  limx→ 4
x2- 7 x-12

x-3  = 42- 7·4+ 2
4-3  = -24   (Easy  Limit)

#11. a.   limx→ 0
sin(5 x)

2 x
 = 5

2  lim5 x→ 0
sin(5 x)

5 x
  = 5

2  limθ → 0
sinθ
θ

 = 5
2
·1  =  5

2

#13. a.   limx→ 0 x csc x  =  limx→ 0
x

sin x
 =  limx→ 0 1

limx→ 0
sin x

x

 =  1
1  =  1
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1.4  The Practical Computation of Limits

Finding Limits

     The main problem in the previous section with evaluating a difficult limit  limx → af(x,)  is that somehow you 
must guess the limit  b  in advance and then use the definition of limit prove that your guess was correct!  
Normally the main problem in calculus will be finding the limit number  b, not in proving that  limx → af(x) = b  

b,
(

  
x), x ≠    

  

There are three common ways of evaluating difficult limits, at least one of which will evaluate any given limit:

1. Analytically  This is the precise method and therefore preferred. However, often this is not possible.
  Hyperreal Style  Use the hyperreal (computational) definition of limit below. In theory this method 

always works; in practice it often does not.
           Limit Style.  Reduce, by algebra the function to one which is continuous at  x = a, an easy problem.  

It is about as limited as the hyperreal method.
2. Geometrically  This method is quick and intuitive if you have a CAS or perhaps a graphing calculator.

Just examine the graph very close to  x = a. It may only give an approximation to the limit. Zooming in is often 
required.

3. Numerically  Examine  f(x)  for a sequence of  real values approaching  x = a.  This method is tedious and
risky; another sequence might give a different result in some difficult problems, which means the limit does not 
exist.

     The last two methods normally give only an approximation to the limit, however, to as many decimal places 
as you wish. The advantage of these last two methods is they work for almost any function you will encounter. 

      Recall that the limit, if it exists, is the common rounded off value of  f(x)  infinitesimally close to  x = a. This 
suggests an alternate definition of limit which is helpful in finding the limit  b.  All the methods of finding limits 
above one way or the other are versions of this alternate definition.

Hyperreal  definition of limit   limx → af(x) = b  means  f(a+dx) ≈> b  for every infinitesimal  dx ≠ 0.

y = f(x)

a

b

↑
a+dx

X

Y

⟶

 

a
x = a

by showing that     F(x) =      
f 
=■

 
                           is a continuous function at  x = a.
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Limits Analytically  - Hyperreal  Style

Example 1  limx→ 5
7 x2- 11 x - 120

x2- x- 20     0
0  

Let  dx  be any nonzero infinitesimal. Then 
7 (5+dx)2- 11 (5+dx)-120
(5+dx)2- (5+dx) - 20

= 59 dx+7 dx
2

9 dx+dx2
expanding and simplifying

= dx(59+7 dx)
dx(9+dx)   factoring  

= 59+7 dx
9+dx  can cancel since  dx ≠ 0  

≈> 59
9 .  

Limits Analytically  - Limit Style

Continuity Definition of Limit  The limit as  x  approaches  a  of  f(x)  equals  b,  written
limx→af(x) = b

means the function

F(x) =  f (x), x ≠ a
b, x = a

   

is continuous at  x = a.

We adapt the method of the continuity definition and ignore the  F  notation by agreeing never to allow  x  to be 
equal to  a; then if we can convert  f(x)  algebraically to a function which is a continuous function; we can then 
evaluate the limit by setting  x = a.

Now, let us illustrate this Example 1 using this concise limit style.

limx→ 5
7 x2- 11 x-120

x2- x- 20

= limx→ 5
(x- 5) (7 x+24)
(x- 5) (x+4)  

= limx→ 5
7 x+24

x+4  

a non-trivial factorization    

can cancel since  x ≠ 5

= 7·5+24
5+4 limit of a continuous function

= 59
9 .  

     The limit style method is to reduce the expression, by canceling equal factors which approach  0, to one for 
which the Limit of a Continuous Function (Easy Limits) theorem applies. Most mathematicians use this 
method even though the equivalent hyperreal method is sometimes easier because less factoring skill is 
required. Nevertheless we will often use the limit style because most mathematicians do.
     Still, we will always understand that the limit is essentially the value of  f  infinitesimally close to  x = a;  the 
limit idea of `approaching' the answer by looking at real number approximations as `x  gets closer and closer' 
should seem quite a second rate idea.
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Example 2  Limit of a rational indeterminate form
limx→ 1

x2- 1
x-1

indeterminate form   0
0 

Hyperreal Method  
(1+dx)2-1
(1+dx)-1

= 1+2 dx+dx2-1
dx

= dx(2+dx)
dx   

=  2+dx dx ≠ 0
≈> 2.

Traditional Limit Style 

limx→ 1
x2- 1
x-1

=  limx→ 1
(x-1)(x+1)

x-1
 factoring

=  limx→ 1(x + 1)  can cancel because  x ≠ 1  in the limit process

=  1 + 1  Limit of a Continuous Function
=  2

Note that we removed the cause of the  {  }  indeterminate form when we canceled the  x - 1  factors. The

beauty of these two methods is that not only does it find the limit, but a proof using the definition of limit is 
unnecessary;  we are sure it is correct because we used correct hyperreal algebra. We note that the limit 
method works only if we can algebraically reduce the difficult limit to the easy continuous case.

Example 3  Limit of an algebraic indeterminate form

limx→ 0
x+ 9 - 3

x
indeterminate form   0

0  

=  limx→ 0
x+ 9 - 3

x

x+ 9 + 3

x+ 9 + 3
rationalizing the numerator

=  limx→ 0
(x+ 9) - 9

x x+ 9 + 3

=  limx→ 0
x

x x+ 9 + 3

=  limx→ 0
1

x+ 9 + 3
can cancel because  x ≠ 0

=  1

9 + 3
Limit of a Continuous Function (Easy Limit)

=  1
6

Example 4  A limit that cannot be found exactly (at this time)

 limx→ 0
2x- 1
x

      0
0 

We have no way of factoring out the troublesome  x  in the numerator. So we cannot cancel the  x's  and evaluate 
a resulting easy limit.

0
0
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Limits Graphically  Below are examples of functions whose limits are difficult or impossible to evaluate 
analytically because 'factoring and canceling' is not possible. We examine the graph 'close' to the limit point  
x = a.

Example 5  limx→ 0
2x- 1
x

indeterminate form   0
0 

-4 -2 2 4

1
2
3
4
5
6

Note:  Because of the way the computer graphs (by connecting points with line segments), it looks like the 
function is continuous at  x = 0  even though there must be a 'hole' in the graph at  x = 0.  It looks like  limx→ 0

2x- 1
x

 

≐ 0.7. To get a better approximation, zoom in.

-0.010 -0.005 0.005 0.010

0.692

0.693

0.694

0.695

limx→ 0
2x- 1
x

 ≐ 0.693.
This answer is approximate. The exact answer you will learn in the next calculus course is  loge 2 ≐  0.693 · · ·,  

which one cannot determine graphically.

Example 6  Another indeterminate form
limx → 0 (1 + x)1/x indeterminate form  {1∞}         

We will discuss the use of the limit symbol  ∞  in the next lesson.  For now, take it to mean extremely large.   

     First, why is  {1∞}  indeterminate?  1  to any power is  1;  11000 = 1. But a number slightly larger than  1  raised to 
a very large number can be a large number;  1.011000 

≐ 20,959.2. Likewise a number slightly smaller than  1  raised 
to a very large number can be a number close to  0;  0.991000 ≐ 0.0000431712.

1 2 3 4 5
X

-1

1

2

3

4
Y

y = (1 + x)1 x

It looks like  limx→ 0(1 + x)1/x ≐ 3.  Let's zoom in near  x = 0.

-0.001 0.001
X

2.7175

2.7180

2.7185

2.7190

2.7195

Y

     limx → 0(1 + x)1/x ≐ 2.718.
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     Note that this answer again is approximate. The exact limit is required in the definition of limit; however, for 
many applications  2.718  may be good enough.

Limits Numerically   Because you do not have visual cues about the behavior on either side of  x = a, you should 
be especially careful with this method. This is a crude way of trying to examine the value of  f(x)  infinitesimally 
close to the limit value  x = a.  The hyperreal definition of limit suggests it is efficient to choose a sequence that 
approaches  a  rapidly.  For example if  a = 0,  the sequence

1,  1
10 ,  1

100 ,  1
1000 ,  · · · 

is more efficient than
1,  1

2 ,  1
3 ,  1

4 ,  · · · .

Example 7   limx→ 0 sin
π
x

Let us examine this function for two carefully selected sequences approaching  0.  
x sin π

x

   1/2         0
   1/4         0
   1/8         0
    ↓         ↓
    0          ?
    ↑         ↑
- 1/8         0
- 1/4          0
- 1/2          0

From the sequences above, one is tempted to deduce that  limx→ 0 sin
π
x  = 0. But from the graph below, clearly

limx→ 0 sin
π
x   does not exist. 

Be sure that your sequences are not `carefully' selected!  (This error cannot happen, of course, if the limit exists.)

-3 -2 -1 1 2 3
X

-1.0
-0.5

0.5
1.0
1.5

Y

     To be 100% certain of getting the correct answer,  you should check values of the function for every

sequence approaching  a.  Practically, using one sequence approaching  a  from the left and one approaching  a  
from the right should normally be sufficient.  In a ’tricky' limit, you may wish to graph the function to see if 
extra care is required and, of course, do not use carefully selected sequences.
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-3 -2 -1 1 2 3
X

11

H(x)

Using a sequence approaching  0  from the left it looks like  limx→ 0H(x) = 0.
Using a sequence approaching  0  from the right it looks like  limx→ 0H(x) = 1.
So  limx→ 0H(x) = 0  does not exist.

Example 9

limx→ 0
4x- 3x

x
indeterminate form   0

0 

First we construct a table of values with  x → 0  from both sides.

x
4x - 3x

x

1 1.00000

.1 .32575

.01

.001

.0001

.29128 

.28804 

.28772

0 ?

-.0001 .28765

-.1 .25408

-1 .08333

Clearly  limx→ 0
4x- 3x

x
 ≐ 0.2876  (trusting that the function does not have strange behavior between table entries).

If you suspect the limit exists and will settle for a rough approximation of the limit, it is not unreasonable to try 
just one value `near' 0  numerically:

40.0001 - 30.0001

0.0001
 ≐  0.288

Example 8  limx → 0H(x)

Note:  Generally the graphical method is quicker, more intuitive and less error prone than the numerical 
sequence method.
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Exercises 

     In the following, identify the indeterminate form and find the limit algebraically.

#1.  a.  limx→2
x2+ x- 6

x-2 b. limx→ 3
x2- 3 x

x2- x- 6

#2.  a.  limx→ 1
x3- 1
x5- 1 b. limx→ 2

x3- 8
x2- 4

#3.  a.  limx→ 0
x+9 - 3

x
b. limx→ 0

x

4- 2 x - 2

#4.  a.  limh→ 0
(2+h)2- 4

h
b. limh→ 0

x+h - x

h

      In the following, identify the indeterminate form and find the limit graphically. Observe that these may be 
difficult to do algebraically.

#5.  limx→ 0 1 + x

2 
1/x

#6.  a.  limx→ 0
x2 - x

x

 In the following, identify the indeterminate form and find the limit numerically.

#7.  limx→ 0
3x- 1

x
  

#8.  limx→ 1
sin(πx)

x- 1

In the following, identify the indeterminate form and use any method to evaluate.

#9.  a.  limx→ 4
2 x- 4
x2+ 163 b. limt→ 3

4+ t

t

#10.  a.  limt→ 4
t- 4

t - 2
b. limx→2

1
x- 2 

1
x
- 1

2 

#11.  Work Example 3 by the hyperreal definition.

   #12.  f(x)  is the function shown below.

-4 -2 2 4 6 8 10
X

-2

-1

1

2

3

Y

y = f(x)

   limx→-3f(x) =      limx→-3.5f(x) =      limx→ 0f(x) =  limx→ 4f(x) =      limx→ 6f(x) = 

   limx→ 7 f(x) =      limx→-2  f(x) =      limx→ 5 f(x) =   limx→ 2 f(x) =      limx→ 20f(x) =

#13.  Evaluate Example 1 taking  dx = i o =  0.000 · · · 001,000 · · ·.
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Solutions

#1. a.    limx→2
x2+ x- 6

x-2  0
0 

= limx→ 2
(x-2) (x+3)

x-2

= limx→ 2 x+3  
= 2+3
= 5

#2. a.   limx→ 1
x3- 1
x5- 1  0

0 

= limx→ 1
(x-1) x2+ x+ 1

(x-1) x4+ x3+ x2+ x+ 1

= lim x→ 1
x2+ x+ 1

x4+ x3+ x2+ x+ 1

= 1+1+1
1+1+1+1+1

= 3
5   

#3.  b.  limx→ 0
x

4-2 x -2
 0

0 

= limx→ 0
x

4-2 x -2

4-2 x +2

4-2 x +2

= limx→ 0
x 4-2 x +2

(4-2 x)-4   
= limx→ 0 4-2 x +2

-2

= 2+2
-2

= - 2 

#4. a.  limh→ 0
(2+h)2- 4

h
 0

0 

= limh→ 0 4+4 h+h2- 4
h

= limh→ 0 h(4+h)
h

 
= limh→ 0 4+h

= 4

#6. 

-4 -2 2 4

-3
-2
-1

1
2
3

limx→ 0
x2 - x

x
  does not exist .
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#8.
 limx→ 1

sin(πx)
x-1  0

0 

x
sin (π x)
x - 1

0.9 - 3.09017

0.99 - 3.14108

0.999 - 3.14159

1 1

1.001 - 3.14159

1.01 - 3.14108

1.1 - 3.09017

It looks like limx→ 1
sin(πx)

x-1  = - π.

Graphical check:

   1  2 3  4 5  6

-3

-2

-1

#9. b.   limt→ 3
4+ t

t
not indeterminate (continuous at  x = 3)

 =  4+ 3
3

#10. a.   limt→ 4
t- 4

t - 2

=  limt→ 4
 t - 2  t + 2

t - 2
think of  t - 4  as the difference of squares

=  limt→ 4 t + 2
=  4 + 2
=  4

#12.    2 2.5     1      0 -1
         ≐ 1 1       - 1/2    DNE      1.9?

#13.  Evaluating  7 x2- 11 x - 120
x2- x - 20   at  x = 5 + io  =  5.000 · · · 001,000 · · ·  by long division  we get 

6.555 · · · 555,555 · · ·  ~>  6.555 · · · = 59
9

With the the aid of a hyper-calculator, or www.lightandmatter.com/calc/inf we obtain the same result.

●
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1.5  Extensions of the Limit Idea: One-sided Limits. Infinite Limits
     We begin with a full discussion of one-sided limits. Also what happens if on one or both sides the 
function attains arbitrarily large values. 

One-sided Limits

Hyperreal Definition  The limit from the right of  f(x)  at  x = a  
limx→a+f(x) = b  

means   f(a + dx+ )  ≈>  b  for every positive infinitesimal  dx+.  

X

Y

y = f(x)

b

a
a+dx+↑

Hyperreal Definition  The limit from the left of  f(x)  at  x = a  

limx→a-f(x) = b  

means  f(a - dx+ )  ≈> b  for every positive infinitesimal  dx+. 

X

Y

y = f(x)

a

b

Two-sided Limits Theorem   limx→af(x) = b  means  limx→a- f(x) = b  and  limx→a+f(x) = b.

y = f(x)

a

b

X

Y

     This theorem says that if the limit exists at  x = a, the function approaches the same value  y = b 
from either side and conversely.

     We often evaluate easy one and two-sided  limits (those which do not lead to an indeterminate 
form) quickly by examining the graph of the function whose limit is being taken near  x = a.
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End-Point Agreement   We will adopt the convention that a limit exists at the endpoint of the 

domain of a function if the appropriate one-sided limit exists.  Some mathematicians do not 
observe this agreement. We may in some circumstances, with proper warning, do the same.

Example  

1 2 3 4 5
X

1

2 y = x - 2

From the graph:

limx→ 2- x - 2    does not exist 

limx→ 2+ x - 2   =  0  
⟹  limx→ 2 x - 2   =  0   (endpoint agreement)

Example   f(x) = 21/x, x < 0
1, x ≥ 0

-1 1
X

1

Y

From the graph:

limx→ 0-  f(x)  =  0  
limx→ 0+ f(x)  =  1  
⟹ limx→ 0  f(x)  does not exist  

Example   f(x) = |x|

-1 1
X

1

Y

From the graph:
limx→ 0- |x|  =  0  

limx→ 0+ |x|  =  0 
⟹ limx→ 0  |x|  =  0
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Infinite Limits  Sometimes a function becomes unbounded near  x = a.  We use the symbols  ±∞  to 

express certain types of unboundedness.  

Hyperreal Definition  The limit as  x  approaches  a  from the right is plus infinity, written

limx→a+ f(x) = +∞,   
 means  f(a + dx+)  ≈>  +∞  for every positive infinitesimal  dx+.

y = f(x)

X
a

a+dx+

Hyperreal Definition  The limit as  x  approaches  a  from the left is plus infinity, written

limx→a- f(x) = +∞,  
means

f(a - dx+)  ≈>  +∞  for every positive infinitesimal  dx+.

y = f(x)

X
a

a+dx-

Definition  limx→a f(x)  =  +∞  means   limx→a-  f(x)  =  +∞  and  limx→a+  f(x) = +∞.

y = f(x)

X
a

     We make similar definitions for  limx→a-f(x) = -∞,  limx→a+f(x) = -∞  and  limx→a f(x) = -∞.

.
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Definition  If   limx →a- f(x) =  ±∞  or  limx →a+ f(x) =  ±∞,  we say that the line  x = a  is a vertical 
asymptote to the curve  y = f(x).

y = 2-x

x - 2

X
2

From the graph:

limx→ 2-
2-x

x-2   = -∞

limx→ 2+  2-x

x-2   = +∞

⟹  limx→ 2 2-x

x-2 does not exist because the one-sided limits are different

However,  x = 2  is a vertical asymptote to  y = 2-x

x-2 .

Example

y =
1 - x

(x - 3)2

X

Y

3

From the graph:

limx→ 3-
1-x
(x-3)2   = -∞

limx→ 3+  1-x
(x-3)2   = -∞

⟹  limx→ 3 1-x
(x-3)2  = -∞ because the one-sided limits are the same

x = 3  is a vertical asymptote to  y = 1-x
(x-3)2 .
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Example  y = 2-1/x

-4 -2 0 2 4
X

0.5

1.0

1.5

2.0

2.5

3.0

From the graph:

limx→ 0-  2-
1
x   = + ∞ 

limx→ 0+  2-
1
x   = 0

⟹  limx→ 0 2-
1
x   does not exist because the one-sided limits are not the same

x = 0  is a vertical asymptote to  y = 2-
1

x . 

Analytical Evaluation of Infinite Limits 

     The graphical method is often the best way to determine these limits. There is also an informal 
analytic method that seasoned math users often employ; they think

1
positive infinitesimal  = positive infinite number,   1

negative infinitesimal  =  negative infinite number  

or symbolically  

1
0+ = +∞ 1

0- = -∞ 0+  means   a positive infinitesimal

a+ = a + 0+ a- = a - 0+

     When we write  1
0+ = +∞,  the left side is an infinite hyperreal number and the right side is the result 

of rounding it off. This is technically wrong, but everyone writes this and the meaning is clear; the 
reason for doing this is that  +∞  is an extended real number, but  0+  is not accepted as one (why do 
you think it isn't?)

Example  limx→ 2+  2-x

x-2   =  2-2+

0+  =  2-2

0+   =  +∞   (mixed real and hyperreal math, but rounding off result is 

correct)

     limx→ 2-  2-x

x-2   =  2-2

0-   =  -∞   

Therefore, because the two one-sided limits are not equal: 

     limx→ 2 2-x

x-2   does not exist

81



Example  limx→ 0
1
x2  = 1

0+  = +∞  because as  x → 0±  (from either side),  x2 → 0+.

Example  f(x) = 1
x2 sin2 1

x

y =
1
x

2 sin2 1
x

11
X

limx → 0
1

x2
sin2 

  
does not exist because the function oscillates between 0 and + ∞ near x = 0.

Exercises   

In # 1 to 5, find the limits analytically using  0+, etc.  Check answers with graph provided.

#1.  limx → 0-
x

1+ x

       limx → 0+
x

1+ x

       limx → 0
x

1+ x
 

-1.0 -0.5 0.5 1.0

0.1

0.2

0.3

0.4

0.5

#2.  limx → 0-
1+ x

x

       limx → 0+
1+ x

x

       limx → 0
1+ x

x

-1.0 -0.5 0.0 0.5 1.0

2

4

6

8

10

■

1
x
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#3.  limx → 2-
x

x- 2

       limx → 2+
x

x- 2

       limx → 2
x

x- 2

1.5 2.0 2.5 3.0

-100

-50

50

100

#4.  limx → 0-
3- x

x2

         limx → 0+
3- x

x2

         limx → 0
3- x

x2

-1.0 -0.5 0.0 0.5 1.0

500

1000

1500

2000

2500

3000

#5.  limx → 0-
x2

3- x

         limx → 0+
x2

3- x

         limx → 0
x2

3- x

-1.0 -0.5 0.5 1.0

0.1

0.2

0.3

0.4

0.5
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#6.  y = f(x)  is the function shown below.

5 10
X

-2

-1

1

2

3

Y

y = f(x)

a. limx→-2-f(x) =        b.  limx→ 0-f(x) = c. limx→2-f(x) = d. limx→ 6-f(x) = e. limx→- 4 f(x) =

      limx→-2+f(x) =          limx→ 0+f(x) = limx→ 6+f(x) = limx→ 15 f(x) ≐

      limx→-2  f(x) =          limx→ 0  f(x) =

limx →2+ f(x) =

limx →2 f(x) = limx→ 6 f(x) =

#7.  lim x→ 0+
1- xx
x

a. Work numerically.
b. Work graphically.
c. Plot the graph by computer.

#8.  lim x→ 0+ 3
1
x

a. Work numerically.
b. Work graphically.
c. Plot the graph by computer.

Solutions

#1.  DNE, 0, 0   

#2.  DNE, +∞, +∞    

#3.  -∞,  +∞, DNE   

#4.  +∞, +∞, +∞    

#5.  0, 0, 0

#6. a.     1          b. 0 c. 3 d. -∞ e. 3  (endpoint of domain agreement)
                 0                3 -∞ 2.4
             DNE             

0
0 3 -∞
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#7.

-2 -1 1 2

-1

1

2

3

0 2.×10-10 4.×10-10 6.×10-10 8.×10-10 1.×10-9

20

40

60

80

x := 1. × 10^-16
(1 - x^x)  x

36.6374

Explore this some more before you declare an answer.
100

? ? ?
My computer says  +∞. In the next calculus course you will learn how to do this 
analytically!

#8. b. Hint

-2 -1 1 2

2

4

6

8

10

12

14
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A
B

Properties  (proofs left as easy exercises)  
1. A ≈ A
2. A ≈ B  ⟺  B ≈ A
3. A ≈ B, B ≈ C  ⟺  A ≈ C

Theorem   a ≈ A, b ≈ B  ⟺  a·A ≈ b·B

Theorem   a ≈ A, b ≈ B  ⟺  a

A
 ≈ b

B

Note:  A ≈ 0  is never true. Can you see why? This will never be a serious problem in calculus. 
The  ≈  concept will be especially important when we do applications of integration

Examples   Let  dx  be an infinitesimal, x+dx a finite hyperreal and  X  a positive infinite number. 

Infinitesimal   3 dx + dx2 ≈ 3 dx

because  3 dx+dx2

3 dx  = 1 + 1
3  dx = 1 + ϵ.

Finite Hyperreal   7 + dx2 ≈ 7

because  7+dx2

7  = 1 + 1
7  dx2 = 1 + ϵ.

Infinite Number   5 X3 - X2 +  4 ≈ 5 X3

because   5 X3- X2+ 4
5 X3  = 1 - 5

X
 + 4

5 X3 = 1 + ϵ.

* * * * * * *

1.6  Extensions of the Limit Idea.  Limits at Infinity 

   It’s time to review the new ‘near equality’ that will be be useful in doing theory, applications, and 
sustain a reasonably good mathematical work style later in your life. It applies to infinitesimal, finite 
hyperreal, and infinite number calculations. If  A ≈ B, but by mistake write  A = B, you w ould be 
hyperreally wrong but still ‘really’ right! The main use of  ≈  is to simplify expressions in order to 
extract the essence of a hyperreal expression.  ≈  will be frequently used later in this course.

A Detailed Review of Asymptotic Equality

Definition  A is asymptotically equal to  B  written  A ≈ B  means   =  1 + ϵ  where  ϵ  is an 

infinitesimal.

Note  Eventually you get good at using   ≈    to 
simplify calculations.  

With care:
Infinitesimals:  keep  dx,  drop  dx 2  . 
Finite hyperreals:  keep  x   , drop  dx  or  dx .   2  . 
Infinite numbers:  keep  X , drop  X  or  x  or  dx.2

In applications, it is often obvious 
geometrically or physically or otherwise which 
terms can be ignored.
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Limits at Infinity  The limit idea can be extended to answer the question, "What is the behavior of 

the function when  x  is a large positive or negative number?" We answer this question by examining the 
function for  x  an infinite number and then rounding off.

Hyperreal Definition   The limit of  f(x)  as  x  approaches plus infinity is  b,  written
limx → +∞ f(x) = b

means  f(x) ≈>  b  for every positive infinite number  x.

Hyperreal Definition    The limit of  f(x)  as  x  approaches minus infinity is  b,  written 
limx → -∞ f(x) = b

means  f(x)  ≈>  b  for every negative infinite number  x.

Example  limx→+∞ sin 1
x  = 0  because

sin 1
x

≈> sin 0 x  is a positive infinite number  ⇒  1
x  is a positive infinitesimal

  =  0.

2 4 6 8 10
X

1

sin(1/x)

Definition  If  limx→+∞f(x) = b  or  limx→-∞f(x) = b,  we say that the line  y = b  is a 
horizontal asymptote to the curve  y = f(x).

Example   f(x) = 2 + 2 sin x3/2

x3/2  

y = f(x)

2 4 6 8 10
X

1

2

3

4

5

From the graph,  limx→+∞2+ 2
sin x3/2

x3/2
 =  2.  So  y = 2  is a horizontal asymptote.  Note that a function 

may cross its horizontal asymptote (unlike a vertical asymptote) any number of times.
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Limits of Rational Functions at Infinity by Analytic Methods

Examples  A traditional method for a rational function is to divide the numerator and denominator by  
x  raised to the degree of the denominator.

limx→+∞
x2+ 2 x+ 3

x3-5
 =  limx→+∞

x2+ 2 x+ 3
x3

x3- 5
x3

 =  limx→+∞

1
x
+

2
x2 +

3
x3

1 -
5
x3

 = 0+0+0
1- 0

 = 0
1  = 0

     In the above calculation, we needed some more arithmetic for the symbols  +∞  and  -∞.

1
+∞ = 0+ 1

-∞ = 0-

limx→+∞(anxn + an-1xn-1 + . . . + ao)  =  limx→+∞ anxn.

(*)

Proof

limx→+∞(anxn + an-1xn-1 + . . . + ao)  =  limx→+∞ xn(an + an-1
x  + . . .  + ao

xn )  =  limx→+∞ anxn

Comment on the quick method   For example,  x4 - 2 x2 + 9 x - 7.  When  x = 100,  the leading term 
x4  is 100 million, but  2x2  is only  20,000,  9x  a mere  900  and  7  barely counts.  The graph of this 
function in red along with its leading term in blue are graphed below. In the slightly zoomed out 
picture on the right the graphs of the polynomial and its leading term are barely distinguishable. 
This means that you can ignore any terms other than the leading ones in rational function when 
taking the limit at infinity. 

-3 -2 -1 1 2 3
X

-20

20

40

60

80

Y

-30 -20 -10 10 20 30
X

200000

400000

600000

800000

Y

       A polynomial and its leading term are nearly indistinguishable for  x  large.

At the end of a calculation, the 'exponents' in 0+ and  0- are dropped, of course, because they are not 
extended reals.

Quick Method  The behavior of a polynomial function at infinity is determined by its leading term.

Quickest Method   Asymptotically equality
x2 + 2 x + 3
x3 - 5 ≈ x

x

2

3 = x
1 ≈>  0   at infinity

ExampleExample 
Quick Method   Limit Method

limx →+∞      
x3          - 5          =  limx →+∞

x2 + 2 x + 3 2

x

x__
 

 
 =  lim                                          

x →+∞ 1
x

__
 = 03

Quickest Method   Asymptotically equality
x2 + 2 x + 3
x3 - 5 ≈ x

x

2

3 = x
1 ≈>  0   at infinity

ExampleExample 
Quick Method   Limit Method

limx →+∞      
x3          - 5          =  limx →+∞

x2 + 2 x + 3 2

x

x__
 

 
 =  lim                                          

x →+∞ 1
x

__
 = 03
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Examples    ∞∞   indeterminate forms  

lim
x→ +∞

2 x+ 1

x2 + 5 x- 4
= lim

x→ +∞

2 x

x2
= lim

x→ +∞

2

x = 0

lim
x→ -∞

2 x2 + 1

x2 + 5 x- 4
= lim

x→ -∞

2 x2

x2
= lim

x→ -∞
2 = 2

lim
x→ +∞

x2 + 5 x- 4

2 x+ 1
= lim

x→∞

x2

2 x
= lim

x→∞

x

2
= +∞

Examples  The quick methods often, with care, work well with other limits involving fractions. 
(Of course, you must be aware of any indeterminate forms that may occur in the process and 
treat them correctly.) 

lim
x→ +∞

 2    x + 1
x2 + 5 x- 4

= lim
x→ +∞

2 x

x2
= lim
x→ +∞

2

x3/2
= 0.

lim
x→ +∞

2 x2 + sin x

x2 + 5 x- 4
= lim

x→ +∞

2 x2

x2
= 2

because x2 grows much more rapidly than sinx as x → +∞. 

Using asymptotic thinking the previous example can be written
2 x2+ sin x
x2+ 5 x- 4

≈ 2 x2

x2  = 2  at infinity.

lim
x→ +∞

x2 - 6 x+ 3 - x ∞ - ∞

= lim
x → +∞

 x2 - 6 x+ 3 - x ·
x2 - 6 x+ 3 + x

x2 - 6 x+ 3 + x
rationalizing numerator

= lim
x → +∞

x2 - 6 x+ 3 - x2

x2 - 6 x+ 3 + x

≈ lim
x → +∞

-6 x + 3

x2 + x

quick method

= lim
x → +∞

-6 x

x + x
= lim

x → +∞

-6 x

2 x
= - 3 quick method, x > 0

Caution  Never use the methods for limits at infinity for other limits.
limx→ 0

2 x2+1
x2+5 x-4

= lim
x→ 0

2 x2

x2
= lim
x→ 0

1
42 = 2  is wrong.  The correct answer  is  - , of course.

Final comments   Limit notation is preferable because most math users are familiar with it. Hyperreal 
thinking is preferable because it tends to be better focused, namely the value of the limit as  x → a  is 
found by examining the values of  f  infinitesimally close to  x = a;  it's better than messing around with 
not very close real numbers. Of course, if you are doing approximate limits you will use real numbers, 
but hyperreal thinking gives you perspective about the process.

___
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Important Note about Limits 

     The result of any limit calculation can only be one of the following:

1. An extended real number:
  a real number

    the symbol  +∞  or  -∞ 

       Calculus includes any topic that involves a limit calculation. So a result  in calculus 
can only be one of the above two outcomes. When we do calculus, we will always follow 
this rule because it is generally meaningful to do so. Some calculus textbooks do not 
allow  +∞   or  -∞   for  some  calculus  computations.  Also, we  will  adopt  the 
convention that a limit exists at a domain endpoint if the appropriate one-sided limit 
exists; again, not all mathematicians agree with this; however, most engineers and 
scientists do because the results always have a reasonable interpretation. 

Exercises 

 #1.  limx → +∞   
1+   x

x

       limx → -∞
1+ x

x

#2.  limx → +∞
x

x-2

limx → -∞
x

x-2

#3.  limx → +∞
x2

3-x

        limx → -∞
x2

3-x

        limx → +∞
3-x

x2
  

        limx → -∞
3-x

x2
  

#4.  limx → +∞ x - x2 - 6 x

        limx → -∞ x - x2 - 6 x

2. Does not exist.
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#5.  y = f(x)  is the function shown below.

5 10
X

-2

-1

1

2

3

Y

y = f(x)

a. limx→-2-f(x) = b.  limx→ 0-f(x) = c. limx→2-f(x) =     d.  limx→ 6-f(x) =     e.  limx→-∞f(x) =
      limx→-2+f(x) =       limx→ 0+f(x) =       limx→2+f(x) =  limx→ 6+f(x) =        limx→+∞f(x) =
      limx→-2  f(x) =       limx→ 0  f(x) =       limx→2  f(x) =   limx→ 6  f(x) =           limx→- 4 f(x) =

#6.  Verify the proof of Equation (*).

#7.  Work each carefully. Check each using the quick method (preferably doing mentally).

limx → -∞

2 x + 3

x3 - 3 x + 5
limx → -∞

2 x3 + 3 x2

x3 - 3 x + 7
limx → -∞

2 x4 + 3

x3 - 3 x + 5

limx → +∞

2 x5 + 3

x3 - 3 x + 5
limx → +∞

2 x2 + 3 x3

x3 - 3 x + 7
limx → +∞

3 - 2 x + 3x

x3 - 3 x + 5

limx → -∞

2 x5 + 3

x3 - 3 x + 5
limx → -∞

2 x2 - 3 x3

x3 - 3 x + 7
limx → -∞

3 - 2 x4

x3 - 3 x + 5

#8.  limx → +∞ 2
1

x  
limx → -∞ 2

1

x    

Solutions

#1.  1, DNE
#2.  1, 1
#3.  - ∞,  +∞, 0, 0

#4. 3, - ∞.   Hints: rationalize numerator and use  x2  =  |x|  =    -x, x < 0
x, x ≥ 0

-10 -5 5 10

-20

-15

-10

-5

5

#5.    a.  1          b. 0 c. 3 d. -∞ e. DNE
                0                 3 -∞ ≐ 2.5
            DNE              

0
0 3 -∞ 3

 #7.   0  2 +∞
  0  2 -∞

+∞  3 +∞
+∞   -3 +∞
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1.7  Application: Graphing Rational Functions

Many students encounter rational functions early in university applied courses. Asymptotes plus a few data 
points give a quick way of graphing them fairly accurately. Of course, if you need a completely accurate 
graph, you would use a computer graphing utility and in real life coefficients are usually not integers and 
numerical factoring is required. But graphing by hand gives you important insights into the behavior of 
these functions.

Rational Functions Review

y =
P(x)

Q(x)
=

am x
m + · · ·

an x
n + · · ·

, m and n non-negative integers

Vertical Asymptotes
Where Q(x) = 0

Horizontal Asymptotes
deg P < deg Q ⟹ y = 0 is a horizontal asymptote

deg P = deg Q ⟹ y =
am

an
is a horizontal asymptote

deg P > deg Q ⟹ a slant or curved asymptote of degree xm - n

In preparation for graphing, it is often helpful to factor the denominator in order to determine the vertical 
asymptotes. Factoring the numerator is useful if you wish to know the zeros of the rational function.aaaaaaa        

    If   deg P > deg Q, you will want to divide   P(x)  by  Q(x)  to determine the slant or curved asymptote.aa

1. Find all asymptotes and draw them as a dashed curves on a graph.
2. Then find a few well chosen data points to ‘nail down’ the curve. Place them on the graph.
3. Sketch the curve taking into account the above information.

     Normally the result is quite good considering the small amount work required. Occasionally there is 
a surprise ‘wiggle’ for which you need some calculus information that you will learn in Chapters 2 and 3.

Example   y = x

x-1

Vertical asymptote:  x = 1

Horizontal asymptote:  y = x

x-1 ≈ 1  at infinity

x y = x

x-1

-2 2
3

0 0
2 2

The Method

-4 -2 2 4
X

-3

-2

-1

1

2

3

4
Y

Choice of  points requires 
a combination of artistic 
and mathematics skills.
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Example   y = 
x

x2+ x-2
 = x

(x-1) (x+2)

Vertical asymptote:  x = -2, 1

Horizontal asymptote:  y = 
x

x2+ x-2
≈ 

x
x2 =  

1
x
≈> 0

x y = x

x-1

-3 - 3
5

-1 1
2

0    0
2 1

2

-4 -2 2 4
X

-4

-2

2

4

Y

Example  y = 
x2

x2- 4
 = x2

(x-2) (x+2)

Vertical asymptote:  x = -2, 2

Horizontal asymptote:  y = 
x2

x2- 4
≈ x2

x2  ≈> 1

x y = x

x-1

-3 9
5

-1 - 1
3

0     0
1  - 1

3

3 9
5

-4 -2 2 4
X

-4

-2

2

4

Y

x
■■

See if you can discover the rules for when a rational 
function at a vertical asymptote is on the same side 
of the x-axis or not.
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Example  Slant Asymptote

y =
x2 + 1

x
= x +

1

x

Vertical asymptote:  x = 0

By monomial division

 y = x + 1
x

1
x.  The slant asymptote is  y = x  since       ≈> 0  for  x  infinite.

x y =
x2 + 1

x

-1 -1

1 1

-4 -2 2 4
X

-4

-2

2

4

Y

Example Curved Asymptote You verify the details.

y =
x4 - x

x2 + 1
= -1 + x2 +

1 - x

1 + x2

By computer or long division
y = -1 + x2 + 1-x

1+x2
.  The curved asymptote is the parabola  

y = -1 + x2  since  1-x
1+x2

 ≈> 0  for x = ±∞.

-4 -2 2 4

-5

5

10

15
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Example  Curved Asymptote   You verify the details.

y =
x4 - 3 x3 + 2 x - 4

x2 + 1

y = -1 -3 x +x2 +
-3 + 5 x
1 + x2

. The curved asymptote is y = -1 - 3 x + x2

-4 -2 2 4 6

-5

5

10

15

20

Exercises
For each question

a. Find all vertical, horizontal, slant and curved asymptotes. Graph.
b. Make a short table of test points.
c. Use the above to sketch a good graph.

1. y = 1
x-2

2. y = x

2 x-1

3. y = x

x-2

4. y = 2 x

(x+1) (x-2)

5. y = x2

(x-2)2

6. y = x3

x-2

7. y = x3+ 1
x-2

8. y = x4

(x+2) (x-2)

Note  again  On occasion this method 
can miss  an important detail such as a 
low point. Calculus will help you with 
such problems later. 

Solutions are not provided as they would make the exercises trivial. 
If you wish, graph with Wolfram Alpha for a check on your solutions.
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Chapter 2   The Derivative

2.0  We Need (something called) the Derivative
     In this section we look at some applications that require a calculation involving limits.        
It gives the growth rate of the function. This calculation will be called the derivative 
because it is derived from the function under investigation. 

We finally made it to the calculus!

Real Numbers

⟶  Algebra
⟶  Functions

⟶  Continuity  &  Limits
⟶  Calculus!

The Derivative
      The Definite Integral

The Instantaneous Growth Rate  In high school you used functions to describe the size of a 
quantity  Q  at a time  t. Just as important may be finding its growth rate at time  t.

The average growth rate of  Q  on the interval from time  t  to time  t+Δt  is

rav =
ΔQ

Δt
.

(Δ  is the upper case Greek letter delta.  Δt  means the change in  t  and  ΔQ  means the corresponding 
change in  Q.  This use of  Δ  is common in mathematics.)
     This formula says that the average growth rate is proportional to the change in the quantity and 
inversely proportional to the change in time; a smaller  Δt  for the same  ΔQ  produces a larger growth 
rate, which is reasonable.

Q

ΔQ

t
t+Δt
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     In many applications we are not really interested in this average rate of change over the interval from  
t  to  t+Δt, but rather the (instantaneous) rate of change  r  at  time  t. Unfortunately, we cannot just set  
Δt = 0  which implies that  ΔQ = 0  because we would get the growth rate at time  t

r(t) = 0
0

which is not a defined number (it always requires two distinct time measurements for a rate calculation). 
What we must do is start with a non-zero  Δt  and let  Δt  shrink to  0  without ever letting  Δt  
equal to  0;  that is, we find the limit as  Δt  approaches  0  of  ΔQ

Δt   and write for the instantaneous growth 

rate

r(t) = limΔt→ 0
ΔQ
Δt .

Example 1  The amount of bacteria in a culture is  m = f(t) = 1.3 t mg,  t  in hours. 
Find the growth rate when  t = 10 hours.

m

Δm

t
t+Δt

r(10) =  limΔt→ 0
Δm
Δt

         =  limΔt→ 0
f (10+Δt) - f (10)

Δt

         = limΔt→ 0
1.310+Δt- 1.310

Δt

If we let  Δt = 0,  we would get   f (10+0) - f (10)
0 =  0

0 ,  which is not a number. 

Let us evaluate this limit numerically (i.e., approximately) by examining the quotient 
for a sequence of  Δt's  approaching  0.

Δt
1.3 10+Δt

- 1.3 10

Δt

1 4.13575

.1 3.66478

.01 3.62166

.001 × 3.61739
.0001 3.61696

O ?
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It looks like the growth rate after 10 hours is

r(10)  =  limΔt→ 0
Δm
Δt   ≐  3.617 mg

hour..

This means that at time  10 hours  you expect the mass to increase by about  3.617 mg  
during the next hour.

Velocity from Distance  Find the velocity of a particle whose position is given by  
x = f(t).  (It is the rate at which the distance is changing at time  t.)

     The average velocity of the particle on the interval from time  t  to time  t+ Δt  is

vav =
Δx
Δt.

x x+Δx

t+Δt

v

     In many applications we are not really interested in this average velocity over the interval 
from  t  to  t+Δt, but rather the (instantaneous) velocity  v  at  time  t.  For example, a policeman would 
never say, "I clocked your average speed on the interval from 9:45 to 9.46 AM to be  125 Km

hour ,"  but rather, 

"Your speed at  9:45 was  130 Km
hour ."  Unfortunately, we cannot just set  Δt = 0 (which implies  Δx = 0)  

because we would get the velocity at time  t  to be  v(t) = 0
0   which is not a number 

(it always requires two distinct time measurements for a velocity calculation.) 

     What we must do is start with a non-zero  Δt  and let  Δt  shrink to  0  without ever letting  Δt  
equal to zero. Again we write

v(t) = limΔt → 0
Δx
Δt .

X

t
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Example 2  The distance of a cart moving along the X-axis is given by  x = t  cm,  t  in seconds. Find the 
velocity when  t = 9 seconds.

 v(9) =  limΔt→ 0
Δx
Δt

          =  limΔt→ 0
f (9+Δt) - f (9)

Δt

          =  limΔt→ 0
9+Δt - 9

Δt

Let us evaluate this is graphically by graphing this quotient against  Δt  and see what its value is close  to  
Δt = 0  on the right.

0 1 2 3 4 Δt

0.155

0.160

0.165

0.170

9+Δt - 9
Δt

It looks like the velocity at 9 seconds is
v(9)  =  limΔt→ 0

Δx
Δt   ≐  0.167 cm

second. .

This means that at time  t = 9 seconds  it looks like the cart will travel about  0.167 cm  
during the next second.
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Slope from Height  Find the slope  m  of the curve  y = f(x)  at the point  x.  

The average slope of the curve on the interval from  x  to  x+Δx  is

mav =
Δy
Δx.

y = f(x)

x x+Δx

Δx

Δy

f(x)

f(x+Δx)

X

Y

     Again we want the slope at  x, not the average slope on the interval from  x  to  x+Δx.  
Again we cannot just let  Δx = 0  because we would get   

m(x) = 0
0

which is not a number (it always requires two distinct points for a slope calculation.) 
What we must do is start with a non-zero  Δx  and let  Δx  shrink to  0  without ever letting  
Δx  equal to zero. We write

m(x) = limΔx→ 0
Δy
Δx .

Example 3  Find the slope of the curve  y = f(x) = x2 at  x = 1.

1 2 X

1

2

3

4

Y

y = x2

Δx

Δy

 m(1) =  limΔx→ 0
Δy
Δx

=   limΔt→ 0
f (1+Δx)-f (1)

Δx

=   lim Δt→ 0
(1+Δx)2-12

Δx
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 Let us evaluate this limit analytically.

=  limΔx→ 0
1+2Δx+Δx2- 1

Δx

=  lim Δx→ 0
Δx(2+Δx)

Δx

          =  limΔx→ 0 (2+Δx) We can cancel because we do not allow  Δx = 0.

          =  2 Because when  Δx  is close to  0,  2+Δx  is close to  2.

So the slope at  x = 1  is
m(1)  =  limΔx→ 0

Δy
Δx    Assuming distance is measured in meters.

            =  2 m

m

            =  2

This means that at the point  (1,1)  it looks like if you go one unit to the right, y  increases by 
about two units.

     You are now using limits. So you are doing calculus, the part called derivative calculus.  
In the rest of this chapter you will get proficient at derivative calculus. Three equivalent styles according 
to the user are given for the definition of derivative.

Definition of Derivative   The derivative of the function  f  at  x = a

Hyperreal Version    

Pure Math  Version  

Rough Applied Version 

 Memorize these ASAP! 

Exercises   Reread this section thoughtfully. Work each of the following using the styles of 
the examples. State the units in your answer. Note when a certain style does not work.

1. The mass of a melon is given by  m = f(t) = 3t2 gm, t  in weeks.  Find its growth rate

when  t = 10 weeks. Evaluate the limit analytically.

2. The position of a particle moving along the X-axis is given by  x = g(t) = 2t + 1 cm,
t in seconds. Find its (instantaneous) velocity when  t = 3 seconds.  Evaluate the limit graphically.

3. A curve is given by  y = k(x) = 4
x

. Find its slope when  x = 2. Evaluate the limit numerically.

dy
dx

= f(a+dx) - f(a )dx  ≈> f '(a) 

          f '(a) = limh → 0 
f(a+h) -f(a)

h

dy  = 
f(a+dx) - f(a )dx dx ≈ f ' (a) or  =  f ' (a)
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Solutions

1. m = f(t) = t2 gm, t  in weeks at  10 weeks. Do analytically.
dm
dt  =  f (10+dt) - f (10)

dt hyperreal style

        =  (10+dt)2 - 102

dt

=  100+ 20 dt+dt2- 100
dt

        =  20 dt+dt2

dt

        =  t(20+dt)
dt

        =  20 + dt
                 ≈> 20 gram

week

2. x = g(t) = 2t + 1 cm, t  in seconds  at  3 seconds. Do graphically.
dx
dt  =  g(3+dt) - g(3)

dt hyperreal style

        =  (2 (3+dt)+1) - (2·3+1)
dt

Note Using the hyperreal variable dt 

as a real variable is poor ascethetics.

1 2 3 4 5
dt

-1

1

2

3

4

2 3+dt+1 - 2·3+1
dt

Looks like the velocity at  3 seconds  is  2 cm
second .

Note  A stupid, but correct way to work this easy problem.

3. y = k(x) =  4
x . Find the slope at  x = 2. Do  numerically.

dy
dx  = 

      dx
4

2+dx
- 4

2

dx

       1 -0.66666
       0.1 -0.95238
       0.01 -0.99550
       0.001 -0.99950

↓ ↓

 0 -1

 Answer:  the slope at  x = 2  is  m = -3.

0 1 2 3 4 5
x0

1

2

3

4

5

y =  4
x

4
2+dx

- 4
2

dx

⟶ 
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2.1   The Derivative.  Starting out

Let us look at the equivalent definitions of derivative again.

Definition of Derivative   The derivative of the function  f  at  x = a:

dy

dx
 =

f (a+dx) -f (a)
dx   ≈>  f '(a), dx ≠ 0

f '(a)  = limh→ 0
f (a+h) -f (a)

h

Hyperreal Versionaaaa    

Pure Math Versionaaaa        

Rough Applied Version 
dy

dx
=

dy
dx =  

(x+dx)2-3 (x+dx)+2- x2-3 x+2
dx

       0
0 

=  
x2+ 2 x dx+dx2 -3 x-3 dx+ 2- x2 -3 x+ 2

dx

=  2 x dx- 3 dx+dx2

dx

=  dx( 2 x- 3+dx)
dx

            =  2x - 3 + dx

≈>  2x - 3

definition of derivative

expanding

simplifying

factoring

can cancel:  dx ≠ 0

(There is no  f(x), so don’t use the  f  ’(x)  notation.)

dx 

Notes:
The hyperreal definition is preferred for doing proofs. It’s symbol  dy/dx says the (pre)derivative 

at the p oint  x = a  is the ratio of the change in  y  to the change in  x  there. The closest real number  

to dy/dx  gives the derivative  f  ‘(a).   ≈>  is a clear, often easy operation which associates a 

hyperreal number to the closest real number (more about this later).
  In the pure math definition,  f  ‘(a)  is a convenient way of indicating the derivative at a point  x = a 

and is a more concise notation than  dy.|  but fails in indicating the meaning of the derivative.
x = a

0
0
-

The applied version is convenient, user friendly and naturally used by many applied calculus users. 
It is not wrong, but  ≈>  is more descriptive.

Yes, you may use whichever style of derivative definition you prefer. In mathematics, when doing 
theory) we will usually use the hyperreal form.

Finding the derivative by the definition   It is a tradition to require beginning calculus 

students to do a few of these. It is just as easy to find the derivative at any point  x  in the domain as 
at a particular point  x = a: so we will usually do that.  All these are indeterminate forms of the type 

   if we illegally allowed  dx  or  Δx  to be  0.
a

Example   A polynomial function  y = x2 - 3 x + 2.

 ≈   f '(a)
f (a+dx) -f (a)

dx

dx or

__

2x dx -3 dx
≈
___

{  }

--
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Example  A rational function  y = 1
x .

dy
dx  =  1

dx ( 1
x+dx - 1

x
)       0

0 

=  1
dx

  x- (x+dx)
x(x+dx) 

 =  -dx
dx x(x+dx)

=  -1
x(x+ dx)

 ≈> - 1
x2

Example  An algebra function  y = x .

dy
dx  =  x+dx - x

dx        0
0 

 =  x+dx - x

dx
x+dx + x

x+dx + x

 =  (x+dx) - x

dx  x+dx + x 

  =  1
x+dx + x

 ≈> 
1

2 x

dx

The Power Rule  An important derivative formula. Formulas make calculus productive. 

The ‘operator notation’  d means ‘take the derivative of what follows.’

d

dx (xn) = n xn-1

n  a positive integer.

To do the proof, we need some algebra formulas.

Difference of Powers formula   an - bn

a2 - b2 = (a - b) (a + b)

a3 - b3 = (a - b) (a2 + a b + b2)

a4 - b4 = (a - b) (a3 + a 2 b + a b2 + b3)

  ⋮
an - bn = (a - b) (an-1 + a n-2 b + ⋯ + a bn-2 + bn)   there are  n+1  terms inside the last parentheses 

Let us try one for practice  with  n = 5.

a5 - b5 = (a - b) (a4 + a 3 b + a 2 b2 + a b3 + b4)

definition of derivative

multiply by  1

(a - b)(a + b)
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Derivation  of the Power Rule

d

dx (x
n) 

  =  (x+dx)n- xn

dx
 definition of derivative

  = 1
dx [(x+dx) -x](x+dx)n-1+ (x+dx)n-2 x + ( x+dx)n-3 x2 + · · · + (x+dx) xn-2+ xn-1      Let  a  = x+ dx,  b = x

  =  1
dx (x+dx)n-1+ (x+dx)n-2 x + ( x+dx)n-3 x2 + · · · + (x+dx) xn-2+ xn-1dx

 = (x + dx)n-1 + (x + dx)n-2 x + ( x + dx)n-3 x2 + · · · + (x + dx) xn-2 + xn-1  

≈>  xn-1 + xn-2 x + xn-3 x2 + · · · + x xn-2 + xn-1        

   =   n xn-1

We only proved the power formula for  n  a positive integer.  Will show later it is true for  n  any real 
number. We will allow ourselves to use the power rule for any  n  now.

Examples 
d

dx x
3 =  3 x2

d
dx x

100 =  100 x99 don’t try this by the definition at home! 
d

dx ( 1
x2 ) =  d

dx x
-2 =  -2 x-3

d
dx ( x ) =  d

dx x
1//2 =  1

2 x- 1/2

d
dx (x

π) =  π xπ-1

d
dt t

5 =  5 t4

d
dx π

2 =  0

Tangent and perpendicular lines to a curve at a point

Tangent lines are an elementary application of derivatives important for understanding the derivative 
and for applications the derivative.

The tangent line to the curve  y = f(x)  at the point  (x1, y1)  with slope  m  is
y = y1 + m(x - x0), 

where  m = f ’(x1). Then the tangent line formula is

y = f (a) + f ' (a) (x - a)

The perpendicular line to the curve  y = f(x)  at the point  (x1, y1)  with slope  m  is

y = f(a) - 1
f ' (a) (x - a)

 n  equal terms
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Higher Order Derivatives  

In this context, if  y = f(x),  dy
dx = f ‘(x)  is called the first derivative. Since it is also a function, you can take 

its derivative:
d

dx 
dy
dx   =  d2 y

dx2  =   f ’’(x),  the second derivative (Why did we write  d 

2  but  dx2?)

and so on. Common alternative notions:

y,  dy
dx ,  d2 y

dx2 ,  d3 y
dx3 , d4 y

dx4 , … , dn y
dxn , …

f(x),  f '(x),  f '' (x),  f '''(x), f (4)(x) , … , f (n)(x), …

Others are 
Dy, Dxy,  y'  and  y

Exercises 
1. Use the definition of derivative to find

a. d
dx x

2 + 5 x + 3 =  

b. d
dx (

2
x-3 ) =

c. d
dx (

1
x

) =

d. d
dx (c) =

e. d
dx (mx + b) =

2. Harder ones, by the definition of derivative.

a. d
dx x

4 =

b. d
dx 

x
x2+ 1  =

c. d
dx  x

3
 =

3. What does the word mnemonic mean? How do you pronounce it.

4. Work using the Power Rule.

a. d
dx x

7 =

b. d
dx x

3  =

c. d
dx  x

3
 =

5. a.  Find the tangent line and perpendicular line to  y = f(x) = x2  at  x = 2.
b. Graph and discuss the result.

used in some applications.
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Solutions

1. a.  d

dx (x
2 + 5 x + 3)

= (x+dx)2+5 (x+dx) +3 -x2+ 5 x+ 3
dx

= x2+ 2 x dx+dx2 +5 x+ 5 dx+ 3- x2- 5 x- 3
dx

= dx(2 x+dx+5)
dx

≈> 2x + dx + 5

b. d

dx 
2

2 x+3) 

         = 1
dx 

2
2 (x+dx)+3) - 2

2 x+3) 

         =  ⋯
         = - 4

(2 x+3)2

c. d

dx 
1

x


= 1
dx 

1

x+dx
- 1

x


   = 1
dx


x - x+dx

x+dx x


    = 1
dx


x - x+dx

x+dx x
·

x + x+dx

x + x+dx
      (a-b) (a+b) = a2- b2

    = 1
dx


x - x+dx

x+dx x  x + x+dx 


    = 1
dx


- dx

x+dx x  x + x+dx 


    = -1

x x  x + x+dx 

    ≈> -1

x x  x + x 

    = -1
2 x3/2

d. 0

e. m

2 a.  4x3

b. 1-x2

x2+12

c. Hint: (a-b) (a2 + ab+b2) = a3- b3

3. See dictionary.

4. a. 7x6

b. 3 x 3 -1

c. 1
3 x2/3
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#5. a.  Tangent line:
f(2) = 22 = 4
f ’(2) = 2·2 = 4

y = 4 + 4(x - 2)
   Perpendicular line:

   m =  - 1
4

y = 4 - 1
4 (x - 4)

      b.

0.5 1.0 1.5 2.0 2.5 3.0

-4

-2

2

4

6

8

Comments:  The graph is correct. But the tangent line, while looking like a tangent line, does not look 
like it has slope  4. The perpendicular line does not look perpendicular. 
The cure is to make sure the scales on both axes are the same.

When doing geometry, we usually want the scales on both axes to be the same. But in other 
applications we do not care (for example, in a motion problem, why would we want the distance axes 
with units in meters to have the same scale as the time axes with units in seconds?).

1 2 3 X

1

2

3

4

5

6

Y

It looks good now.
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2.2  Understanding the Derivative

Definition of the Derivative   The derivative function  f ' (x)  is
dy
dx

 =  f(x+dx) - f(x)
dx  ≈>  f ’(x)

provided the result of rounding off is the same for every infinitesimal  dx ≠ 0.

Possible Outcomes   Since there are two possible outcomes of rounding off, the same 
outcomes apply to derivatives.

1. f ’(x)  is a real number.
f ‘(x)  is  +∞  or  -∞

2. f ‘(x)  Does Not Exist  (DNE)

f ‘(x)  is called the derivative of  f(x).  f  is said to be differentiable at  x  if  f ‘(x)  is an extended real 

number because it is meaningful in applications to do so (most mathematicians do not include  ±∞).  

The process of deriving  f ‘(x)  from  f(x)  is called differentiation.  

Examples
  f(x) = x2 f(x) = x1/3              f(x) = x2/3

  f ’(x) = 2x f ‘(x) = 1
3 x

2/3
   f ‘(x) = 2

3 x
1/3

  f ‘(1) = 2, exists f ‘(0) =  1
0+  =  +∞           f  ‘(0)  DNE

-1.0 -0.5 0.5 1.0 1.5 2.0

1

2

3

4

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

f ’ (1) = 2 f ’ (0) = +∞ f ’ (0) DNE

When does a function have a derivative?   The following statements are equivalent.

1. f   is differentiable at  x = a
2. f ’(a)  exists
3. f  is locally linear at  x = a
4. f   has a tangent line at  x = a
5. f   is smooth at  x = a Thanks to Harvard Consortium Calculus.

X

X

X

Y

Y

Y

?

} extended real number
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It is a good exercise on occasion to look a point on a curve where it has a derivative and think about the 
five equivalent properties. Lets look at one in particular, local linearity.

0.2 0.4 0.6 0.8 1.0 x
-0.2

0.2

0.4

0.6

0.8

1.0

x sin1
x

0.1225 0.123
x0.1150

0.1155

0.1160

0.1165

0.1170

0.1175

0.1180

0.1185

x sin1
x

The ‘line’ on the right graph above is a magnification of about  1000  of the left graph near the red dot. 
So why is local linearity so important for the existence of its derivative?
Look at the graphs below.

Δx1

Δy1

Δx2

Δy2

dx1

dy1

dx2

a

The problem in finding the slope at  x = a  is this.
The slope ratios depend on the size of  Δx:

a

                    If you take  dx  to be an infinitesimal, then
       the slope ratios are still not equal, but: 

Δy1

Δx1
 ≠ Δy2

Δx2
. dy1

dx1
 ≈ dy2

dx2
,

   Limit people have to go through a complicated 
of letting  Δx  approach  0  in order to find  

       infinitesimally close. So for either calculation, 
       the slope ratio yields

        f ’(a). dy
dx  ≈> f ‘(a).

dy2
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When does a function not have a derivative?  Let us think in terms of smoothness.

a a a

  f  is discontinuous at  x = a  f  has a cusp at  x = a        f  highly oscillatory at  x = a

wood planer  wood scraper  sandpaper

Applications

For mathematicians, finding the slope and tangent line to a curve  y = f(x)  at  x = a  is a favorite 
application.

the slope is  m = f ’(a)
the tangent line is   y = f(a) + f ’(a)(x - a)

the slope of the perpendicular line is  m⊥ = - 1
m

 = - 1
f ' (a)

the perpendicular line is  y = f(a) - 1
f ' (a) (x - a)

Note below the relationship between the slope of a line (red) and the slope of a line perpendicular to 
it (blue).

1

m
1

-m
l

l⊥

Slope of the line  l  is   Δy
Δx  = m

1  = m 

Slope of the perpendicular  line  l⊥ is   m⊥= Δy
Δx  = 1

-m
= - 1

m
.

For scientists, finding the  growth rate (or rate of change) of a quantity is perhaps the most important 
application.
     For example, suppose the mass of a growing melon is  M = t2 gm, t in weeks. What is its growth rate 
when  t = 5 weeks?
Answer:  Its growth rate then is

dM
dt = 2t | .

t=5
= 10 grams

week

which means during the next week, you expect its mass to increase by about*  10 grams.

  'Tactile
thinking'

*about because the curve is not completely straight.
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Exercises  When the exercise set is small, make sure you spend extra time on the lesson readings!

1. Invent graphical examples of your own that illustrate

1. f ‘(1)  is a real number.

2. f ‘(1)  is  -∞
3. f ‘(1)  does not exist

2. a.  Use a graphing calculator to draw the curve  y = x3  for  0 ≤ x ≤ 2.

Zoom in about  x = 1  until the curve there looks like a straight line. What was the
magnification?

b. Find the approximate slope at  x = 1  using a suitable  Δx. Compare with the exact answer.

3. Invent graphical examples of your own that illustrate
a. a discontinuity at  x = 0.
b. a cusp at  x = 0.
c. highly oscillatory  x = 0.

4. Consider the graphs below. Which are differentiable at  x = 0?

-1.0 -0.5 0.5 1.0 X

-1.0

-0.5

0.5

1.0

sin
1
x

-1.0 -0.5 0.5 1.0 X
-0.2

0.2

0.4

0.6

0.8

x sin 1
x

-1.0 -0.5 0.5 1.0
X

-0.5

0.5

x2 sin
1
x

5. Use the definition of derivative to find the derivative of  f(x) = x
3

  at  x = 0. 

Solutions
4. No,  No,  Yes
6. +    ,  -

6.

-1 1
X

1

f(x) = 1 - x2

a. f ’(-1 
+) =+

Think graphically. You soon will learn how to find  f '(x)  analytically.

f ’(-1 
+), the 'derivative from the right' means taking  dx > 0  at  x = -1. 

f  ‘(1-), the 'derivative from the left' means taking  dx < 0  at  x = 1.

Note:     

b. f ’(1 -) =+

∞∞
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2.3  Basic Derivative Rules

You know the Power Rule;  d

dx (x
n) = n xn-1.  Next we learn how to differentiate many algebraic combinations 

of powers of  x. 

Let  u = u(x)  and  v = v(x)  be differentiable.

I. Constant Multiple Rule d
dx (c u)  =  c du

dx  
II. Sum Rule d

dx (u+ v)  =  dudx  + dvdx

III. Product Rule d
dx (uv)  =  du

dx v + u dv
dx

IV. Quotient Rule
d

dx 
u

v
  =

du
dx v - u

dv
dx

v 2

Note:  The Quotient Rule seems to be the hard one to remember. If you memorize the the Product Rule 

as shown above, the numerator  of the Quotient rule is the same as the Product Rule but with a minus 
sign in front of the second term. That minus sign makes sense because when a denominator increases, 
the fraction decreases.

Proofs Using Symmetric Applied Function Notation  This notation is often used by scientists and 
engineers because it is useful and intuitive when analyzing problems (and doesn't waste letters).

Let  u = u(x)  and  v = v(x)  be differentiable functions

u u = u(x)

dx
du

x x+dx
X

u +duu

U

         u(x+dx) = u + du 

Note that there should be no confusion between the dependent variable  u and the function  u(x).

I. Constant Multiplier Rule d

dx (c u) = c 
du
dx

Proof         d

dx (cu) =  
c u(x+dx) - c u(x)

dx

= c(u+du) - (c u)

dx

= c u+ c du- c u

dx

= c 
du
dx

■

definition of derivative

applied notation
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II. Sum Rule d

dx (u + v) = d u

dx  + d v

dx

Proof        d

dx (u + v) = 
(u(x+dx) + v(x+dx)) -( u(x) + v(x))

dx

= 
((u+du) + (v+dv)) - (u+ v)

dx

= du+dv
dx

= du
dx

 + dv
dx

III. Product Rule d

dx (uv) = du
dx v + u

dv
dx

Proof         d

dx (u v) =  
u(x+dx) v(x+dx) - u(x) v(x)

dx

=  
(u + du) (v+ dv) - u v

dx

=  
( u v+ udv+du v+du dv) - u v

dx
 

=  du
dx

v + u
dv
dx

 + du
dx

dv

≈ du
dx

v + u
dv
dx

Textbook Proof    (f(x) g(x))’ =  limΔx → 0 
f(x+ Δx ) g(x+ Δx ) - f(x) g(x )

Δx

 =  limΔx → 0 f(x+ Δx ) g(x+ Δx ) - f(x+ Δx ) g(x) + f(x+ Δx ) g(x) - f(x) g(x )
Δx

Δx + f(x+ Δx ) - f(x )
Δx

g(x)= limΔx → 0 f(x+Δx ) 
g(x+  Δx ) - g(x)

=  f(x) g ’(x) + f ’(x) g(x)

Explain this step.

IV. Quotient Rule d

dx
 u

v
 = 

du
dx v- u

dv
dx

v2

Proof d

dx  u

v
  =  

u(x+dx)
v(x+dx)

- u(x)

v(x)

dx

           =  1
dx 

u

v

+du
+dv -

u

v


=  
1

dx
(u+du) v- u(v+dv)

(v+dv) v

=  1
dx

uv+ du v- u v- udv
(v+dv) v

      =  1
dx

du v- u dv
(v+dv) v

                 =  
du
dx v - u

dv

dx

(v +dv) v

                 ≈ 
du

dx
v- u

dv

dx

v
2

____

(
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Examples
d

dx (x
3 - 3 x2 + 5) = 3 x2 - 3 ·2x

d

dx ((2 x + 1) (x3 + 2 x2 + 5)) = 2(x3 + 2 x2 + 5) + (2x + 1)(3 x2 - 2 ·2x)

d

dx 
x2+ 2 x+ 7

4 x- 9  = (2 x+ 2) (4 x- 9) - x2+ 2 x+ 7 (4)

(4x-9) 2

You can now differentiate all polynomial and rational functions quickly!

How do you differentiate the product of three factors? Think of it as two factors. 
d

dx [x(x
2 + 1) (x3 + 2)]

= d

dx [x {(x
2 + 1) (x3 + 2)}]

=  1{(x2 + 1) (x3 + 2)} + x{2x(x3 + 2) + (x2 + 1)3x2}

Another way to remember the product rule is to write the sum of uv twice, uv + uv, and then take the 
derivative of  u  in the first term and then the derivative of  v  in the second term. Trying that for  uvw  we 

  would get d

dx (uvw) = du
dx vw  +   u dv

dx w +   uv dw
dx    

Good Derivative Notation Style  for  y = f(x). Various notations are
dy
dx

The first is preferred by applied mathematicians. The second by pure mathematicians. The others are 
for special applications or are out of style.  y’  is for the poorly motivated (it does not tell you what the 
independent variable is). The over-dot notation is usually used when the independent variable is  t.

Examples

            Form

y = 3x2 + 2, dy
dx

Preferred Style 

= 6x

f(x) = x5,  f ‘(x) = 5x 
4

y = f(x), dy
dx  = f '(x)

x3 + 5 x, d

dx (x3 + 5 x) = 3 x2 + 5

Theory Exercises  

1T.  Use the definition of  ≈  to prove  du
dx

v + u
dv
dx

 + du
dx

dv ≈ du
dx

v + u
dv
dx

.

2T.  Use the definition of  ≈  to prove 
du
dx v- u

dv
dx

(v+dv) v
 ≈ 

du
dx v- u

dv
dx

v2 .

3T.  Prove   dx (uvw) = du
dx vw  +   u dv

dx w +   uv dw
dx .

≈ f '(x) = Dy = D f(x) = Dxy = Dxf(x) = y = y’.
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Exercises  Do not simplify*

1. y = x7 2. f(x) = x5/2

  3.  d

dx [x
π]   4.  d

dx [π x]

  5.  d

dx [3 x5]   6.  d

dx [-7 x ]

  7.  d

dx [c x ]   8.  d

dx 
5
x3 

  9.  d

dx [3x + 2] 10.  d

dx [ax2 + bx - c]

11.  d

dx [x
3 - 3 x2 - 5 x + 2] 12.  d

dx [x
7 - 3 x6]

13.  d

dx [2 x  - 5 x
3 ] 14.  d

dx [x x - 1]

15.  d

dt [t-3] 16.  d

dp [p3 +2p]

17. d

dx
[(x2 + 5) (3 x3 - 7 x + 5)] 18.   d

dx [(ax + b) (cx2 + dx + e)]

19.  d

dx [(x+1)(x2 + 2) (x3 + 3)] 20.   d

dx [(x+1)(x2 + 2) (x3 + 3) (x4 + 4)]

21.  d

dx 
1

x+5  22.   d

dx 
x

2 x+3 

23.   d

dx 
ax+b

x2+cx+d
 24.   d

dp 
p

p+2 

25.  d

dx 
x2+3 2 x3-7 x+4

x2+ 5  26.   d

dt 
(t+1) (t+2)

(t-3) (t-4) (t-5) 

27. Use the Quotient Rule to prove the Power Rule for  n  a negative integer. Recall we proved the Power
Rule for  n  a positive integer. Hint: write  d

dx (x
-n).

Solutions
1. 7x6

3. πxπ-1

5. 15x4

  7.   d

dx [c x
3 ] = d

dx
1
3[c x

1/3] = c x-
2/3

9. 3
11. 3x2 - 6 x - 5
13.  d

dx [2 x  - 5 x
3 ] = d

dx [2x
1/2 - x1/3] = x-1/2 - 1

3 x
-2/3

15. 1
17. 2x(3 x3 - 7 x + 5) + (x2 + 5)(9 x2 - 7)
19. 1(x2 + 2) (x3 + 3) + (x + 1)(2 x) (x3 + 3)] + (x + 1)(x2 + 2) (2 x2)]

21. 0-1
(x+5)2

23. 
ax2+cx+d-ax+b)(2x+c)

x2+cx+d2

25.  
2 x2 x3-7 x+4+x2 +3 (6x2 -7]-[x2 +3 2 x3 -7 x+4(2x)

x2+ 52

* Normally it is not necessary to simplify unless you want to check the 'answer at the back of the book' or you are

going to use it for further work or you are compulsive. If you do not simplify, you can see how the answer was
calculated when looking at the solutions (depending on the author).

28. Write the formula for the derivative of  uvwz.
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2.4  The Derivatives of Some Transcendental Functions
Today we derive the rest of the formulas for derivatives of functions every beginning calculus student 
should know.

General Derivative Formulas 

I. d
dx (c u) = c du

dx  
II. d

dx (u+ v) = d u
dx  + d v

dx

III. d
dx (u v) = du

dx v + u dv
dx

IV. d
dx 

u

v
 =

du
dx v - u

dv
dx

v2


f(x)
g(x)

' = f ' (x) g(x) 
2
- f(x) g ' (x)

g (x)

Note: remember the numerator of the quotient rule by observing it’s the same as the product 
rule but with a minus sign. The second term is negative because a fraction  decreases when its 
denominator increases.

Special Derivative Formulas
d

dx (c) = 0
d

dx (sin x) = cos x
d

dx (tan x) = sec2x
d

dx (sec x) = secx tan x

 d
dx (e

x) = ex

 (xn)' = n xn-1 
(cos x)' = - sin x 
(cot x)' = -csc2x  

(csc x)' = -cscx cot x 

(ln x)' = 1  x

lim h-> 0 
sin h

h = 1

lim h -> 0 
1- cos h  =  0

To reinforce these limits look at the graphs below

θ
1

sin θ

θ

2π θ
1

1- cos θ

θ

2π

   
   [c f(x)]' = c f ’ (x)

  [f(z) + g(x)]' = f ' (x ) + g ' (x)

    [f(x) g(x)]' = f '(x) g(x) +  f(x) g ' (x)

That’s all folks! (for now)

    The bottom row is not universally taught in first semester calculus. However, some disciplines 
require it. For the rest of us, it gives us more opportunity to practice doing derivatives even for 
unfamiliar functions. We will only do a quick and dirty introduction to them now. Next semester 
we will do a careful study of these very important functions.

The Trig Functions
Finding a derivative normally leads to a  {0/0}  type limit. In section 1.3,  we looked at the limits

 

Hint: Observe values
near  θ = 0.

h
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or, better yet, see if you can read these limits off of the unit circle.

1

A B

C
D

cos θ

tan θ
sin θ

1-cos θ

θ

θ

↑

You will also have to recall some identities:

sin(A ± B) = sin A cos B ± cos A sin B

cos(A ± B) = cos A cos B ∓ sin A sin B

tan A = sin A

cos A
cot A = cos A

sin A

sec A = 1
cos A

csc A = 1
sin A

Proof   Let  y = sin x
dy
dx  =  sin(x+ dx) - sin x

dx  definition of derivative

      =  sin x cos dx - cos x sin dx - sin x

dx

      =  - 1 - cos dx
dx sin x + sin dx

dx cos x

      ≈>  - 0·sin x + 1·cos x  the trig limits above
      =   cos x

Proofs  Let  y = cos  x.  Exercise for you.

Proof   Let  y = tan x   
d

dx tan x =  d

dx 
sin x

cos x
 = cos x cos x - sin x(-sin x)

cos2 x

                =  1
cos2 x

 = sec2x

Proof   Let  y = cot x.  Exercise for you. 

Proof   Let  y = sec x   
d

dx sec x  =  d

dx 
1

cos x
  = 0 - 1 (-sin x)

cos2 x

                =  1
cos x

sin x

cos x
 = sec x tan x

Proof   Let  y = csc  x.  Exercise for you. 

Observe that as  θ  approaches  0,
1 - cos θ  is very small compared to  θ

 ⇒

Observe that as  θ  approaches  0, sin θ  and 
θ  both approach  tan θ  ⇒

sin  

θθ

 θ ≈ 1
θ
-    

1- cos θ
θ

 ≈  > 0

  ⇒
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The Natural Exponential and Logarithmic Functions
Exponential functions, y = bx,  often are uses to model growth (if  b > 1) or decay (if  0 < b < 1).
In advanced applications the base called  e  is chosen because it has a simple derivative. That base 
e =  2.718 ⋯  is called Euler’s constant. The natural exponential function is  

y = e 
x .

Its graph lies between the graphs of  y =  2x  and  y =  3x.

X

0.5

1.0

1.5

2.0

2.5

3.0
Y

2x
e
x

3x

-2 -1 0 1 2

Its derivative formula is derived next semester.
d

dx (e
x) = e 

x

The inverse function for  y = ex  is obtained by solving for  x  in terms of   y. This cannot be done by 
elementary algebra. So we give this function a name and let calculators tell us its values. Then

x = ln y   ⟺   y  = ex. 

ln  is pronounced ‘natural logarithm’ or ‘ell-en’ or ‘lon’ (rhymes with Ron). In advanced math  ln  
is often written log.  To study this function we interchange  x  and  y  and write  y = ln x.

-2 2 4 6 X

-2

2

4

6
Y

y = ex

y = ln x

The derivative of  y = ln x  ⟺  x = ey  is
dy
dx  = 1

dx/dy
 = 1

ey  = 1
x .

d
dx (ln x) =

You will also need some properties of the natural logarithmic function.

1. ln(u v) = ln u + ln v

2. ln u

v
 = ln u + ln v

1
x

3. ln uv = v ln u

Note:   there are thousands of advanced named functions, some of which you may use 
without a full understanding of them, like  e  x  and  ln x  now. Get used to that!

If we did more with this topic now,            
this book would be called 

Apex Infinitesimal Calculus,
Early Transcendentals. 

Some disciplines require this function in 
the  first semester.

Apex Infinitesimal Calculus
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Exercises 2.4
Terms and Concepts

1. T/F: The Product Rule states that d
dx
(
x2 sin x

)
= 2x cos x.

2. T/F: The QuoƟent Rule states that d
dx

(
x2

sin x

)
=

cos x
2x

.

3. T/F: The derivaƟves of the trigonometric funcƟons that
start with “c” have minus signs in them.

4. What derivaƟve rule is used to extend the Power Rule to
include negaƟve integer exponents?

5. T/F: Regardless of the funcƟon, there is always exactly one
right way of compuƟng its derivaƟve.

6. In your own words, explain what it means to make your an-
swers “clear.”

Problems
In Exercises 7 – 10:

(a) Use the Product Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.

7. f(x) = x(x2 + 3x)

8. g(x) = 2x2(5x3)

9. h(s) = (2s− 1)(s+ 4)

10. f(x) = (x2 + 5)(3− x3)

In Exercises 11 – 14:

(a) Use the QuoƟent Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the QuoƟent Rule.

(c) Show that the answers from (a) and (b) are equivalent.

11. f(x) = x2 + 3
x

12. g(x) = x3 − 2x2

2x2

13. h(s) = 3
4s3

14. f(t) = t2 − 1
t+ 1

In Exercises 15 – 36, compute the derivaƟve of the given func-
Ɵon.

15. f(x) = x sin x

16. f(x) = x2 cos x

17. f(x) = ex ln x

18. f(t) = 1
t2
(csc t− 4)

19. g(x) = x+ 7
x− 5

20. g(t) = t5

cos t− 2t2

21. h(x) = cot x− ex

22. f(x) =
(
tan x

)
ln x

23. h(t) = 7t2 + 6t− 2

24. f(x) = x4 + 2x3

x+ 2

25. f(x) =
(
3x2 + 8x+ 7

)
ex

26. g(t) = t5 − t3

et

27. f(x) = (16x3 + 24x2 + 3x) 7x− 1
16x3 + 24x2 + 3x

28. f(t) = t5(sec t+ et)

29. f(x) = sin x
cos x+ 3

30. f(θ) = θ3 sin θ + sin θ
θ3

31. f(x) = cos x
x

+
x

tan x

32. g(x) = e2
(
sin(π/4)− 1

)
33. g(t) = 4t3et − sin t cos t

34. h(t) = t2 sin t+ 3
t2 cos t+ 2

35. f(x) = x2ex tan x

36. g(x) = 2x sin x sec x

98

 *

*Not recommended. Typically 
    yields an ugly looking answer.
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In Exercises 37 – 40, find the equaƟons of the tangent and
normal lines to the graph of g at the indicated point.

37. g(s) = es(s2 + 2) at (0, 2).

38. g(t) = t sin t at ( 3π2 ,−
3π
2 )

39. g(x) = x2

x− 1
at (2, 4)

40. g(θ) = cos θ − 8θ
θ + 1

at (0, 1)

In Exercises 41 – 44, find the x–values where the graph of the
funcƟon has a horizontal tangent line.

41. f(x) = 6x2 − 18x− 24

42. f(x) = x sin x on [−1, 1]

43. f(x) = x
x+ 1

44. f(x) = x2

x+ 1

In Exercises 45 – 48, find the requested derivaƟve.

45. f(x) = x sin x; find f ′′(x).

46. f(x) = x sin x; find f (4)(x).

47. f(x) = csc x; find f ′′(x).

48. f(x) = (x3 − 5x+ 2)(x2 + x− 7); find f (8)(x).

Review
In Exercises 49 – 50, use the graph of f(x) to sketch f ′(x).

49.

...

..

−2

.

−1

.

1

.

2

.

−3

.

3

.

−2

.

2

.

−4

.

4

.

−6

.

6

.

x

.

y

50.

.....

−2

.

−1

.

1

.

2

.

−3

.

3

.

−2

.

2

.

−4

.

4

. −6.

6

.

x

.

y

...

..............

..

............
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Solutions 2.4

1. F

2. F

3. T

4. QuoƟent Rule

5. F

6. Answers will vary.

7. (a) f ′(x) = (x2 + 3x) + x(2x+ 3)

(b) f ′(x) = 3x2 + 6x

(c) They are equal.

8. (a) g′(x) = 4x(5x3) + 2x2(15x2)

(b) g′(x) = 50x4

(c) They are equal.

9. (a) h′(s) = 2(s+ 4) + (2s− 1)(1)

(b) h′(s) = 4s+ 7

(c) They are equal.

10. (a) f ′(x) = 2x(3− x3) + (x2 + 5)(−3x2)

(b) f ′(x) = −5x4 − 15x2 + 6x

(c) They are equal.

11. (a) f ′(x) = x(2x)−(
2
x2+3)1

x

(b) f ′(x) = 1− x
3
2

(c) They are equal.

12. (a) g′(x) = 2x2(3x2−4x)−
4
(x3−2x2)(4x)

4x

(b) g′(x) = 1/2

(c) They are equal.

13. (a) h′(s) = 4s3(0)−3
6
(12s2)

16s

(b) h′(s) = −9/4s−4

(c) They are equal.

14. (a) f ′(t) = (t+1)(2
(

t)
+

−(

)

t
2

2−1)(1)
t 1

(b) f(t) = t− 1 when t ̸= −1, so f ′(t) = 1.

(c) They are equal.

15. f ′(x) = sin x+ x cos x

16. f ′(x) = 2x cos x− x2 sin x

17. f ′(x) = ex ln x+ ex x
1

18. f ′(t) = −
t3
2 (csc t− 4) + t

1
2 (− csc t cot t)

19. g′(x) = 12
(x
−
−5)2

20. g′(t) = (cos t−2t2)(
(

5t4)−(t5
2)
)(
2
− sin t−4t)

cos t−2t

21. h′(x) = − csc2 x− ex

22. f ′(x) =
(
sec2 x

)
ln x+

(
tan x

) 1
x

23. h′(t) = 14t+ 6

24. (a) f ′(x) = (x+2)(4x3+
(

6x2

+

)

)

−
2
(x4+2x3)(1)

x 2

(b) f(x) = x3 when x ̸= −2, so f ′(x) = 3x2.

(c) They are equal.

25. f ′(x) =
(
6x+ 8

)
ex +

(
3x2 + 8x+ 7

)
ex

26. g ′(t) = et(5t4−3t
(

2)
t)
−
2
(t5−t3)et

e

30. f ′(θ) = 3θ2 sin θ + θ3 cos θ + θ3 cos θ−(

θ6
sin θ)(3θ2)

31. f ′(x) = −x sin x
2
−cos x

x + tan x−x sec2 x
tan2 x

32. g′(x) = 0

33. g′(t) = 12t2et + 4t3et − cos2 t+ sin2 t

34. f ′(x) = (t2 cos t+2)(2t sin t+t2

(

cos
2
t)−(

+

t2

)2
sin t+3)(2t cos t−t2 sin t)

t cos t 2

35. f ′(x) = 2xex tan x = x2ex tan x+ x2ex sec2 x

36. g′(x) = 2 sin x sec x+ 2x cos x sec x+ 2x sin x sec x tan x =
2 tan x+ 2x+ 2x tan2 x = 2 tan x+ 2x sec2 x

37. Tangent line: y = 2x+ 2
Normal line: y = −1/2x+ 2

38. Tangent line: y = −(x− 3
2
π )− 3

2
π = −x

Normal line: y = (x− 3
2
π )− 3

2
π = x− 3π

39. Tangent line: y = 4
Normal line: x = 2

40. Tangent line: y = −9x+ 1
Normal line: y = 1/9x+ 1

41. x = 3/2

42. x = 0

43. f ′(x) is never 0.

44. x = −2, 0

45. f ′′(x) = 2 cos x− x sin x

46. f(4)(x) = −4 cos x+ x sin x

47. f ′′(x) = cot2 x csc x+ csc3 x

48. f(8) = 0

49.

−2 −1 1 2−3 3
−2

2

−4

4

−6

6

x

y

−2 −1 1 2−3 3
−2

2

−4

4

−6

6

x

y

27. f ′(x) = 7

28. f ′(t) = 5t4(sec t+ et) + t5(sec t tan t+ et)

29. f ′(x) = sin2(x
(

)+cos2(x)+
)2
3 cos(x)

cos(x)+3
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2.5  The Chain Rule
In applications you rarely meet a simple function like  cos x. Its more likely to look like  cos(2.34x + 7.29)  
or  cos(2π f t), the composition of the cosine function with another function.

Suppose  y = f(g(x)).  Taking it apart:  y = f(u), u = g(x)

V.  The Chain Rule dy
dx

 = dy
du
·

du
dx

Proof  The chain rule proves itself by hyperreal algebra. One possible problem. By the definition of 

derivative, in  
du
dx

, dx cannot be  0. But  du  could be. Then the first factor  
dy
du

  would have an illegal 

denominator, 0. The cure: disallow, as required by the definition of derivative, the  dx  that yields  du = 0.

Example  y = (2 x + 4)3.  Think  y = u3, u = 2x + 4. Then 
d

dx ((2 x + 4)3 = 3(2 x + 4)2·2

Often with  y = f(g(x))  we think of the chain rule as the derivative of a composite  function as the 
derivative of the outside function times the derivative function. Some prefer the pure math version

[f(g(x))]’ = f ’(g(x))·g’(x) thinking      (outside fn)’ · (inside fn)’ 

Whence the name ‘Chain Rule’?

Suppose  y = f(g(h(x)))  ⟺  y = f(u), u = g(v), v = h(x)?
Then

dy
dx

= 
dy
du

·
du
dv

·
dv
dx

,

the terms being connected in a chainlike way.

Example  
d

dx (cos3(x2 + 5));   y = u3, u = cosv , v = x2+ 5

    = 3·cos2x2 + 5·(-sinx2 + 5 · 2x

Special Derivative Formulas in Chain rule form  It is a good idea to memorize 
these formulas in this form. 

Let  u = u(x)  and  v = v(x)  be differentiable functions. Then
d

dx (c) = 0 d

dxdx (un) = n un-1 du 
d

dx (sin u) = cos u du
dx

d

dx (cos u) = - sin u du
dx

d

dx (tan u) = sec2u du
dx

d

dx (cot u) = -csc2u du
dx   

d

dx (sec u) = secu tan u du
dx

d

dx (csc u) = -cscu cot u du
dx

 (eu) =  eu du
dx            ddx (ln u) = 1

u

du
dx  

0
0

 d
dx

 d
dx (au) = a     ln  

 a   dx
du  d

dx
 (log  u) =    

a
     1
u ln a  
_

dx
du

u
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Chapter2DerivaƟves

Readings: The Chain Rule
We have covered almost all of the derivaƟve rules that deal with combinaƟons 
of two (or more) funcƟons. The operaƟons of addiƟon, subtracƟon, mulƟplica-
Ɵon (including by a constant) and division led to the Sum and Difference rules, 
the Constant MulƟple Rule, the Power Rule, the Product Rule and the QuoƟent 
Rule. To complete the list of differenƟaƟon rules, we look at the last way two (or 
more) funcƟons can be combined: the process of composiƟon (i.e. one funcƟon 
“inside” another).

One example of a composiƟon of funcƟons is f(x) = cos(x2). We currently 
do not know how to compute this derivaƟve. If forced to guess, one would likely 
guess f ′(x) = − sin(2x), where we recognize − sin x as the derivaƟve of cos x 
and 2x as the derivaƟve of x2. However, this is not the case; f ′(x) ≠ − sin(2x). 
In Example 2.5.4 we’ll see the correct answer, which employs the new rule this 
secƟon introduces, the Chain Rule.

Theorem   The Chain Rule
Let g be a differenƟable funcƟon on an interval I, let the range of g be a 
subset of the interval J, and let f be a differenƟable funcƟon on J. Then 
y = f (g(x)) i s a differenƟable funcƟon on I, and

y ′ = f ′(g(x)) · g ′(x).

Example 2.5.1 Using the Chain Rule
Find the derivaƟves of the following funcƟons:

1. y = sin 2x 2. y = ln(4x3− 2x2) 3. y = e−x2

SÊ½çã®ÊÄ

1. Consider y = sin 2x. Recognize that this is a composiƟon of funcƟons,
where f(x) = sin x and g(x) = 2x. Thus

y ′ = f ′(g(x)) · g ′(x) = cos(2x) · 2 = 2 cos 2x.

2. Recognize that y = ln(4x3 − 2x2) is the composiƟon of f(x) = ln x and
g(x) = 4x3 − 2x2. Also, recall that

d
dx

(
ln x
)
=

1
x
.

This leads us to:

y ′ =
1

4x3 − 2x2
· (12x2 − 4x) =

12x2 − 4x
4x3 − 2x2

=
4x(3x 1)
2x(2x2

−
− x)

=
2(3x 1)
2x2 −

−
x

.

3. Recognize that y = e−x2 is the composiƟon of f(x) = ex and g(x) = −x2.
Remembering that f ′(x) = ex, we have

y ′ = e−x2 · (−2x) = (−2x)e−x2 .
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Figure 2.5.1: f(x) = cos x2 sketched along
with its tangent line at x = 1.

Example 2.5.2   Using the Chain Rule to find a tangent line
Let f(x) = cos x2. Find the equaƟon of the line tangent to the graph of f at x = 1.

SÊ½çã®ÊÄ The tangent line goes through the point (1, f(1)) ≈ (1, 0.54) with 
slope f ′(1). To find f ′, we need the Chain Rule.

f ′(x) = − sin(x2) · (2x) = −2x sin x2. Evaluated at x = 1, we have f ′(1) =
−2 sin 1 ≈ −1.68. Thus the equaƟon of the tangent line is

y = −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 2.5.1.

The Chain Rule is used oŌen in taking derivaƟves. Because of this, one can
become familiar with the basic process and learn paƩerns that facilitate finding
derivaƟves quickly. For instance,

d
dx

(
ln(anything)

)
=

1
anything

· (anything)′ = (anything)′

anything
.

Example 2.5.3 Using the Chain Rule mulƟple Ɵmes

Find the derivaƟve of y = tan5(6x3 − 7x).

SÊ½çã®ÊÄ Recognize that we have the g(x)( = tan(6x3 −)75x) funcƟon“inside” the f(x) = x5 funcƟon; that is, we have y = tan(6x3−7x) . We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
derivaƟve. Rather, we are approaching this step–by–step.

y ′ = 5
(
tan(6x3 − 7x)

)4 · g ′(x).

We now find g ′(x). We again need the Chain Rule;

g ′(x) = sec2(6x3 − 7x) · (18x2 − 7).

Combine this with what we found above to give

y ′ = 5
(
tan(6x3 − 7x)

)4 · sec2(6x3 − 7x) · (18x2 − 7)
= (90x2 − 35) sec2(6x3 − 7x) tan4(6x3 − 7x).

This funcƟon is frankly a ridiculous funcƟon, possessing no real pracƟcal
value. It is very difficult to graph, as the tangent funcƟon has many verƟcal
asymptotes and 6x3 − 7x grows so very fast. The important thing to learn from
this is that the derivaƟve can be found. In fact, it is not “hard;” one can take
several simple steps and should be careful to keep track of how to apply each of
these steps.
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Exercises 2.5
Terms and Concepts
1. T/F: The Chain Rule describes how to evaluate the deriva-

Ɵve of a composiƟon of funcƟons.

2. T/F: The Generalized Power Rule states that d
dx

(
g(x)n

)
=

n
(
g(x)

)n−1
.

3. T/F: d
dx
(
ln(x2)

)
=

1
x2
.

4. T/F: d
dx
(
3x
) 
≐ 1.1 · 3x.

5. T/F: dx
dy

=
dx
dt

· dt
dy

6. f(x) =
(
ln x+ x2

)3
Problems
In Exercises 7 – 36, compute the derivaƟve of the given func-
Ɵon.

7. f(x) = (4x3 − x)10

8. f(t) = (3t− 2)5

9. g(θ) = (sin θ + cos θ)3

10. h(t) = e3t
2+t−1

11. f(x) =
(
ln x+ x2

)3
12. f(x) = 2x

3+3x

13. f(x) =
(
x+ 1

x

)4
14. f(x) = cos(3x)

15. g(x) = tan(5x)

16. h(θ) = tan
(
θ2 + 4θ

)
17. g(t) = sin

(
t5 + 1

t

)
18. h(t) = sin4(2t)

19. p(t) = cos3(t2 + 3t+ 1)

20. f(x) = ln(cos x)

21. f(x) = ln(x2)

22. f(x) = 2 ln(x)

23. g(r) = 4r

24. g(t) = 5cos t

25. g(t) = 152

26. m(w) = 3w

2w

27. h(t) = 2t + 3
3t + 2

28. m(w) = 3w + 1
2w

29. f(x) = 3x
2
+ x

2x2

30. f(x) = x2 sin(5x)

31. f(x) = (x2 + x)5(3x4 + 2x)3

32. g(t) = cos(t2 + 3t) sin(5t− 7)

33. f(x) = sin(3x+ 4) cos(5− 2x)

34. g(t) = cos( 1t )e
5t2

35. f(x) =
sin
(
4x+ 1

)
(5x− 9)3

36. f(x) = (4x+ 1)2

tan(5x)

In Exercises 37 – 40, find the equaƟons of tangent and normal
lines to the graph of the funcƟon at the given point. Note: the
funcƟons here are the same as in Exercises 7 through 10.

37. f(x) = (4x3 − x)10 at x = 0

38. f(t) = (3t− 2)5 at t = 1

39. g(θ) = (sin θ + cos θ)3 at θ = π/2

40. h(t) = e3t
2+t−1 at t = −1

41. Compute d
dx
(
ln(kx)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ab) = ln a+ ln b,
then taking the derivaƟve.

42. Derivative of  sin x, x  in degrees.

43. Find the second derivative chain rule.

126



( 1
xln x + x2

)
 ( + 2x)

7. f ′(x) = 10(4x3 − x)9 · (12x2 − 1) = (120x2 − 10)(4x3 − x)9

8. f ′(t) = 15(3t− 2)4

9. g′(θ) = 3(sin θ + cos θ)2(cos θ − sin θ)

10. h′(t) = (6t+ 1)e3t2+t−1

11. f ′(x) = 3
( 1

xln x+ x2
)
2( + 2x)

12. f ′(x) = (ln 2)(2x3+3x)(3x2 + 3)

13. f ′(x) = 4
(
x+ 1

x x

)3(1− 1
2
)

14. f ′(x) = −3 sin(3x)

15. g′(x) = 5 sec2(5x)

16. h ′(θ) = sec2
(
θ2 + 4θ

)
(2θ + 4)

17. g ′(t) = cos
(
t5 + 1

t
) (

5t4 − t
1
3

)
18. h′(t) = 8 sin3(2t) cos(2t)

19. p′(t) = −3 cos2(t2 + 3t+ 1) sin(t2 + 3t+ 1)(2t+ 3)

20. f ′(x) = − tan x

21. f ′(x) = 2/x

22. f ′(x) = 2/x

23. g′(r) = ln 4 · 4r

24. g′(t) = − ln 5 · 5cos t sin t

25. g′(t) = 0

26. m′(w) = ln(3/2)(3/2)w(
3t+2) (ln 2)2t

) (
−(2t+3) (ln 3)3t

)
(3t+2)227. f ′(x) =

(

28. m′(w) =
2w
(
ln 3·3w−ln 2·(3w+1)

)
22w

29. f ′(x) = 2x
2
(ln 3·3x

2
2x+1)−

2x
(
2
3x

2
+x)(ln 2·2x

2
2x)

2

30. f ′(x) = 5x2 cos(5x) + 2x sin(5x)

31. f ′(x) =
5(x2+ x)4(2x+1)(3x4+2x)3+3(x2+ x)5(3x4+2x)2(12x3+2)

32. g′(t) = 5 cos(t2+3t) cos(5t−7)−(2t+3) sin(t2+3t) sin(5t−7)

33. f ′(x) = 3 cos(3x+ 4) cos(5− 2x) + 2 sin(3x+ 4) sin(5− 2x)

34. 1g′(t) = 10t cos( t )e
5t2 + t

1
2

1sin( t )e
5t2

35. f ′(x) = 4(5x−9)3 cos(4x+
(

1)−15
)6
sin(4x+1)(5x−9)2

5x−9

36. f ′(x) = 8 tan(5x)(4x+1)−5(4
)

x+1)2 sec2(5x)

tan2(5x

37. Tangent line: y = 0
Normal line: x = 0

38. Tangent line: y = 15(t − 1) + 1
Normal line: y = −1/15(t − 1) + 1

39. Tangent line: y = −3(θ − π/2) + 1
Normal line: y = 1/3(θ − π/2) + 1

40. Tangent line: y = −5e(t + 1) + e
Normal line: y = 1/(5e)(t + 1) + e

41. In both cases the derivaƟve is the same: 1/x.

6. f'(x) =

Solutions 2.5

1. T,  2. F,  3. F,  4. T,  5. T

23

42. Hint: convert  x  to radians.

43.

y = f(g(x))  ⇔  y = f(u), u = g(x)
dy
dx  = dy

du
du
dx

d 2 y

dx2  = d

dx 
dy
du  

du
dx + dy

dx
d 2 u

dx2

d2 y

dx2  = du
dx

d

du  dy
du  

du
dx + dy

dx
d 2 u

dx2

Chain Rule 

Product Rule 

Hyperreal algebra
d2 y

dx2  = d 2

2
y

du
 du

dx 
2+ dy

dx
d2 u

dx2

   tan (5x2_..
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Figure 2.6.1: A graph of the implicit func-
Ɵon sin(y) + y3 = 6− x3.

In the previous secƟons we learned to find the derivaƟve, dy
dx , or y

′, when y is
given explicitly as a funcƟon of x. That is, if we know y = f(x) for some funcƟon
f, we can find y ′. For example, given y = 3x2 − 7, we can easily find y ′ = 6x.
(Here we explicitly state how x and y are related. Knowing x, we can directly find
y.)

SomeƟmes the relaƟonship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that x2 − y = 4. This equality defines a
relaƟonship between x and y; if we know x, we could figure out y. Can we sƟll
find y ′? In this case, sure; we solve for y to get y = x2 − 4 (hence we now know
y explicitly) and then differenƟate to get y ′ = 2x.

SomeƟmes the implicit relaƟonship between x and y is complicated. Sup-
pose we are given sin(y)+ y3 = 6− x3. A graph of this implicit funcƟon is given
in Figure 2.6.1. In this case there is absolutely no way to solve for y in terms of
elementary funcƟons. The surprising thing is, however, that we can sƟll find y ′
via a process known as implicit differenƟaƟon.

Implicit differenƟaƟon is a technique based on the Chain Rule that is used to
find a derivaƟve when the relaƟonship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be funcƟons of x. Then

d
dx

(
f(g(x))

)
= f ′(g(x)) · g′(x).

Suppose now that y = g(x). We can rewrite the above as

d
dx

(
f(y)
)
= f ′(y) · y ′, or

d
dx

(
f(y)
)
= f ′(y) · dy

dx
. (2.1)

These equaƟons look strange; the key concept to learn here is that we can find
y ′ even if we don’t exactly know how y and x relate.

We demonstrate this process in the following example.

Example 2.6.1 Using Implicit DifferenƟaƟon
Find y ′ given that sin(y) + y3 = 6− x3.

SÊ½çã®ÊÄ We start by taking the derivaƟve of both sides (thus main-
taining the equality.) We have :

d
dx

(
sin(y) + y3

)
=

d
dx

(
6− x3

)
.

111

2.6 Implicit DifferenƟaƟon

Example

Compact Theory

y = f(g(x)) ⟺ y = f(u), u = g(x)

dy
dx

dy
du

du
dx≈

by hyperreal algebra.
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The right hand side is easy; it returns−3x2.
The leŌhand side requiresmore consideraƟon. We take the derivaƟve term–

by–term. Using the technique derived from EquaƟon 2.1 above, we can see that

d
dx

(
sin y

)
= cos y · y ′.

We apply the same process to the y3 term.

d
dx

(
y3
)
=

d
dx

(
(y)3

)
= 3(y)2 · y ′.

Puƫng this together with the right hand side, we have

cos(y)y ′ + 3y2y ′ = −3x2.

Now solve for y ′.

cos(y)y ′ + 3y2y ′ = −3x2.(
cos y+ 3y2

)
y ′ = −3x2

y ′ =
−3x2

cos y+ 3y2

This equaƟon for y ′ probably seems unusual for it contains both x and y
terms. How is it to be used? We’ll address that next.

Implicit funcƟons are generally harder to deal with than explicit funcƟons.
With an explicit funcƟon, given an x value, we have an explicit formula for com-
puƟng the corresponding y value. With an implicit funcƟon, one oŌen has to
find x and y values at the same Ɵme that saƟsfy the equaƟon. It is much eas-
ier to demonstrate that a given point saƟsfies the equaƟon than to actually find
such a point.

For instance, we can affirm easily that the point ( 3
√
6, 0) lies on the graph of

the implicit funcƟon sin y+ y3 = 6− x3. Plugging in 0 for y, we see the leŌ hand
side is 0. Seƫng x = 3

√
6, we see the right hand side is also 0; the equaƟon is

saƟsfied. The following example finds the equaƟon of the tangent line to this
funcƟon at this point.

Example 2.6.2 Using Implicit DifferenƟaƟon to find a tangent line
Find the equaƟon of the line tangent to the curve of the implicitly defined func-
Ɵon sin y+ y3 = 6− x3 at the point ( 3

√
6, 0).

SÊ½çã®ÊÄ In Example 2.6.1 we found that

y ′ =
−3x2

cos y+ 3y2
.

Example
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Figure 2.6.2: The funcƟon sin y + y3 =
6 − x3 and its tangent line at the point
( 3√6, 0).

We find the slope of the tangent line at the point ( 3
√
6, 0) by subsƟtuƟng 3

√
6 for

x and 0 for y. Thus at the point ( 3
√
6, 0), we have the slope as

y ′ =
−3( 3

√
6)2

cos 0+ 3 · 02
=

−3 3
√
36

1 ≐ −9.91.

3

3 3

Therefore the equaƟon of the tangent line to the implicitly defined funcƟon 

sin y + y3 = 6 − x3 at the point (
√
6, 0) is

y = −3
√
36(x − 

√
6) + 0 ≐ −9.91x + 18.

The curve and this tangent line are shown in Figure 2.6.2.

This suggests a general method for implicit differenƟaƟon. For the steps be-
low assume y is a funcƟon of x.

1. Take the derivaƟve of each term in the equaƟon. Treat the x terms like
normal. When taking the derivaƟves of y terms, the usual rules apply
except that, because of the Chain Rule, we need to mulƟply each term
by y ′.

2. Get all the y ′ terms on one side of the equal sign and put the remaining
terms on the other side.

3. Factor out y ′; solve for y ′ by dividing.

PracƟcal Note: When working by hand, it may be beneficial to use the symbol
dy
dx instead of y

′, as the laƩer can be easily confused for y or y1.

Example 2.6.3 Using Implicit DifferenƟaƟon
Given the implicitly defined funcƟon y3 + x2y4 = 1+ 2x, find y ′.

SÊ½çã®ÊÄ Wewill take the implicit derivaƟves termby term. Thederiva-
Ɵve of y3 is 3y2y ′.

The second term, x2y4, is a liƩle tricky. It requires the Product Rule as it is the
product of two funcƟons of x: x2 and y4. Its derivaƟve is x2(4y3y ′) + 2xy4. The
first part of this expression requires a y ′ becausewe are taking the derivaƟve of a
y term. The second part does not require it because we are taking the derivaƟve
of x2.

The derivaƟve of the right hand side is easily found to be 2. In all, we get:

3y2y ′ + 4x2y3y ′ + 2xy4 = 2.

Move terms around so that the leŌ side consists only of the y ′ terms and the
right side consists of all the other terms:

3y2y ′ + 4x2y3y ′ = 2− 2xy4.

Example

FYVE*
For Your Viewing Enjoyment
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Figure 2.6.3: A graph of the implicitly de-
fined funcƟon y3 + x2y4 = 1 + 2x along
with its tangent line at the point (0, 1).
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Figure 2.6.4: A graph of the implicitly de-
fined funcƟon sin(x2y2) + y3 = x+ y.

Factor out y ′ from the leŌ side and solve to get

y ′ =
2− 2xy4

3y2 + 4x2y3
.

To confirm the validity of our work, let’s find the equaƟon of a tangent line
to this funcƟon at a point. It is easy to confirm that the point (0, 1) lies on the
graph of this funcƟon. At this point, y ′ = 2/3. So the equaƟon of the tangent
line is y = 2/3(x−0)+1. The funcƟon and its tangent line are graphed in Figure
2.6.3.

NoƟce how our funcƟon looks much different than other funcƟons we have
seen. For one, it fails the verƟcal line test. Such funcƟons are important in many
areas of mathemaƟcs, so developing tools to deal with them is also important.

Example 2.6.4 Using Implicit DifferenƟaƟon
Given the implicitly defined funcƟon sin(x2y2) + y3 = x+ y, find y ′.

SÊ½çã®ÊÄ DifferenƟaƟng term by term, we find the most difficulty in
the first term. It requires both the Chain and Product Rules.

d
dx

(
sin(x2y2)

)
= cos(x2y2) · d

dx

(
x2y2

)
= cos(x2y2) ·

(
x2(2yy ′) + 2xy2

)
= 2(x2yy ′ + xy2) cos(x2y2).

We leave the derivaƟves of the other terms to the reader. AŌer taking the
derivaƟves of both sides, we have

2(x2yy ′ + xy2) cos(x2y2) + 3y2y ′ = 1+ y ′.

We now have to be careful to properly solve for y ′, parƟcularly because of
the product on the leŌ. It is best to mulƟply out the product. Doing this, we get

2x2y cos(x2y2)y ′ + 2xy2 cos(x2y2) + 3y2y ′ = 1+ y ′.

From here we can safely move around terms to get the following:

2x2y cos(x2y2)y ′ + 3y2y ′ − y ′ = 1− 2xy2 cos(x2y2).

Then we can solve for y ′ to get

y ′ =
1− 2xy2 cos(x2y2)

2x2y cos(x2y2) + 3y2 − 1
.

Example
FYVE*
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Figure 2.6.5: A graph of the implicitly de-
fined funcƟon sin(x2y2) + y3 = x+ y and
certain tangent lines.
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Figure 2.6.6: The unit circle with its tan-
gent line at (1/2,

√
3/2).

A graph of this implicit funcƟon is given in Figure 2.6.4. It is easy to verify
that the points (0, 0), (0, 1) and (0,−1) all lie on the graph. We can find the
slopes of the tangent lines at each of these points using our formula for y ′.

At (0, 0), the slope is−1.
At (0, 1), the slope is 1/2.
At (0,−1), the slope is also 1/2.
The tangent lines have been added to the graph of the funcƟon in Figure

2.6.5.

Quite a few “famous” curves have equaƟons that are given implicitly. We can
use implicit differenƟaƟon to find the slope at various points on those curves.
We invesƟgate two such curves in the next examples.

Example 2.6.5 Finding slopes of tangent lines to a circle
Find the slopeof the tangent line to the circle x2+y2 = 1 at the point (1/2,

√
3/2).

SÊ½çã®ÊÄ Taking derivaƟves, we get 2x+2yy ′ = 0. Solving for y ′ gives:

y ′ =
−x
y
.

This is a clever formula. Recall that the slope of the line through the origin and
the point (x, y) on the circle will be y/x. We have found that the slope of the
tangent line to the circle at that point is the opposite reciprocal of y/x, namely,
−x/y. Hence these two lines are always perpendicular.

At the point (1/2,
√
3/2), we have the tangent line’s slope as

y ′ =
−1/2√
3/2

=
−1√
3

   −0.577.

A graph of the circle and its tangent line at (1/2,
√
3/2) is given in Figure

2.6.6, along with a thin dashed line from the origin that is perpendicular to the
tangent line. (It turns out that all normal lines to a circle pass through the center
of the circle.)

This secƟon has shown how to find the derivaƟves of implicitly defined func-
Ɵons, whose graphs include a wide variety of interesƟng and unusual shapes.
Implicit differenƟaƟon can also be used to further our understanding of “regu-
lar” differenƟaƟon.

One hole in our current understanding of derivaƟves is this: what is the
derivaƟve of the square root funcƟon? That is,

d
dx
(√

x
)
=

d
dx
(
x1/2

)
= ?

Example

Y

X

≐ 

FYVE
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We allude to a possible soluƟon, as we can write the square root funcƟon as
a power funcƟon with a raƟonal (or, fracƟonal) power. We are then tempted to
apply the Power Rule and obtain

d
dx
(
x1/2

)
=

1
2
x−1/2 =

1
2
√
x
.

The trouble with this is that the Power Rule was iniƟally defined only for
posiƟve integer powers, n > 0. While we did not jusƟfy this at the Ɵme, gen-
erally the Power Rule is proved using something called the Binomial Theorem,
which deals only with posiƟve integers. The QuoƟent Rule allowed us to extend
the Power Rule to negaƟve integer powers. Implicit DifferenƟaƟon allows us to
extend the Power Rule to raƟonal powers, as shown below.

Let y = xm/n, wherem and n are integers with no common factors (som = 2
and n = 5 is fine, but m = 2 and n = 4 is not). We can rewrite this explicit
funcƟon implicitly as yn = xm. Now apply implicit differenƟaƟon.

y = xm/n

yn = xm

d
dx
(
yn
)
=

d
dx
(
xm
)

n · yn−1 · y ′ = m · xm−1

y ′ =
m
n
xm−1

yn−1 (now subsƟtute xm/n for y)

=
m
n

xm−1

(xm/n)n−1 (apply lots of algebra)

=
m
n
x(m−n)/n

=
m
n
xm/n−1.

The above derivaƟon is the key to the proof extending the Power Rule to ra-
Ɵonal powers. Using limits, we can extend this once more to include all powers,
including irraƟonal (even transcendental!) powers, giving the following theo-
rem.

Theorem 2.6.1 Power Rule for DifferenƟaƟon

Let f(x) = xn, where n ≠ 0 is a real number. Then f is differenƟable on
its domain, except possibly at x = 0, and f ′(x) = n · xn−1.

Example

x2 + y23 = 4x2y2

|_

FYVE
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Figure 2.6.7: An astroid, traced out by a
point on the smaller circle as it rolls inside
the larger circle.
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Figure 2.6.8: An astroid with a tangent
line.

This theorem allows us to say the derivaƟve of xπ is πxπ−1.
We now apply this final version of the Power Rule in the next example, the

second invesƟgaƟon of a “famous” curve.

Example 2.6.6 Using the Power Rule
Find the slope of x2/3 + y2/3 = 8 at the point (8, 8).

SÊ½çã®ÊÄ This is a parƟcularly interesƟng curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling around
inside of a larger circle, as shown in Figure 2.6.7.

To find the slope of the astroid at the point (8, 8), we take the derivaƟve
implicitly.

2
3
x−1/3 +

2
3
y−1/3y ′ = 0

2
3
y−1/3y ′ = −2

3
x−1/3

y ′ = −x−1/3

y−1/3

y ′ = −y1/3

x1/3
= − 3

√
y
x
.

Plugging in x = 8 and y = 8, we get a slope of −1. The astroid, with its
tangent line at (8, 8), is shown in Figure 2.6.8.

Implicit DifferenƟaƟon and the Second DerivaƟve
Wecan use implicit differenƟaƟon to find higher order derivaƟves. In theory,

this is simple: first find dy
dx , then take its derivaƟve with respect to x. In pracƟce,

it is not hard, but it oŌen requires a bit of algebra. We demonstrate this in an
example.

Example 2.6.7 Finding the second derivaƟve

Given x2 + y2 = 1, find
d2y
dx2

= y ′′.

SÊ½çã®ÊÄ We found that y ′ = dy
dx = −x/y in Example 2.6.5. To find y ′′,

Example Example

FYVE
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Figure 2.6.10: A graph of y = xx and its
tangent line at x = 1.5.

both sides then applying implicit differenƟaƟon.

y = xx

ln(y) = ln(xx)
ln(y) = x ln x

(apply logarithm rule)
(now use implicit differenƟaƟon)

d
dx

(
ln(y)

)
=

d
dx

(
x ln x

)
y ′

y
= ln x+ x · 1

x
y ′

y
= ln x+ 1

y ′ = y
(
ln x+ 1

)
(subsƟtute y = xx)

y ′ = xx
(
ln x+ 1

)
.

To “test” our answer, let’s use it to find the equaƟon of the tangent line at   x = 
1.5. The point on the graph our tangent line must pass through is (1.5, 1.51.5)  (1.5, 
1.837). Using the equaƟon for y ′, we find the slope as

y ′ = 1.51.5
(
ln 1.5+ 1

)
1.837(1.405)   2.582.

Thus the equaƟon of the tangent line is y = 1.6833(x − 1.5) + 1.837. Figure 
2.6.10 graphs y = xx along with this tangent line.

Implicit differenƟaƟon proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of funcƟons. In parƟcular, it extended the 
Power Rule to raƟonal exponents, which we then extended to all real numbers. 
In the next calculus course, implicit differenƟaƟon will be used to find the 
derivaƟves of inverse funcƟons, such as y = sin−1 x.
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Figure 2.6.9: A plot of y = xx.

Example 2.6.8     Using Logarithmic DifferenƟaƟon 
Given y = xx, use logarithmic differenƟaƟon to find y ′.

SÊ½çã®ÊÄ As suggested above, we start by taking the natural log of

Logarithmic Differentiation Preview  There is still one type of function we cannot handle.

y = f(x) g(x)

The solution is to use Property 3 of logarithms:
  ln(A B   )  =  B ln(A)

Logarithmic differentiation is an important  tool in areas of applications. 
For now we content ourselves with an interesting mathematics example. 

≐ ≐ 
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Exercises 2.6
Terms and Concepts
1. In your own words, explain the difference between implicit

funcƟons and explicit funcƟons.

2. Implicit differenƟaƟon is based on what other differenƟa-
Ɵon rule?

3. T/F: Implicit differenƟaƟon can be used to find the deriva-
Ɵve of y =

√
x.

4. T/F: Implicit differenƟaƟon can be used to find the deriva-
Ɵve of y = x3/4.

Problems
In Exercises 5 – 12, compute the derivaƟve of the given func-
Ɵon.

5. f(x) =
√
x+ 1√

x

6. f(x) = 3√x+ x2/3

7. f(t) =
√
1− t2

8. g(t) =
√
t sin t

9. h(x) = x1.5

10. f(x) = xπ + x1.9 + π1.9

11. g(x) = x+ 7√
x

12. f(t) = 5√t(sec t+ et)

In Exercises 13 – 25, find dy
dx

using implicit differenƟaƟon.

13. x4 + y2 + y = 7

14. x2/5 + y2/5 = 1

15. cos(x) + sin(y) = 1

16. x
y
= 10

17. y
x
= 10

18. x2e2 + 2y = 5

19. x2 tan y = 50

20. (3x2 + 2y3)4 = 2

21. (y2 + 2y− x)2 = 200

22. x2 + y
x+ y2

= 17

23. sin(x) + y
cos(y) + x

= 1

24. ln(x2 + y2) = e

25. ln(x2 + xy+ y2) = 1

26. Show that dy
dx

is the same for each of the following implicitly
defined funcƟons.

(a) xy = 1

(b) x2y2 = 1

(c) sin(xy) = 1

(d) ln(xy) = 1

In Exercises 27 – 32, find the equaƟon of the tangent line to
the graph of the implicitly defined funcƟon at the indicated
points. As a visual aid, each funcƟon is graphed.

27. x2/5 + y2/5 = 1

(a) At (1, 0).

(b) At (0.1, 0.281) (which does not exactly lie on the
curve, but is very close).

.....

−1

.

−0.5

.

0.5

.

1

. −1.

−0.5

.

0.5

.

1

.

(0.1, 0.281)

.

x

.

y

28. x4 + y4 = 1

(a) At (1, 0).

(b) At (
√
0.6,

√
0.8).

(c) At (0, 1).

.....

−1

.

−0.5

.

0.5

.

1

. −1.

−0.5

.

0.5

.

1

.

(
√

0.6,
√

0.8)

.

x

.

y
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29. (x2 + y2 − 4)3 = 108y2

(a) At (0, 4).

(b) At (2,− 4√108).

.....

−4

.

−2

.

2

.

4

. −4.

−2

.

2

.

4

. (2,− 4√108).

x

.

y

30. (x2 + y2 + x)2 = x2 + y2

(a) At (0, 1).

(b) At
(
−3
4
,
3
√
3

4

)
.

.....

−2

.

−1

.

−1

.

1

.

(
− 3

4 ,
3
√

3
4

)

.

x

.

y

31. (x− 2)2 + (y− 3)2 = 9

(a) At
(
7
2
,
6+ 3

√
3

2

)
.

(b) At
(
4+ 3

√
3

2
,
3
2

)
.

..... 2. 4. 6.

2

.

4

.

6

.

(
4+3

√
3

2 , 1.5
)

.

(
3.5, 6+3

√
3

2

)

.
x

.

y

32. x2 + y3 + 2xy = 0

(a) At (−1, 1).

(b) At
(
−1, 1

2
(−1+

√
5)
)
.

(c) At
(
−1, 1

2
(−1−

√
5)
)
.

−2 2

−2

2

(−1, 1)

(
−1, −1−

√
5

2

)

(
−1, −1+

√
5

2

)
x

y

In Exercises 33 – 36, an implicitly defined funcƟon is given.

Find d2y
dx2

. Note: these are the same problems used in Exer-
cises 13 through 16.

33. x4 + y2 + y = 7

34. x2/5 + y2/5 = 1

35. cos x+ sin y = 1

36. x
y
= 10

Example
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Solution 2.6

1. Answers will vary.

2. The Chain Rule.

3. T

4. T

5. f ′(x) = 1
2 x

−1/2 − 1
2 x

−3/2 = 2
1√
x − √1

2 x3

6. f ′(x) = 1
3 x

−2/3 + 2
3 x

−1/3 = 1
33
√

x2
+ 2

3 3√x

7. f ′(t) = √−t
1−t2

8. g′(t) =
√
t cos t+ sin√t

2 t

9. h′(x) = 1.5x0.5 = 1.5
√
x

10. f ′(x) = πxπ−1 + 1.9x0.9

11. g′(x) =
√

x(1)−(x+7)(1/2x−1/2)
x = 2

1√
x − √7

2 x3

12. 1
5

5

13.

f ′(t) = x−4/5(sec t+ et) +
√
t(sec t tan t+ et)

dy
dx = −4

+
x3

2y 1

14. dy
dx = − y

3

3

/

/

5

5

x

15. dy
dx = sin(x) sec(y)

16.

17.

y
x
y
x

18.

dy
dx =

dy
dx =

dy
dx = − exx(x+

|
2)
|
2−y

ln 2

19. dy
dx = − 2 sin(y)

x
cos(y)

20. dy
dx = − x

y2

21. dy
dx = 1

2y+2

22. If one takes the derivaƟve of the equaƟon, as shown, using the
QuoƟent Rule, one finds dy

dx = x2+2xy2−y
2x2y−x+y2 .

If one first clears the denominator and writes x2 + y = 17(x+ y2)
then takes the derivaƟve of both sides, one finds dy

dx = 2
34
x
y
−
−
17
1 .

These expressions, by themselves, are not equal. However, for
values of x and y that saƟsfy the original equaƟon (i.e, for x and y
such that x

x
2

+
+
y2
y = 17), these expressions are equal.

23. If one takes the derivaƟve of the equaƟon, as shown, using the
QuoƟent Rule, one finds dy

dx =
−
sin
cos
(y
(x
)(
)(
sin
x
(
+
x
cos
)+

(
y
y
)+
))+

x+
sin
cos
(x
(y
)+
)
y .

If one first clears the denominator and writes
sin(x) + y = cos(y) + x then takes the derivaƟve of both sides,
one finds dy

dx =
1−cos(x)
1+sin(y) .

These expressions, by themselves, are not equal. However, for
values of x and y that saƟsfy the original equaƟon (i.e, for x and y
such that sin

cos
(
(
x
y
)+
)+

y
x
)
)
= 1), these expressions are equal.

24. x
y

25.

dy
dx = −

dy
dx = − 2

2
x
y
+
+
y
x

y
x26. In each, dy

dx = − .

27. (a) y = 0
(b) y = −1.859(x− 0.1) + 0.281

28. (a) x = 1

√

8
3 (x−

√
.6) +

√
.8 ≈ −0.65(x− 0.775) + 0.894(b) y = − 3

(c) y = 1

4

29. (a) y = 4

(b) y = 0.93(x− 2) +
√
108

30. (a) y = −1/3x+ 1

(b) y = 3
√
3/4

7
231. (a) y = −√1

3
(x− ) + 6+3

2

√
3

(b) y =
√
3(x− 4+3

2

√
3 ) + 3

2

1
2

32. (a) y = 1

(b) y = −√2
5
(x+ 1) + (−1+

√
5)

1
2

√
5)

33.
(2y+1)(−12x2)+4x3 2−4

+
x3

2y 1

(c) y = √2
5
(x+ 1) + (−1−( )

(2y+1)2

34.

d2y
dx2 =

d2y
dx2 = 3

5
y3/5

x8/5
+ 3

5
1

yx6/5

35.

36.

d
dx
2
2
y = cos x cos y

cos
+
2
sin
y
2 x tan y

d2y
dx2 = 0
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*

f (h)
f (r)

Y

y = f(x)

··· ··· X0

Another important preliminary note 

Closed Sequence Principle  Every mathematical question which can be answered for a finite sequence  

r1, r2,  · · · , rn  can be answered for a closed (infinite terminating) sequence  h1, h2,  · · · , hN.
          For example

2-4  is the least element of the finite sequence  {1, 2-1, 2-2, 2-3, 2-4}.
2No  is the greatest element of the infinite sequence  {1, 21, 22,  · · · , 2No}.

          But this cannot always be done for a non-terminating sequence:
{1, 2-1, 2-2, 2-3, · · · }  does not have a least element!

The Extreme Value Theorem  Finding the maximum and minimum value of a function is important

in many applications. For example, a manufacturer normally wants to maximize the income function  I(x)  or 
minimize the cost function  C(x)  for manufacturing  x  items. The following theorem gives an important case 
where the maximum and minimum values are guaranteed to exist. Calculus will then be very useful in finding 
these values. 

     (This important theorem is stated in Apex, Section 3.1, without proof.)

3: T«� GÙ�Ö«®��½ B�«�ò®ÊÙ Ê¥ FçÄ�ã®ÊÄÝ
3.1   The Extreme Value Theorem
      This section presents some very important properties shared by continuous functions. Their hyperreal 
proofs are easy (Their real number based proofs are quite difficult and are normally omitted in a 
beginning calculus course). While these theorems may seem obvious and unexciting, they form a basis 
for further important results in the calculus and as an expert you will want to see their proofs and 
understand their importance.

      The main result we need now is the Extreme Value Theorem. The other theorems in this section 
should be a part of your general background knowledge of continuous functions.

An important preliminary note    A pertinent observation follows. In the proof we will calculate the 
value of a continuous function  f  at a finite hyperreal number  h  infinitesimally close to a real number  r*; 
then  h ≈> r  and  since  f  is a continuous function,  f(h) ≈> f(r).
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Extreme Value Theorem   Let  f  be continuous on the closed interval  a ≤ x ≤ b. Then  f  has a maximum and 
a minimum on the interval.

a bxm

y = f(x)

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
X

Y

     First let us look at how the proof works approximately using real numbers to find the approximate 
minimum value of  f  shown above on the interval  a ≤ x ≤ b.  Subdivide the interval into  9  equal finite 
parts by the numbers  x0, x1, x2, · · · , x9. Then compute the sequence of values   f(x0), f(x1), f(x2), · · · , f(x9).  
The minimum value of the sequence is  f(x7).  So the minimum value may occur at  xm ≐ x7  and the minimum 
value may be about  f(xm) ≐ f(x7). One problem is, of course, that the solution is only approximate; in fact, this 
solution may be extremely bad because the function could behave very badly between the calculated values. 

Proof  Subdivide the interval  a ≤ x ≤ b  into an infinite number  N  of subdivisions of infinitesimal length  b-a 
N

by the sequence   x0, x1, x2, · · · , xN.

a bxm
●

x0 x1 x2 xi-1 xi xi+1 xN-3 xN-2 xN-1 xN

X

Then compute the sequence of values  {f(x0), f(x1), f(x2), · · · , f(xN)}. Suppose the minimum value of this sequence 
occurs at  xi. By the continuity of  f,  xi ≈> xm,  a real number. Then  f(xi) ≈> f(xm), a real number which is the 
minimum value of  f  on the interval.

End of Proof

      The proof of the existence of a maximum at is similar and is left as an exercise.

Note that this theorem is so difficult to prove using ϵ-δ methods that it is omitted from many textbooks.

Example  Find the extreme values of  f(x) = 1 + (x - 1  )2  on the interval  0 ≤ x ≤ 3.

-1 0 1 2 3 4

1

2

3

4

5

. . ... .... ■■ ■■

      Since  f  is continuous on the interval, the extreme values are guaranteed to exist. From the graph, the 
minimum value  y = 1  occurs at the vertex of the parabola,  x = 1. The maximum value  y = 5  occurs at the 
endpoint  x = 3. (Without the theorem which guarantees the existence of a maximum, you might forget to 
look at end-points or not be sure that the extreme values actually exist.)
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Example  Find the extreme values of  f(x) = x2 on the interval  -1  ≤ x < 2.

-2 -1 0 1 2 3
X

1

2

3

4

Y

f  is continuous, but the interval is not closed. So there are no guarantees. f  has a minimum at  x = 0. But there 
is no maximum.
c

Theory Exercises (Optional- but read thoughtfully)
Prove each using a variation of the Extreme   Value Theorem proof.

Existence of Zeros   Finding the zeros of a function is important in almost any area of mathematics.

This theo-rem says that a continuous function has zeros where you expect them, based on your knowledge of 
its graph. The theorem guarantees the existence of a zero, but does little to help you find it. You know a few 
methods of finding zeros such as the quadratic formula for quadratic equations. Calculus will provide a good 
method 
(Newton's Method) of finding zeros as accurately as you wish for a wide variety of functions. What this theorem 
does is tell you when it is guaranteed worth while spending time looking for a zero.

Existence of a Zero Theorem   Let  f  be continuous on the closed interval  a ≤ x ≤ b. Suppose f(a)  

and  f(b)  have opposite signs. Then there exists a number  c,  a < c < b,  such that  f(c) = 0.

y = f(x)

a

b
X

Y

c

Intermediate Value Theorem  This theorem is a generalization of the Existence of a Zero Theorem.

It says a continuous function on the closed interval  a ≤ x ≤ b  takes on all values between  f(a)  and  f(b). 

y = f(x)

a b

f(a)

f(b)

X
c

d
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This theorem is a generalization of the Existence of a Zero Theorem. It says a continuous function on the 
interval  a ≤ x ≤ b  takes on all values between  f(a)  and  f(b). The proof is very similar to the proof of the 
previous theorem and is left as an exercise.

y = f(x)

a b

f(a)

f(b)

X
c

d

Intermediate Value Theorem   Let  f  be continuous on the closed interval  a ≤ x ≤ b. Suppose  d  is 
a number between  f(a)  and  f(b). Then there exists a number  c,  a < c < b, such that  f(c) = d. 

Proof  Subdivide the interval  a ≤ x ≤ b  into an infinite number  N  of subdivisions of infinitesimal length  

  by the sequence   x0, x1, x2, · · · , xN. 

a bc
●

xi

x0 x1 x2 xi-1 xi+1 xN-3 xN-2 xN-1 xN

X

Suppose  f(a) > 0. Then compute the sequence of values  f(a), f(x1), f(x2), · · · until  f(xi) < 0 
(Closed Sequence Principle).  Then by the continuity of  f, recalling the first preliminary note, there is a real 
number  c  such that
      xi ≈> c  and  f(xi) ≈> f(c) = 0.
So we have found the real zero  c  exactly by a hyperreal calculation.
      The proof of the existence of  c  in the case where  f(a) < 0  is similar and is left for you.

N
b-a

f ‘ (c)  =   f(b
b

) 
-
- f
a

(a)

End of Proof

The Mean Value Theorem     The next section in many calculus textbooks is The Mean Value 
Theorem (for Derivatives).  It is used to prove theorems later in calculus. We will not need it for this 
textbook. Most students find the theory tedious and hard to understand its use in proofs; an intuitive 
understanding or other approach is better. So we will simply state it. If  you need in a later calculus based 
course, the instructor will review it because it will have been totally forgotten by most students.

The Mean Value Theorem  Let  f  be continuous for  a ⩽ x ⩽   b.
Let  f  be differentiable for  a < x < b. Then there is a  c,  a < c < b, such that

.

y = f(x)

a bc X

Y

●●●●

Note  This theorem is also called the 'Mean Value Theorem
for Derivatives.'
It states that under the hypotheses, 'There is at least one 
point  c  in the interval where the slope of the curve is the 
same as the slope of the line joining the endpoints.'

_
._ .

.
-_ _
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3.2   The Extreme Values of a Function

Given any quanƟty described by a funcƟon, we are oŌen interested in the 
largest and/or smallest values that quanƟty aƩains. For instance, if a funcƟon 
describes the speed of an object, it seems reasonable to want to know the 
fastest/slowest the object traveled. If a funcƟon describes the value of a stock, 
we might want to know the highest/lowest values the stock aƩained over the 
past year. We call such values extreme values.

In Section 3.1, in the Extreme Value Theorem, we talked about the extreme 
values of a function, namely its maximum and minimum. But in the process of 
finding these extreme values, we will see that the situation is somewhat 
complicated and we need to further clarify the terms maximum and minimum. 
Let us look at an example.

a b c

·
X

Y

y = f(x)

Example

The minimum value  of the function  f  is clearly at  x = a. 
We will call the minimum at  x = a the global minimum 
of the function.

But there is some kind of minimum at  x = c  even 
though it is not the least value on the domain of  f. 
However, it is the minimum over values of  x  
infinitesimally close to c. We  will call this minimum a 
local minimum of  f.
Note that  x = a  is also a local minimum of  f.

f  has a local maximum at  x = b. It does not have global 
maximum.

NOTE  Some applied mathematicians say  f  has a 
global maximum at  x = +∞. We will not. 

DefiniƟon 3.2.1 Extreme Values

Let f be defined on an interval I containing c.

1. f(c) i s the global minimum of f on I  if f(c) ≤ f (x) f or all  x in I.

2. f(c) i s the global maximum of f on I  if f(c) ≥   f(x)  for all  x in I.

The funcƟon displayed in (a) has a maximum, but no minimum, as the interval 
over which the funcƟon is defined is open. In (b), the funcƟon has a minimum, 
but no maximum; there is a disconƟnuity in the “natural” place for the 
maximum to occur. Finally, the funcƟon shown in (c) has both a maximum and 
a minimum; note that the funcƟon is conƟnuous and the interval on which it is 
defined is closed.

It is possible for disconƟnuous funcƟons defined on an open interval to 
have both a maximum and minimum value, but we have just seen examples 
where they did not. On the other hand, conƟnuous funcƟons on a 
closed interval always have a maximum and minimum value.

−2 −1 1 2

2

4

( ) x

y

(a)

−2 −1 1 2

2

4

[ ] x

y

(b)

−2 −1 1 2

2

4

[ ] x

y

Figure 3.2.1: Graphs of funcƟons with 
and without extreme values.

(c)
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Locating Theorem for Local Extrema 
They may occur only:

1. where  f '(x) = 0
2. where  f '(x)  does not exist.
3. at endpoints.

Proof

increasing or decreasing  ⟺       no
local extremum. So  f'(x) = 0.

II. f'(x) DNE  ⟺ 2 or 3 (ignoring any
endpoint agreement).

I. f'(x) exists. If  f'(x) = 0, then f is

In most applications we are interested in finding the Global Extreme Values, not the Local Extreme 
Values.
The importance of local extrema is they are relatively easy to find using calculus methods. Then, in a 
very important case, it is easy to find the global extreme values. In other cases graphical methods 
work rather well. 

/

Local Extreme Values
Note: The extreme values of a funcƟon 
are “y” values, values the funcƟon aƩains, 
not the "x" values.

−1 1

−1

1

x

y

Note:  f '(a) = 0 does not not necessarily mean 
there is a local extreme value at  x = 0. 

Note:  g '(2)  DNE does not not necessarily mean 
there is a local extreme value at  x = 2. 

Note:  there usually is a local extreme value at 
an endpoint.  However, there is no local 
extreme value at  x =0  in this example. 

Extreme Values  Finding Extrema of a Continuous Function on a Closed Interval
1. Find all local extrema on the interval using the Locating Theorem.
2. The least value is the global minimum.

The greatest value is the global maximum.

-1 1 2 3 4 x

-1

1

2

3
y

y = g(x)

· 1
x

1
y

y = h(x)
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This is because the Extreme Value Theorem says the extreme values exist. 

Apex calls 1 and 2 critical values.
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Figure 3.2.6: Finding the extreme values 
of f(x) = 2x3+3x2−12x in Example 3.1.4......
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−4 25
0 1
2 3

(b)

Figure 3.2.7: Finding the extreme values 
of a piecewise–defined funcƟon in 
Example 3.2.5.

graphed in Figure 3.2.7(a).

SÊ½çã®ÊÄ Here f is piecewise–defined, but we can sƟll apply Key Idea
3.1.1 as it is conƟnuous on [−4, 2] ( one should check to verify that  lim

x→0 
f(x) = f(0)).

EvaluaƟng f at the endpoints gives:

f(−4) = 25 and f(2) = 3.

We now find the criƟcal numbers of f. We have to define f ′ in a piecewise
manner; it is

f ′(x) =
{

2(x− 1) x < 0
1 x > 0 .

Note that while f is defined for all of [−4, 2], f ′ is not, as the derivaƟve of f 
does not exist when x = 0. (From the leŌ, the derivaƟve approaches −2; from 
the right the derivaƟve is 1.) Thus one criƟcal number of f is x = 0.

We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0, f ′(x) is 
also never 0, so we find no criƟcal values from seƫng f ′(x) = 0.
So we have three important x values to consider: x = −4, 2 and 0. Evaluating 
f at each gives, respecƟvely, 25, 3 and 1, shown in Figure 3.2.7(b). Thus the

We pracƟce the above  ideas in the next examples.

Example 3.2.4 Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed in Figure 
3.1.6(a).

evaluate f at the endpoints:

f(0) = 0 and f(3) = 45.

Next, we find the criƟcal values of f on [0, 3]. f ′(x) = 6x2 + 6x − 12 = 6(x + 2)
(x − 1); therefore the criƟcal values of f are x = −2 and x = 1. Since x = −2 
does not lie in the interval [0, 3], we ignore it. EvaluaƟng f at the only criƟcal 
number in our interval gives: f(1) = −7.

The table in Figure 3.2.6(b) gives f evaluated at the “important” x values in 
[0, 3]. We can easily see the maximum and minimum values of f: the maximum 
value is 45 and the minimum value is −7.

Note that all this was done without the aid of a graph; this work followed 
an analyƟc algorithm and did not depend on any visualizaƟon. Figure 3.2.6 
shows f and we can confirm our answer, but it is important to understand that 
these answers can be found without graphical assistance.

We pracƟce again.

Example 3.2.5 Finding extreme values  Find the maximum and minimum 
v{alues of f on [−4, 2], where

SÊ½çã®ÊÄ
We follow the steps outlined above. We first

f ′(x) =
{

2(x− 1) x < 0
1 x > 0 ■■
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Figure 3.2.8: Finding the extrema 
of f(x) = cos(x2) in Example 3.2.6.
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Figure 3.2.9: Finding the extrema of the 
half–circle in Example 3.2.7.

Note: We implicitly found the derivaƟve 
of x2 + y2 = 1, the unit circle, in Ex-
ample 2.6.5 as dy

dx = −x/y. In Exam-
ple 3.1.7, half of the unit circle is given as
y = f(x) =

√
1− x2. We found f ′(x) =

−x√
1−x2

. Recognize that the denominator
of this fracƟon is y; that is, we again found
f ′(x) = dy

dx = −x/y.

√
π ≐ 1.77.

We again construct a table of important values in Figure 3.2.8(b). In this example 

we have 5 values to consider: x = 0, ±2, ±
√
π.

From the table it is clear that the maximum value of f on [−2, 2] is 1; the 
minimum value is −1. The graph of f confirms our results.

We consider one more example.

Example 3.2.7 Finding extreme values
Find the extreme values of f(x) =

√
1 − x2, graphed in Figure 3.2.9(a).

SÊ½çã®ÊÄ A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1 − x2 ≥ 0; thus the domain of f is
[−1, 1]. EvaluaƟng f at either endpoint returns 0.

Using the Chain Rule, we find f ′(x) =
−x√
1− x2

. The criƟcal points of f are

found when f ′(x) = 0 or when f ′ is undefined. It is straighƞorward to find that 
f ′(x) = 0 when x = 0, and f ′ is undefined when x = ±1, the endpoints of the 
interval. The table of important values is given in Figure 3.2.9(b). The maximum 
value is 1, and the minimum value is 0. (See also the marginal note.)

We have seen that conƟnuous funcƟons on closed intervals always have a 
maximum and minimum value, and we have also developed a technique to find 
these values. In the next secƟon, we further our study of the informaƟon we can 
glean from “nice” funcƟons with the Mean Value Theorem. On a closed interval, 
we can find the average rate of change of a funcƟon (as we did at the beginning 
of Chapter 2). We will see that differenƟable funcƟons always have a point at 
which their instantaneous rate of change is same as the average rate of change. 
This is surprisingly useful, as we’ll see.

always
=
posiƟv

. . .
e
−
so
π
w
,
e
−π,
ignor

,
e
π,

−
.
π
.
,
.
etc.) So

(
sin(

)
x2
=
) = 0when x

=
= 0

,
,
π

±
,√π

π
,
,
. .
±
.

SÊ½çã®ÊÄ  EvaluaƟng f at the endpoints of
the interval gives: f(−2) = f(2) = cos(4) −0.6536.We now find the criƟcal
values of f.

Applying the Chain Rule, we find f ′(x) = −2x sin(x2). Set f ′(x) = 0 and
solve for x to find the criƟcal values of f.

We have f ′(x) = 0 when x = 0 and when sin(x2) = 0. In general, sin t = 0
when t 2 0 Thus sin x2 0 when x2 0 2 (x2 is√

2π,
c. The only values to fall in the given interval of [−2, 2] are 0 and±

√et π, where

≐≈

absolute minimum of f is 1, the absolute maximum of f is 25, confirmed by the 
graph of f.

Example 23.1.6 Finding extreme values
Find the extrema of f(x) = cos(x2) on [−2, 2], graphed in Figure 3.2.8(a).

_

-

Global Extreme Values. Other Cases
1. Find all local extrema using the Locating Theorem.
2. Graph by hand or a CAS.
3. Choose the global extreme values from 1. 
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Exercises 3.2
Terms and Concepts

1. Describe what an “extreme value” of a funcƟon is in your
own words.

2. Sketch the graph of a funcƟon f on (−1, 1) that has both a
maximum and minimum value.

3. Describe the difference between absolute and relaƟve
maxima in your own words.

4. Sketch the graph of a funcƟon f where f has a relaƟve max-
imum at x = 1 and f ′(1) is undefined.

5. T/F: If c is a criƟcal value of a funcƟon f, then f has either a
relaƟve maximum or relaƟve minimum at x = c.

6. Fill in the blanks: The criƟcal points of a funcƟon f are
found where f ′(x) is equal to or where f ′(x) is

.

Problems

In Exercises 7 – 8, idenƟfy each of the marked points as being 
an global maximum or minimum, a local maximum or 
minimum, or none of the above.
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In Exercises 9 – 16, evaluate f ′(x) at the points indicated in
the graph.

9. f(x) = 2
x2 + 1
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√
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11. f(x) = sin x
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√
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13. f(x) = 1+ (x− 2)2/3
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Solutions 3.2
1. Answers will vary.

2. Answers will vary.

3. Answers will vary.

4. Answers will vary.

5. F

6. Where f ′(x) is equal to 0 or where f ′(x) is                    
undefined.

7. A: none; the funcƟon isn’t defined here. B:                               
abs. max & rel. max C: rel. min D: none; the                      
funcƟon isn’t defined here. E: none F: rel.                                   
min G: rel. max

8. A: abs. min & rel. min B: none C: abs. max                                   
& rel. max D: none E: rel. min

9. f ′(0) = 0

10. f ′(0) = 0 f ′(2) = 0

11. f ′(π/2) = 0 f ′(3π/2) = 0

12. f ′(0) = 0 f ′(3.2) = 0 f ′(4) is undefined

13. f ′(2) is not defined f ′(6) = 0

14. Both f ′(−1) and f ′(1) are undefined.

15. f ′(0) = 0

16. f ′(0) is not defined

17. min: (−0.5, 3.75)
max: (2, 10)



14. f(x) = 3√x4 − 2x+ 1
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15. f(x) =
{

x2 x ≤ 0
x5 x > 0
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16. f(x) =
{

x2 x ≤ 0
x x > 0
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In Exercises 17 – 26, find the extreme values of the funcƟon
on the given interval.

17. f(x) = x2 + x+ 4 on [−1, 2].

18. f(x) = x3 − 9
2
x2 − 30x+ 3 on [0, 6].

19. f(x) = 3 sin x on [π/4, 2π/3].

20. f(x) = x2
√
4− x2 on [−2, 2].

21. f(x) = x+ 3
x

on [1, 5].

22. f(x) = x2

x2 + 5
on [−3, 5].

23. f(x) = ex cos x on [0, π].

24. f(x) = ex sin x on [0, π].

25. f(x) = ln x
x

on [1, 4].

26. f(x) = x2/3 − x on [0, 2].

Review
27. Find dy

dx , where x
2y− y2x = 1.

28. Find the equaƟon of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

29. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.

30. Identify approximately the global extreme values of each.
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Figure 3.3.1: A graph of a funcƟon f used
to illustrate the concepts of increasing
and decreasing.
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Figure 3.3.2: Examining the secant line of
an increasing funcƟon.

3.3 Increasing and Decreasing FuncƟons
Our study of “nice” funcƟons f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this secƟon we begin to study how funcƟons behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuiƟve concept. Given the graph in Figure 3.3.1, where
would you say the funcƟon is increasing? Decreasing? Even though we have
not defined these terms mathemaƟcally, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

DefiniƟon 3.3.1 Increasing and Decreasing FuncƟons

Let f be a funcƟon defined on an interval I.

1. f is increasing on I if for every a < b in I, f(a) < f(b).

2. f is decreasing on I if for every a < b in I, f(a) > f(b).

Informally, a funcƟon is increasing if as x gets larger (i.e., looking leŌ to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such informaƟon should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was acceleraƟng vs. decelerat-
ing). If f describes the populaƟon of a city, we should be interested in when the
populaƟon is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing,
differenƟable funcƟon on an open interval I, such as the one shown in Figure
3.3.2, and let a < b be given in I. The secant line on the graph of f from x = a
to x = b is drawn; it has a slope of (f(b)− f(a))/(b− a). But note:

f(b)− f(a)
b− a

⇒ numerator > 0
denominator > 0

⇒ slope of the
secant line> 0

⇒
Average rate of
change of f on
[a, b] is> 0.

How can you tell an uphill hill from an 
downhill hill? Answer: it depends which 
way you are walking. In mathematics we 
make the determination by walking to 
the right.
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Note: Parts 1 & 2 of Theorem 3.3.1 also
hold if f ′(c) = 0 for a finite number of
values of c in I.

By considering all such secant lines in I, we strongly imply that f ′(x) > 0 on I. A
similar statement can be made for decreasing funcƟons.

Our above logic can be summarized as “If f is increasing, then f ′ is probably
posiƟve.” Theorem 3.3.1 below turns this around by staƟng “If f ′ is posiƟve,
then f is increasing.” This leads us to a method for finding when funcƟons are
increasing and decreasing.

Theorem 3.3.1 Test For Increasing/Decreasing FuncƟons

Let f be a conƟnuous funcƟon on [a, b] and differenƟable on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

Let f be differenƟable on an interval I and let a and b be in Iwhere f ′(a) > 0
and f ′(b) < 0. If f ′ is conƟnuous on [a, b], it follows from the Intermediate Value
Theorem that there must be some value c between a and bwhere f ′(c) = 0. (It
turns out that this is sƟll true even if f ′ is not conƟnuous on [a, b].) This leads us
to the following method for finding intervals on which a funcƟon is increasing or
decreasing.

Key Idea 3.3.1 Finding Intervals on Which f is Increasing or
Decreasing

Let f be a differenƟable funcƟon on an interval I. To find intervals on
which f is increasing and decreasing:

1. Find the criƟcal values of f. That is, find all c in I where f ′(c) = 0
or f ′ is not defined.

2. Use the criƟcal values to divide I into subintervals.

3. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.
(b) If f ′(p) < 0, then f is decreasing on that subinterval.

We demonstrate using this process in the following example.
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Figure 3.3.4: A graph of f(x) in Example
3.3.1, showing where f is increasing and
decreasing.

Example 3.3.1 Finding intervals of increasing/decreasing
Let f(x) = x3 + x2 − x+ 1. Find intervals on which f is increasing or decreasing.

SÊ½çã®ÊÄ Using Key Idea 3.3.1, we first find the criƟcal values of f. We
have f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), so f ′(x) = 0 when x = −1 and
when x = 1/3. f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
Ɵre domain of f which is (−∞,∞). We thus break the whole real line into
three subintervals based on the two criƟcal values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in Figure 3.3.3.

..

−1

.

1/3

..
f ′ > 0 incr

.
f ′ < 0 decr

.
f ′ > 0 incr

Figure 3.3.3: Number line for f in Example 3.3.1.

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.
Subinterval 1, (−∞,−1): We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2 + 2(−2)− 1 = 7 > 0. We conclude that f is
increasing on (−∞,−1).

Note we can arrive at the same conclusion without computaƟon. For in-
stance, we could choose p = −100. The first term in f ′(−100), i.e., 3(−100)2 is
clearly posiƟve and very large. The other terms are small in comparison, so we
know f ′(−100) > 0. All we need is the sign.

Subinterval 2, (−1, 1/3): We pick p = 0 since that value seems easy to deal
with. f ′(0) = −1 < 0. We conclude f is decreasing on (−1, 1/3).

Subinterval 3, (1/3,∞): Pick an arbitrarily large value for p > 1/3 and note
that f ′(p) = 3p2 + 2p− 1 > 0. We conclude that f is increasing on (1/3,∞).

We can verify our calculaƟons by considering Figure 3.3.4, where f is graphed.
The graph also presents f ′; note how f ′ > 0 when f is increasing and f ′ < 0
when f is decreasing.

One is jusƟfied in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.
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One could argue that just finding criƟcal values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relaƟonship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the criƟcal points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f ′ is straighƞorward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has opƟons for finding needed informaƟon. We are
working to develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. SoluƟons are tractable only through the use of computers to do many
calculaƟons for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a funcƟon to a computer and have it return maximum and
minimum values, intervals on which the funcƟon is increasing and decreasing,
the locaƟons of relaƟve maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

In SecƟon 3.1 we learned the definiƟon of relaƟve maxima and minima and
found that they occur at criƟcal points. We are now learning that funcƟons can
switch from increasing to decreasing (and vice–versa) at criƟcal points. This new
understanding of increasing and decreasing creates a greatmethod of determin-
ing whether a criƟcal point corresponds to a maximum, minimum, or neither.
Imagine a funcƟon increasing unƟl a criƟcal point at x = c, aŌer which it de-
creases. A quick sketch helps confirm that f(c) must be a relaƟve maximum. A
similar statement can be made for relaƟve minimums. We formalize this con-
cept in a theorem.

Theorem 3.3.2 First DerivaƟve Test

Let f be differenƟable on an interval I and let c be a criƟcal number in I.

1. If the sign of f ′ switches from posiƟve to negaƟve at c, then f(c) is
a relaƟve maximum of f.

2. If the sign of f ′ switches from negaƟve to posiƟve at c, then f(c) is
a relaƟve minimum of f.

3. If f ′ is posiƟve (or, negaƟve) before and aŌer c, then f(c) is not a
relaƟve extrema of f.

Everyone should understand this 
theorem even though it is not very 
efficient in determining the nature 
of a critical point.

Case 3, such as the function  y = x   at  x = 0,   
is sometimes referred to as stationary point 
since the y-value does not change much near 
the point. 
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Figure 3.3.5: A graph of f(x) in Example
3.3.2, showing where f is increasing and
decreasing.

Example 3.3.2 Using the First DerivaƟve Test
Find the intervals on which f is increasing and decreasing, and use the First
DerivaƟve Test to determine the relaƟve extrema of f, where

f(x) =
x2 + 3
x− 1

.

SÊ½çã®ÊÄ We start by noƟng the domain of f: (−∞, 1) ∪ (1,∞). Key
Idea 3.3.1 describes how to find intervals where f is increasing and decreasing
when the domain of f is an interval. Since the domain of f in this example is
the union of two intervals, we apply the techniques of Key Idea 3.3.1 to both
intervals of the domain of f.

Since f is not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a criƟcal value of
f, but we will include it in our list of criƟcal values that we find next.

Using the QuoƟent Rule, we find

f ′(x) =
x2 − 2x− 3
(x− 1)2

.

We need to find the criƟcal values of f; we want to know when f ′(x) = 0 and
when f ′ is not defined. That laƩer is straighƞorward: when the denominator
of f ′(x) is 0, f ′ is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f ′(x) = 0 when the numerator of f ′(x) is 0. That occurs when x2− 2x− 3 =
(x− 3)(x+ 1) = 0; i.e., when x = −1, 3.

We have found that f has two criƟcal numbers, x = −1, 3, and at x = 1
something important might also happen. These three numbers divide the real
number line into 4 subintervals:

(−∞,−1), (−1, 1), (1, 3) and (3,∞).

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
complicated computaƟons; noƟce that the denominator of f ′ is always posiƟve
so we can ignore it during our work.
Interval 1, (−∞,−1): Choosing a very small number (i.e., a negaƟve number
with a large magnitude) p returns p2 − 2p − 3 in the numerator of f ′; that will
be posiƟve. Hence f is increasing on (−∞,−1).
Interval 2, (−1, 1): Choosing 0 seems simple: f ′(0) = −3 < 0. We conclude
f is decreasing on (−1, 1).
Interval 3, (1, 3): Choosing 2 seems simple: f ′(2) = −3 < 0. Again, f is
decreasing.

If you think this page and the following two are interesting,
get a life.

If you need it to distinguish a mountain top from a valley bottom,
don't take up hiking.
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Interval 4, (3,∞): Choosing an very large number p from this subinterval will
give a posiƟve numerator and (of course) a posiƟve denominator. So f is increas-
ing on (3,∞).

In summary, f is increasing on the intervals (−∞,−1) and (3,∞) and is de-
creasing on the intervals (−1, 1) and (1, 3). Since at x = −1, the sign of f ′
switched from posiƟve to negaƟve, Theorem 3.3.2 states that f(−1) is a relaƟve
maximum of f. At x = 3, the sign of f ′ switched from negaƟve to posiƟve, mean-
ing f(3) is a relaƟve minimum. At x = 1, f is not defined, so there is no relaƟve
extrema at x = 1.
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.
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.
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.
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max

.

rel.
min

Figure 3.3.6: Number line for f in Example 3.3.2.

This is summarized in the number line shown in Figure 3.3.6. Also, Figure
3.3.5 shows a graph of f, confirming our calculaƟons. This figure also shows
f ′, again demonstraƟng that f is increasing when f ′ > 0 and decreasing when
f ′ < 0.

One is oŌen tempted to think that funcƟons always alternate “increasing,
decreasing, increasing, decreasing,. . .” around criƟcal values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was not
technically a criƟcal value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 3.3.3 Using the First DerivaƟve Test
Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and decreasing and
idenƟfy the relaƟve extrema.

SÊ½çã®ÊÄ We again start with taking a derivaƟve. Since we know we
want to solve f ′(x) = 0, we will do some algebra aŌer taking the derivaƟve.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8
3
x

5
3 − 8

3
x−

1
3

=
8
3
x−

1
3

(
x

6
3 − 1

)
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Figure 3.3.8: A graph of f(x) in Example
3.3.3, showing where f is increasing and
decreasing.

=
8
3
x−

1
3 (x2 − 1)

=
8
3
x−

1
3 (x− 1)(x+ 1).

This derivaƟon of f ′ shows that f ′(x) = 0 when x = ±1 and f ′ is not de-
fined when x = 0. Thus we have 3 criƟcal values, breaking the number line into
4 subintervals as shown in Figure 3.3.7.

Interval 1, (∞,−1): We choose p = −2; we can easily verify that f ′(−2) <
0. So f is decreasing on (−∞,−1).
Interval 2, (−1, 0): Choose p = −1/2. Once more we pracƟce finding the sign
of f ′(p) without compuƟng an actual value. We have f ′(p) = (8/3)p−1/3(p −
1)(p+ 1); find the sign of each of the three terms.

f ′(p) =
8
3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “negaƟve × negaƟve × posiƟve” giving a posiƟve number; f is in-
creasing on (−1, 0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

f ′(p) =
8
3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have 2 posiƟve factors and one negaƟve factor; f ′(p) < 0 and so f is de-
creasing on (0, 1).
Interval 4, (1,∞): Similar work to that done for the other three intervals shows
that f ′(x) > 0 on (1,∞), so f is increasing on this interval.
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.
f ′ < 0 decr
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.
f ′ > 0 incr

.
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.
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min

.

rel.
max

Figure 3.3.7: Number line for f in Example 3.3.3.

Weconcludeby staƟng that f is increasing on the intervals (−1, 0) and (1,∞)
and decreasing on the intervals (−∞,−1) and (0, 1). The sign of f ′ changes
from negaƟve to posiƟve around x = −1 and x = 1, meaning by Theorem 3.3.2
that f(−1) and f(1) are relaƟve minima of f. As the sign of f ′ changes from pos-
iƟve to negaƟve at x = 0, we have a relaƟve maximum at f(0). Figure 3.3.8
shows a graph of f, confirming our result. We also graph f ′, highlighƟng once
more that f is increasing when f ′ > 0 and is decreasing when f ′ < 0.

We have seen how the first derivaƟve of a funcƟon helps determine when
the funcƟon is going “up” or “down.” In the next secƟon, we will see how the
second derivaƟve helps determine how the graph of a funcƟon curves.
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Exercises 3.3
Terms and Concepts

1. In your own words describe what it means for a funcƟon to
be increasing.

2. What does a decreasing funcƟon “look like”?

3. Sketch a graph of a funcƟon on [0, 2] that is increasing,
where it is increasing “quickly” near x = 0 and increasing
“slowly” near x = 2.

4. Give an example of a funcƟon describing a situaƟon where
it is “bad” to be increasing and “good” to be decreasing.

5. T/F: FuncƟons always switch from increasing to decreasing,
or decreasing to increasing, at criƟcal points.

6. A funcƟon f has derivaƟve f ′(x) = (sin x+ 2)ex
2+1, where

f ′(x) > 1 for all x. Is f increasing, decreasing, or can we not
tell from the given informaƟon?

Problems
In Exercises 7 – 14, a funcƟon f(x) is given.

(a) Compute f ′(x).

(b) Graph f and f ′ on the same axes (using technology is
permiƩed) and verify Theorem 3.3.1.

7. f(x) = 2x+ 3

8. f(x) = x2 − 3x+ 5

9. f(x) = cos x

10. f(x) = tan x

11. f(x) = x3 − 5x2 + 7x− 1

12. f(x) = 2x3 − x2 + x− 1

13. f(x) = x4 − 5x2 + 4

14. f(x) = 1
x2 + 1

In Exercises 15 – 24, a funcƟon f(x) is given.
(a) Give the domain of f.
(b) Find the criƟcal numbers of f.
(c) Create a number line to determine the intervals on

which f is increasing and decreasing.
(d) Use the First DerivaƟve Test to determine whether

each criƟcal point is a relaƟve maximum, minimum,
or neither.

15. f(x) = x2 + 2x− 3

16. f(x) = x3 + 3x2 + 3

17. f(x) = 2x3 + x2 − x+ 3

18. f(x) = x3 − 3x2 + 3x− 1

19. f(x) = 1
x2 − 2x+ 2

20. f(x) = x2 − 4
x2 − 1

21. f(x) = x
x2 − 2x− 8

22. f(x) = (x− 2)2/3

x

23. f(x) = sin x cos x on (−π, π).

24. f(x) = x5 − 5x

25. Give a graphical of a function for which
1. f '(c) = 0, no extreme value
2. f '(c)  DNE, no extreme value
3. c  an endpoint, no extreme value.

If you work all the exercises, you
might not finish before graduation.
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Solutions 3.3

1. Answers will vary.

2. Answers will vary.

3. Answers will vary; graphs should be steeper near x = 0 than near
x = 2.

4. Answers will vary.

5. False; for instance, y = x3 is always increasing though it has a
criƟcal point at x = 0.

6. Increasing

7. Graph and verify.

8. Graph and verify.

9. Graph and verify.

10. Graph and verify.

11. Graph and verify.

12. Graph and verify.

13. Graph and verify.

14. Graph and verify.

15. domain: (−∞,∞)

c.p. at c = −1;
decreasing on (−∞,−1);
increasing on (−1,∞);
rel. min at x = −1.

16. domain=(−∞,∞)

c.p. at c = −2, 0;
increasing on (−∞,−2) and (0,∞);
decreasing on (−2, 0);
rel. min at x = 0;
rel. max at x = −2.

1
6

17. domain=(−∞,∞)

c.p. at c = (−1±
√
7);

decreasing on ( 16 (−1−
√

67), (−1+
√
7)));

increasing on (−∞, 1
6 (−1−

1
√ 1

67)) and ( (−1+
√
7),∞);

√
7);rel. min at x = 1

6 (−1+
rel. max at x = 1

6 (−1−
√
7).

18. domain=(−∞,∞)

c.p. at c = 1;
increasing on (−∞,∞);

19. domain=(−∞,∞)

c.p. at c = 1;
decreasing on (1,∞)

increasing on (−∞, 1);
rel. max at x = 1.

20. domain=(−∞,−1) ∪ (−1, 1) ∪ (1,∞)

c.p. at c = 0;
decreasing on (−∞,−1) and (−1, 0);
increasing on (0, 1) and (1,∞);
rel. min at x = 0;

21. domain=(−∞,−2) ∪ (−2, 4) ∪ (4,∞)

no c.p.;
decreasing on enƟre domain, (−∞,−2), (−2, 4) and (4,∞)

22. domain=(−∞, 0) ∪ (0,∞);
c.p. at c = 2, 6;
decreasing on (−∞, 0), (0, 2) and (6,∞);
increasing on (2, 6);
rel. min at x = 2; rel. max at x = 6.

23. domain=(−∞, ∞)
c.p. at c = −3π/4, −π/4, π/4, 3π/4;
decreasing on (−3π/4, −π/4) and (π/4, 3π/4); 
increasing on (−π, −3π/4), (−π/4, π/4) and (3π/4, π) ; 
rel. min at x = −π/4, 3π/4;
rel. max at x = −3π/4, π/4.

24. domain = (−∞, ∞);
c.p. at c = −1, 1;
decreasing on (−1, 1);
increasing on (−∞, −1) and (1, ∞);

rel. min at x = 1;
rel. max at x = −1
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Note: We oŌen state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.
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Figure 3.4.1: A funcƟon f with a concave
up graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are increasing.

.....
−2

.
2

.

10

.

20

.

30

. x.

y

Figure 3.4.2: A funcƟon f with a concave
down graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are decreasing.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admiƩedly terrible, but it
works.

3.4 Concavity and the Second DerivaƟve
Our study of “nice” funcƟons conƟnues. The previous secƟon showed how the
first derivaƟve of a funcƟon, f ′, can relay important informaƟon about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its derivaƟve, namely f ′′, which is the
second derivaƟve of f. When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′ is
decreasing. f ′ has relaƟve maxima and minima where f ′′ = 0 or is undefined.

This secƟon explores how knowing informaƟon about f ′′ gives informaƟon
about f.

Concavity

We begin with a definiƟon, then explore its meaning.

DefiniƟon 3.4.1 Concave Up and Concave Down

Let f be differenƟable on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.

The graph of a funcƟon f is concave up when f ′ is increasing. That means as
one looks at a concave up graph from leŌ to right, the slopes of the tangent lines
will be increasing. Consider Figure 3.4.1, where a concave up graph is shown
along with some tangent lines. NoƟce how the tangent line on the leŌ is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a funcƟon is decreasing and concave up, then its rate of decrease is slow-
ing; it is “leveling off.” If the funcƟon is increasing and concave up, then the rate
of increase is increasing. The funcƟon is increasing at a faster and faster rate.

Now consider a funcƟon which is concave down. We essenƟally repeat the
above paragraphs with slight variaƟon.

The graph of a funcƟon f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from leŌ to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.4.2, where a concave down graph is
shown along with some tangent lines. NoƟce how the tangent line on the leŌ
is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a funcƟon is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the funcƟon is decreasing and concave down, then the
rate of decrease is decreasing. The funcƟon is decreasing at a faster and faster
rate.
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f ′ > 0, increasing

f ′′ < 0, c. down

.

f ′ < 0, decreasing

f ′′ < 0, c. down

.

f ′ < 0, decreasing

f ′′ > 0, c. up

.

f ′ > 0, increasing

f ′′ > 0, c. up

Figure 3.4.3: DemonstraƟng the 4 ways
that concavity interacts with increas-
ing/decreasing, along with the relaƟon-
ships with the first and second deriva-
Ɵves.

Note: Geometrically speaking, a funcƟon
is concave up if its graph lies above its tan-
gent lines. A funcƟon is concave down if
its graph lies below its tangent lines.
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Figure 3.4.4: A graph of a funcƟon with
its inflecƟon points marked. The inter-
vals where concave up/down are also in-
dicated.

Our definiƟon of concave up and concave down is given in terms of when
the first derivaƟve is increasing or decreasing. We can apply the results of the
previous secƟon and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > 0, etc.

Theorem 3.4.1 Test for Concavity

Let f be twice differenƟable on an interval I. The graph of f is concave up
if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.

If knowing where a graph is concave up/down is important, it makes sense
that the placeswhere the graph changes fromone to the other is also important.
This leads us to a definiƟon.

DefiniƟon 3.4.2 Point of InflecƟon

A point of inflecƟon is a point on the graph of f at which the concavity
of f changes.

Figure 3.4.4 shows a graph of a funcƟon with inflecƟon points labeled.
If the concavity of f changes at a point (c, f(c)), then f ′ is changing from

increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from posiƟve to negaƟve (or, negaƟve to posiƟve) at
x = c. This leads to the following theorem.

Theorem 3.4.2 Locating Theorem for InflecƟon Points

Points of inflecƟon of a function  f  may occur only where
1. f ′′(c) = 0
2. f ′′(c)  does not exist..

We have idenƟfied the concepts of concavity and points of inflecƟon. It is 
now Ɵme to pracƟce using these concepts; given a funcƟon, we should be able 
to find its points of inflecƟon and idenƟfy intervals on which it is concave up or 
down. We do so in the following examples.

−1 −0.5 0.5 1

0.5

1

x

y

Figure 3.4.5: A graph of f(x) = x4. Clearly 
f is always concave up, despite the fact 
that f ′′(x) = 0 when x = 0. It this 
example, the possible point of inflecƟon 
(0, 0) is not a point of inflecƟon.

NOTE  In Figure 3.4.5, f"(0) = 0, but  x = 0  
is not an inflection point because it does not
connect concave up with concave down.
Thus the may in the Locating Theorem.

RELATED NOTE  The word 'inflection' literally 
means not bending. In old calculus textbooks, 
that was the meaning of inflection point. This 
idea is still relevant. Near a point where the 
second derivative is  0, as in Figure 3.4.5, a 
curve is straighter than the usual local 
linearity possessed by a differentiable curve.
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Figure 3.4.6: A number line determining 
the concavity of f in Example 3.4.1.
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Figure 3.4.7: A graph of f(x) used in Ex-
ample 3.4.1.

SÊ½çã®ÊÄ We need to find f ′ and f ′′. Using the QuoƟent Rule and sim-
plifying, we find

f ′(x) =
−(1+ x2)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.

To find the possible points of inflecƟon, we seek to findwhere f ′′(x) = 0 and
where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving 2x(x2 + 3) = 0;
we find x = 0. We find that f ′′ is not defined when x = ±1, for then the
denominator of f ′′ is 0. We also note that f itself is not defined at x = ±1,
having a domain of (−∞,−1) ∪ (−1, 1) ∪ (1,∞). Since the domain of f is the
unionof three intervals, itmakes sense that the concavity of f could switch across
intervals. We technically cannot say that f has a point of inflecƟon at x = ±1 as
they are not part of the domain, but we must sƟll consider these x-values to be
important and will include them in our number line.

The important x-values at which concavity might switch are x = −1, x = 0
and x = 1, which split the number line into four intervals as shown in Figure
3.4.7. We determine the concavity on each. Keep in mind that all we are con-
cerned with is the sign of f ′′ on the interval.

Interval 1, (−∞,−1): Select a number c in this interval with a large magnitude
(for instance, c = −100). The denominator of f ′′(x) will be posiƟve. In the
numerator, the (c2 + 3) will be posiƟve and the 2c term will be negaƟve. Thus
the numerator is negaƟve and f ′′(c) is negaƟve. We conclude f is concave down
on (−∞,−1).

Example 3.4.1 Finding intervals of concave up/down, inflecƟon points Let f(x) 
= x3 − 3x + 1. Find the inflecƟon points of f and the intervals on which it is 
concave up/down.

SÊ½çã®ÊÄ We start by finding f ′(x) = 3x2 − 3 and f ′′(x) = 6x. To find 
the inflecƟon points, we use Theorem 3.4.2 and find where f ′′(x) = 0 or where 
f ′′ is undefined. We find f ′′ is always defined, and is 0 only when x = 0. So the 
point (0, 1) is the only possible point of inflecƟon.

This possible inflecƟon point divides the real line into two intervals, (−∞, 0) 
and (0, ∞). We use a process similar to the one used in the previous secƟon to 
determine increasing/decreasing. Pick any c < 0; f ′′(c) < 0 so f is concave 
down on (−∞, 0). Pick any c > 0; f ′′(c) > 0 so f is concave up on (0, ∞). Since 
the concavity changes at x = 0, the point (0, 1) is an inflecƟon point.

The number line in Figure 3.4.6 illustrates the process of determining con-
cavity; Figure 3.4.7 shows a graph of f and f ′′, confirming our results. NoƟce 
how f is concave down precisely when f ′′(x) < 0 and concave up when f ′′(x) > 
0.

Example 3.4.2 Finding intervals of concave up/down, inflecƟon points Let f(x) 
= x/(x2 − 1). Find the inflecƟon points of f and the intervals on which it is 
concave up/down.
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Figure 3.4.8: A graph of f(x) and f ′′(x) in
Example 3.4.2.
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Figure 3.4.9: A graph of S(t) in Example
3.4.3, modeling the sale of a product over
Ɵme.

Chapter 3 The Graphical Behavior of FuncƟons

Interval 2, (−1, 0): For any number c in this interval, the term 2c in the numer-
ator will be negaƟve, the term (c2 + 3) in the numerator will be posiƟve, and
the term (c2 − 1)3 in the denominator will be negaƟve. Thus f ′′(c) > 0 and f is
concave up on this interval.
Interval 3, (0, 1): Any number c in this interval will be posiƟve and “small.” Thus
the numerator is posiƟve while the denominator is negaƟve. Thus f ′′(c) < 0
and f is concave down on this interval.
Interval 4, (1,∞): Choose a large value for c. It is evident that f ′′(c) > 0, so we
conclude that f is concave up on (1,∞).
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1

.
f ′′ < 0 c. down

.
f ′′ > 0 c. up

.
f ′′ < 0 c. down

.
f ′′ > 0 c. up

Figure 3.4.8: Number line for f in Example 3.4.2.

We conclude that f is concave up on (−1, 0) and (1, ∞) and concave down 
on (−∞, −1) and (0, 1). There is only one point of inflecƟon, (0, 0), as f is not 
defined at x = ±1. Our work is confirmed by the graph of f in Figure 3.4.8. No-
Ɵce how f is concave up whenever f ′′ is posiƟve, and concave down when f ′′ is 
negaƟve.

Recall that relaƟve maxima and minima of f are found at criƟcal points of 
f; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise, 
the relaƟve maxima and minima of f ′ are found when f ′′(x) = 0 or when f ′′ is 
undefined; note that these are the inflecƟon points of f.

What does a “relaƟve maximum of f ′ ” mean? The derivaƟve measures the 
rate of change of f; maximizing f ′ means finding where f is increasing the most –
where f has the steepest tangent line. A similar statement can be made for min-
imizing f ′; it corresponds to where f has the steepest negaƟvely–sloped tangent 
line.

We uƟlize this concept in the next example.

Example 3.4.3 Understanding inflecƟon points
The sales of a certain product over a three-year span are modeled by S(t) = 
t4 − 8t2 + 20, where t is the Ɵme in years, shown in Figure 3.4.9. Over the first 
two years, sales are decreasing. Find the point at which sales are decreasing at 
their greatest rate.

SÊ½çã®ÊÄ We want to maximize the rate of decrease, which is to say, 
we want to find where S ′ has a minimum. To do this, we find where S ′′ i s 0. We 

find S ′(t)√= 4t3 − 16t and S ′′(t) = 12t2 − 16. Seƫng S ′′(t) = 0 and solving, we get
c    t   =    4/3    ≐ 1.16 (we ignore the negaƟve value of t since it does not lie in
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Figure 3.4.10: A graph of S(t) in Example
3.4.3 along with S ′(t).
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Figure 3.4.11: A graph of f(x) = x4.
Clearly f is always concave up, despite the
fact that f ′′(x) = 0 when x = 0. It this
example, the possible point of inflecƟon
(0, 0) is not a point of inflecƟon.

...

..

−2

.

−1

.

1

.

2

.

−10

.

−5

.

5

.

10

.

c. down

⇒ rel. max

.

c. up

⇒ rel. min

.

x

.

y

Figure 3.4.12: DemonstraƟng the fact
that relaƟve maxima occur when the
graph is concave down and relaƟve min-
ima occur when the graph is concave up.

3.4 Concavity and the Second DerivaƟve

the domain of our funcƟon S).
This is both the inflecƟon point and the point of maximum decrease. This 

is the point at which things first start looking up for the company. AŌer the 
inflecƟon point, it will sƟll take some Ɵme before sales start to increase, but at 
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S ′(t) is given in Figure 3.4.10. When S ′(t) < 0, sales are 
decreasing; note how at t ≐ 1.16, S ′(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t ≐ 1.16. On the interval of (1.16, 2), S is decreasing 
but concave up, so the decline in sales is “leveling off.”

Not every criƟcal point corresponds to a relaƟve extrema; f(x) = x3 has a 
criƟcal point at (0, 0) but no relaƟve maximum or minimum. Likewise, just be-
cause f ′′(x) = 0 we cannot conclude concavity changes at that point. We were 
careful before to use terminology “possible point of inflecƟon” since we 
needed to check to see if the concavity changed. The canonical example of f ′′
(x) = 0 without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is 
always concave up, as shown in Figure 3.4.11.

The Second DerivaƟve Test

The first derivaƟve of a funcƟon gave us a test to find if a criƟcal value cor-
responded to a relaƟve maximum, minimum, or neither. The second derivaƟve 
gives us another way to test if a criƟcal point is a local maximum or minimum. 
The following theorem officially states something that is intuiƟve: if a criƟcal 
value occurs in a region where a funcƟon f is concave up, then that criƟcal 
value must correspond to a relaƟve minimum of f, etc. See Figure 3.4.12 for a 
visual-izaƟon of this.

Theorem 3.4.3 The Second DerivaƟve Test

Let c be a criƟcal value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

The Second DerivaƟve Test relates to the First DerivaƟve Test in the following 
way. If f ′′(c) > 0, then the graph is concave up at a criƟcal point c and f ′ itself 
is growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from negaƟve 
to posiƟve at c. This means the funcƟon goes from decreasing to increasing, in-
dicaƟng a local minimum at c.

NOTE The Second Derivative Test is quite easy to apply. 
It has been used in physics and other applications.
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Figure 3.4.13: A graph of f(x) in Example
3.4.4. The second derivaƟve is evaluated
at each criƟcal point. When the graph is
concave up, the criƟcal point represents
a local minimum; when the graph is con-
cave down, the criƟcal point represents a
local maximum.

Example 3.4.4 Using the Second DerivaƟve Test
Let f(x) = 100/x+ x. Find the criƟcal points of f and use the Second DerivaƟve
Test to label them as relaƟve maxima or minima.

SÊ½çã®ÊÄ We find f ′(x) = −100/x2 + 1 and f ′′(x) = 200/x3.We set
f ′(x) = 0 and solve for x to find the criƟcal values (note that f ′ is not defined at
x = 0, but neither is f so this is not a criƟcal value.) We find the criƟcal values
are x = ±10. EvaluaƟng f ′′ at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. EvaluaƟng f ′′(−10) = −0.1 < 0, determining a relaƟve maximum
at x = −10. These results are confirmed in Figure 3.4.13.

We have been learning how the first and second derivaƟves of a funcƟon
relate informaƟon about the graph of that funcƟon. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locaƟons of relaƟve extrema and inflecƟon points. In Chapter 1
we saw how limits explained asymptoƟc behavior. In the next secƟon we com-
bine all of this informaƟon to produce accurate sketches of funcƟons.
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Exercises 3.4
Terms and Concepts

1. Sketch a graph of a funcƟon f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a funcƟon f(x) that is:

(a) Increasing, concave up on (0, 1),

(b) increasing, concave down on (1, 2),

(c) decreasing, concave down on (2, 3) and

(d) increasing, concave down on (3, 4).

3. Is is possible for a funcƟon to be increasing and concave
down on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a funcƟon.

4. Is is possible for a funcƟon to be increasing and concave up
on (0,∞)with a horizontal asymptote of y = 1? If so, give
a sketch of such a funcƟon.

Problems

In Exercises 5 – 14, a funcƟon f(x) is given.

(a) Compute f ′′(x).

(b) Graph f and f ′′ on the same axes (using technology is
permiƩed) and verify Theorem 3.4.1.

5. f(x) = −7x+ 3

6. f(x) = −4x2 + 3x− 8

7. f(x) = 4x2 + 3x− 8

8. f(x) = x3 − 3x2 + x− 1

9. f(x) = −x3 + x2 − 2x+ 5

10. f(x) = sin x

11. f(x) = tan x

12. f(x) = 1
x2 + 1

13. f(x) = 1
x

14. f(x) = 1
x2

In Exercises 15 – 28, a funcƟon f(x) is given.
(a) Find the possible points of inflecƟon of f.
(b) Create a number line to determine the intervals on

which f is concave up or concave down.

15. f(x) = x2 − 2x+ 1

16. f(x) = −x2 − 5x+ 7

17. f(x) = x3 − x+ 1

18. f(x) = 2x3 − 3x2 + 9x+ 5

19. f(x) = x4

4
+

x3

3
− 2x+ 3

20. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

21. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

22. f(x) = sec x on (−3π/2, 3π/2)

23. f(x) = 1
x2 + 1

24. f(x) = x
x2 − 1

25. f(x) = sin x+ cos x on (−π, π)

26. f(x) = x2ex

27. f(x) = x2 ln x

28. f(x) = e−x2

In Exercises 29 – 42, a funcƟon f(x) is given. Find the criƟcal
points of f and use the Second DerivaƟve Test, when possi-
ble, to determine the relaƟve extrema. (Note: these are the
same funcƟons as in Exercises 15 – 28.)

29. f(x) = x2 − 2x+ 1

30. f(x) = −x2 − 5x+ 7

31. f(x) = x3 − x+ 1

32. f(x) = 2x3 − 3x2 + 9x+ 5

33. f(x) = x4

4
+

x3

3
− 2x+ 3

34. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

35. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

36. f(x) = sec x on (−3π/2, 3π/2)
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37. f(x) = 1
x2 + 1

38. f(x) = x
x2 − 1

39. f(x) = sin x+ cos x on (−π, π)

40. f(x) = x2ex

41. f(x) = x2 ln x

42. f(x) = e−x2

In Exercises 43 – 56, a funcƟon f(x) is given. Find the x val-
ues where f ′(x) has a local maximum or minimum. (Note: 
these are the same funcƟons as in Exercises 15 – 28.)

43. f(x) = x2 − 2x+ 1

44. f(x) = −x2 − 5x+ 7

45. f(x) = x3 − x+ 1

46. f(x) = 2x3 − 3x2 + 9x+ 5

47. f(x) = x4

4
+

x3

3
− 2x+ 3

48. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

49. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

50. f(x) = sec x on (−3π/2, 3π/2)

51. f(x) = 1
x2 + 1

52. f(x) = x
x2 − 1

53. f(x) = sin x+ cos x on (−π, π)

54. f(x) = x2ex

55. f(x) = x2 ln x

56. f(x) = e−x2

57. Give a graphical of a function for which
1. f ''(c) = 0, no inflection point
2. f ''(c)  DNE, no inflection point.
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Solutions 3.4

1. Answers will vary.

2. Answers will vary.

3. Yes; Answers will vary.

4. No.

5. Graph and verify.

6. Graph and verify.

7. Graph and verify.

8. Graph and verify.

9. Graph and verify.

10. Graph and verify.

11. Graph and verify.

12. Graph and verify.

13. Graph and verify.

14. Graph and verify.

15. Possible points of inflecƟon: none; concave up on (−∞,∞)

16. Possible points of inflecƟon: none; concave down on (−∞,∞)

17. Possible points of inflecƟon: x = 0; concave down on (−∞, 0);
concave up on (0,∞)

18. Possible points of inflecƟon: x = 1/2; concave down on
(−∞, 1/2); concave up on (1/2,∞)

19. Possible points of inflecƟon: x = −2/3, 0; concave down on
(−2/3, 0); concave up on (−∞,−2/3) and (0,∞)

20. Possible points of inflecƟon: x = (1/3)(2±
√
7); concave up on

(((1/3)(2−
√
7), 1/3)(2+

√
7)); concave down on

(−∞, (1/3)(2−
√
7)) and ((1/3)(2+

√
7),∞)

21. Possible points of inflecƟon: x = 1; concave up on (−∞,∞)

22. Possible points of inflecƟon: f ′′(x) is not defined (nor is f) at
x = −π/2, π/2; concave down on (−3π/2,−π/2) and
(π/2, 3π/2) concave up on (−π/2, π/2)

23. Possible points of inflecƟon: x = ±1/
√
3; concave down on

(−1/
√
3, 1/

√
3); concave up on (−∞,−1/

√
3) and (1/

√
3,∞)

24. Possible points of inflecƟon: x = 0,±1; concave down on
(−∞,−1) and (0, 1) concave up on (−1, 0) and (1,∞)

25. Possible points of inflecƟon: x = −π/4, 3π/4; concave down on
(−π/4, 3π/4) concave up on (−π,−π/4) and (3π/4, π)

26. Possible points of inflecƟon: x = −2±
√
2; concave down on

(−2−
√
2,−2+

√
2) concave up on (−∞,−2−

√
2) and

(−2+
√
2,∞)

27. Possible points of inflecƟon: x = 1/e3/2; concave down on
(0, 1/e3/2) concave up on (1/e3/2,∞)

28. Possible points of inflecƟon: x = ±1/
√
2; concave down on

(−1/
√
2, 1/

√
2) concave up on (−∞,−1/

√
2) and (1/

√
2,∞)

29. min: x = 1
30. max: x = −5/2

√
3 min: x = 1/

√
331. max: x = −1/

32.
33. min: x = 1
34. max: x = −1, 2; min: x = 1
35. min: x = 1
36. max: at x = ±π min: at x = 0
37. max: x = 0
38. criƟcal values: x = −1, 1; no max/min
39. max: x = π/4; min: x = −3π/4
40. max: x = 2; min: x = 0
41. min: x = 1

−
/
√
e

42. max: x = 0
43. f ′ has no maximal or minimal value.
44. f ′ has no maximal or minimal value
45. f ′ has a minimal value at x = 0
46. f ′ has a minimal value at x = 1/2
47.

48.

Possible points of inflecƟon: x = −2/3, 0; f ′ has a relaƟve min
at: x = 0 ; relaƟve max at: x = −2/3
f ′ has a relaƟve max at: x = (1/3)(2+

√
7) relaƟve min at:

x = (1/3)(2−
√
7)

√
3; relaƟve min at x = 1/

√
3

49. f ′ has no relaƟve extrema
50. f ′(x) has no relaƟve extrema
51. f ′ has a relaƟve max at x = −1/
52. f ′ has a relaƟve max at x = 0
53. f ′ has a relaƟve min at x = 3π/4; relaƟve max at x = −π/4
54. f ′ has a relaƟve max at x = −2−

√
2; relaƟve min at

x = −2+
√
2

55. f ′ has a relaƟve min at x = 1/
√
e3 = e−3/2

56. f ′ has a relaƟve max at x = −1/
√
2; a relaƟve min at x = 1/

√
2
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3.5 Curve Sketching

Wehave been learning howwe can understand the behavior of a funcƟon based
on its first and second derivaƟves. While we have been treaƟng the properƟes
of a funcƟon separately (increasing and decreasing, concave up and concave
down, etc.), we combine themhere to produce an accurate graph of the funcƟon
without ploƫng lots of extraneous points.

Why bother? Graphing uƟliƟes are very accessible, whether on a computer,
a hand–held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not parƟcularly fast – it will require
Ɵme (but it is not hard). So again: why bother?

We are aƩempƟng to understand the behavior of a funcƟon f based on the
informaƟon given by its derivaƟves. While all of a funcƟon’s derivaƟves relay
informaƟon about it, it turns out that “most” of the behavior we care about is
explained by f ′ and f ′′. Understanding the interacƟons between the graph of f
and f ′ and f ′′ is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to staƟng that one understands howan engineworks aŌer looking only at
pictures. It is true that the basic ideas will be conveyed, but “hands–on” access
increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of funcƟons and gives a framework for puƫng that
informaƟon together. It is followed by several examples.

Key Idea 3.5.1 Curve Sketching

To produce an accurate sketch a given funcƟon f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
enƟre real line then find restricƟons, such aswhere a denominator
is 0 or where negaƟves appear under the radical.

2. Find the criƟcal values of f.

3. Find the possible points of inflecƟon of f.

4. Find the locaƟon of any verƟcal asymptotes of f (usually done in
conjuncƟon with item 1 above).

5. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behavior of the funcƟon.

(conƟnued)
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Key Idea 3.5.1 Curve Sketching – ConƟnued

6. Create a number line that includes all criƟcal points, possible
points of inflecƟon, and locaƟons of verƟcal asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

7. Evaluate f at each criƟcal point and possible point of inflecƟon.
Plot these points on a set of axes. Connect these pointswith curves
exhibiƟng the proper concavity. Sketch asymptotes and x and y
intercepts where applicable.

Example 3.5.1 Curve sketching
Use Key Idea 3.5.1 to sketch f(x) = 3x3 − 10x2 + 7x+ 5.

SÊ½çã®ÊÄ We follow the steps outlined in the Key Idea.

1. The domain of f is the enƟre real line; there are no values x for which f(x)
is not defined.

2. Find the criƟcal values of f. We compute f ′(x) = 9x2 − 20x+ 7. Use the
QuadraƟc Formula to find the roots of f ′:

x =
20±

√
(−20)2 − 4(9)(7)

2(9)
=

1
9

(
10±

√
37
)
⇒ x     0.435, 1.787.

3. Find the possible points of inflecƟon of f. Compute f ′′(x) = 18x−20. We
have

f ′′(x) = 0 ⇒ x = 10/9    1.111.

4. There are no verƟcal asymptotes.

5. We determine the end behavior using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes.

6. We place the values x = (10 ±
√
37)/9 and x = 10/9 on a number

line, as shown in Figure 3.5.1. We mark each subinterval as increasing or

N.B.  Short Version
If you need a high quality graph, use a computer graphing utility. For a 
hand drawn graph:

Locate the local extreme points with a short tangent line 
Locate possible points of inflection
Determine the behaviors at infinity:

vertical asymptotes
other asumptotes

Sketch the curve.

If in doubt, plot a few test points.

≐ 

≐ 
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Figure 3.5.2: Sketching f in Example 3.5.1.

decreasing, concave up or down, using the techniques used in SecƟons
3.3 and 3.4.

..

1
9 (10−

√
37)

    0.435

.

10
9     1.111

.

1
9 (10+

√
37)

    1.787

.

f ′ > 0 incr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ < 0 c. up

Figure 3.5.1: Number line for f in Example 3.5.1.

7. We plot the appropriate points on axes as shown in Figure 3.5.2(a) and
connect the points with straight lines. In Figure 3.5.2(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at
y = 5 and crosses the x axis near x = −0.424. In Figure 3.5.2(c) we show
a graph of f drawnwith a computer program, verifying the accuracy of our
sketch.

Example 3.5.2 Curve sketching

Sketch f(x) =
x2 − x− 2
x2 − x− 6

.

SÊ½çã®ÊÄ We again follow the steps outlined in Key Idea 3.5.1.

1. In determining the domain, we assume it is all real numbers and look for
restricƟons. We find that at x = −2 and x = 3, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −2, 3}.

2. To find the criƟcal values of f, we first find f ′(x). Using the QuoƟent Rule,
we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4
(x− 3)2(x+ 2)2

.

f ′(x) = 0 when x = 1/2, and f ′ is undefined when x = −2, 3. Since f ′
is undefined only when f is, these are not criƟcal values. The only criƟcal
value is x = 1/2.

3. To find the possible points of inflecƟon, we find f ′′(x), again employing
the QuoƟent Rule:

f ′′(x) =
24x2 − 24x+ 56
(x− 3)3(x+ 2)3

.

Wefind that f ′′(x) is never 0 (seƫng the numerator equal to 0 and solving
for x, we find the only roots to this quadraƟc are imaginary) and f ′′ is

≐ 
≐ 

≐ 
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Figure 3.5.4: Sketching f in Example 3.5.2.

undefined when x = −2, 3. Thus concavity will possibly only change at
x = −2 and x = 3.

4. The verƟcal asymptotes of f are at x = −2 and x = 3, the places where f
is undefined.

5. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and lim
x→∞

f(x) =
1.

6. We place the values x = 1/2, x = −2 and x = 3 on a number line as
shown in Figure 3.5.3. Wemark in each interval whether f is increasing or
decreasing, concave up or down. We see that f has a relaƟve maximum at
x = 1/2; concavity changes only at the verƟcal asymptotes.

..

−2

.

1
2

.

3

.

f ′ > 0 incr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ > 0 c. up

Figure 3.5.3: Number line for f in Example 3.5.2.

7. In Figure 3.5.4(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the funcƟon looks like (these lines effecƟvely only convey increas-
ing/decreasing informaƟon). In Figure 3.5.4(b), we adjust the graph with
the appropriate concavity. We also show f crossing the x axis at x = −1
and x = 2.

Figure 3.5.4(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch.

Example 3.5.3 Curve sketching
Sketch f(x) =

5(x− 2)(x+ 1)
x2 + 2x+ 4

.

SÊ½çã®ÊÄ We again follow Key Idea 3.5.1.

1. We assume that the domain of f is all real numbers and consider restric-
Ɵons. The only restricƟons come when the denominator is 0, but this
never occurs. Therefore the domain of f is all real numbers, R.

2. We find the criƟcal values of f by seƫng f ′(x) = 0 and solving for x. We
find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2
⇒ f ′(x) = 0 when x = −4, 0.
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Figure 3.5.6: Sketching f in Example 3.5.3.

3. We find the possible points of inflecƟon by solving f ′′(x) = 0 for x. We
find

f ′′(x) = −30x3 + 180x2 − 240
(x2 + 2x+ 4)3

.

The cubic in the numerator does not factor very “nicely.” We instead ap-
proximate the roots at x = −5.759, x = −1.305 and x = 1.064.

4. There are no verƟcal asymptotes.

5. We have a horizontal asymptote of y = 5, as lim
x→−∞

f(x) = lim
x→∞

f(x) = 5.

6. We place the criƟcal points and possible points on a number line as shown
in Figure 3.5.5 and mark each interval as increasing/decreasing, concave
up/down appropriately.

..
−5.579

.
−4

.
−1.305

.
0

.
1.064

.

f ′ > 0 incr

f ′′ > 0 c. up

.

f ′ > 0 incr

f ′′ < 0 c. down

.

f ′ < 0 decr

f ′′ < 0 c. down

.

f ′ < 0 decr

f ′′ > 0 c. up

.

f ′ > 0 incr

f ′′ > 0 c. up

.

f ′ > 0 decr

f ′′ < 0 c. down

Figure 3.5.5: Number line for f in Example 3.5.3.

7. In Figure 3.5.6(a) we plot the significant points from the number line as
well as the two roots of f, x = −1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
3.5.6(b), we add concavity. Figure 3.5.6(c) shows a computer generated
graph of f, affirming our results.

In each of our examples, we found a few, significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
puƟng than we are. In general, computers graph funcƟons much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connecƟng lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate noƟceable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as
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MathemaƟca, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 3.5.7, a graph of y = sin x is given, generated by MathemaƟca.
The small points represent each of the places MathemaƟca sampled the func-
Ɵon. NoƟce how at the “bends” of sin x, lots of points are used; where sin x is
relaƟvely straight, fewer points are used. (Many points are also used at the end-
points to ensure the “end behavior” is accurate.) In fact, in the interval of length
0.2 centered around π/2,MathemaƟca plots 72 of the 431 points ploƩed; that
is, it plots about 17% of its points in a subinterval that accounts for about 3% of
the total interval length.

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 3.5.7: A graph of y = sin x generated byMathemaƟca.

How doesMathemaƟca know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
derivaƟves of a funcƟon work together to provide a measurement of “curvi-
ness.” MathemaƟca employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this secƟon is not “How to graph a funcƟon when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a funcƟon is largely determined by understanding the behavior of the
funcƟon at a fewkey places.” In Example 3.5.3, wewere able to accurately sketch
a complicated graph using only 5 points and knowledge of asymptotes!

There aremany applicaƟons of our understanding of derivaƟves beyond curve
sketching. The next chapter explores some of these applicaƟons, demonstrat-
ing just a few kinds of problems that can be solved with a basic knowledge of
differenƟaƟon.
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Exercises 3.5
Terms and Concepts
1. Why is sketching curves by hand beneficial even though

technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of funcƟons, it is useful to find
the criƟcal points.

4. T/F: When sketching graphs of funcƟons, it is useful to find
the possible points of inflecƟon.

5. T/F: When sketching graphs of funcƟons, it is useful to find
the horizontal and verƟcal asymptotes.

6. T/F: When sketching graphs of funcƟons, one need not plot
any points at all.

Problems
In Exercises 7 – 12, pracƟce using Key Idea 3.5.1 by applying
the principles to the given funcƟons with familiar graphs.

7. f(x) = 2x+ 4

8. f(x) = −x2 + 1

9. f(x) = sin x

10. f(x) = ex

11. f(x) = 1
x

12. f(x) = 1
x2

In Exercises 13 – 26, sketch a graph of the given funcƟon us-
ing Key Idea 3.5.1. Show all work; check your answer with
technology.

13. f(x) = x3 − 2x2 + 4x+ 1

14. f(x) = −x3 + 5x2 − 3x+ 2

15. f(x) = x3 + 3x2 + 3x+ 1

16. f(x) = x3 − x2 − x+ 1

17. f(x) = (x− 2) ln(x− 2)

18. f(x) = (x− 2)2 ln(x− 2)

19. f(x) = x2 − 4
x2

20. f(x) = x2 − 4x+ 3
x2 − 6x+ 8

21. f(x) = x2 − 2x+ 1
x2 − 6x+ 8

22. f(x) = x
√
x+ 1

23. f(x) = x2ex

24. f(x) = sin x cos x on [−π, π]

25. f(x) = (x− 3)2/3 + 2

26. f(x) = (x− 1)2/3

x

In Exercises 27 – 30, a funcƟon with the parameters a and b
are given. Describe the criƟcal points and possible points of
inflecƟon of f in terms of a and b.

27. f(x) = a
x2 + b2

28. f(x) = ax2 + bx+ 1

29. f(x) = sin(ax+ b)

30. f(x) = (x− a)(x− b)

31. Given x2 + y2 = 1, use implicit differenƟaƟon to find dy
dx

and d2y
dx2 . Use this informaƟon to jusƟfy the sketch of the

unit circle.
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Solutions 3.5

1. Answers will vary.
2. Found everywhere.
3. T
4. T
5. T
6. F
7. A good sketch will include the x and y intercepts and draw the

appropriate line.
8. A good sketch will include the x and y intercepts..
9. Use technology to verify sketch.

10. Use technology to verify sketch.
11. Use technology to verify sketch.
12. Use technology to verify sketch.
13. Use technology to verify sketch.

14. Use technology to verify sketch.

15. Use technology to verify sketch.

16. Use technology to verify sketch.

17. Use technology to verify sketch.

18. Use technology to verify sketch.

19. Use technology to verify sketch.

20. Use technology to verify sketch.

21. Use technology to verify sketch.

22. Use technology to verify sketch.

23. Use technology to verify sketch.

24. Use technology to verify sketch.

25. Use technology to verify sketch.

26. Use technology to verify sketch.

27. CriƟcal point: x = 0 Points of inflecƟon: ±b/
√
3

28. CriƟcal point: x = −b/(2a) No points of inflecƟon

29. CriƟcal points: x = nπ/
a
2−b , where n is an odd integer Points of

inflecƟon: (nπ − b)/a, where n is an integer.

30. CriƟcal point: x = (a+ b)/2 Points of inflecƟon: none

31. dy
dx = −x/y, so the funcƟon is increasing in second and fourth
quadrants, decreasing in the first and third quadrants.
d2y
dx2 = −1/y− x2/y3, which is posiƟve when y < 0 and is
negaƟve when y > 0. Hence the funcƟon is concave down in the
first and second quadrants and concave up in the third and fourth
quadrants.
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Figure 4.1.1: DemonstraƟng the geo-
metric concept behindNewton’sMethod.
Note how x3 is very close to a soluƟon to
f(x) = 0.

4: AÖÖ½®��ã®ÊÄÝ Ê¥ ã«�
D�Ù®ò�ã®ò�

In Chapter 3, we learned how the first and second derivaƟves of a funcƟon influ-
ence its graph. In this chapter we explore other applicaƟons of the derivaƟve.

4.1 Newton’s Method
Solving equaƟons is one of the most important things we do in mathemaƟcs,
yet we are surprisingly limited in what we can solve analyƟcally. For instance,
equaƟons as simple as x5+ x+1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar funcƟons. Fortunately, there are methods that
can give us approximate soluƟons to equaƟons like these. These methods can
usually give an approximaƟon correct to as many decimal places as we like. In
SecƟon 1.5 we learned about the BisecƟon Method. This secƟon focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an iniƟal guess about roughly where the
root is. Call this x0. (See Figure 4.1.1(a).) Draw the tangent line to the graph at
(x0, f(x0)) and see where it meets the x-axis. Call this point x1. Then repeat the
process – draw the tangent line to the graph at (x1, f(x1)) and seewhere itmeets
the x-axis. (See Figure 4.1.1(b).) Call this point x2. Repeat the process again to
get x3, x4, etc. This sequence of points will oŌen converge rather quickly to a
root of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x1. We started with the tangent line to the graph at (x0, f(x0)).
The slope of this tangent line is f ′(x0) and the equaƟon of the line is

y = f ′(x0)(x− x0) + f(x0).

This line crosses the x-axis when y = 0, and the x–value where it crosses is what
we called x1. So let y = 0 and replace x with x1, giving the equaƟon:

0 = f ′(x0)(x1 − x0) + f(x0).

Now solve for x1:

x1 = x0 −
f(x0)
f ′(x0)

.
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Note: Newton’s Method is not infallible. 
The sequence of approximate values may 
not converge, or it may converge so slowly 
that one is “tricked” into thinking a certain 
approximaƟon is beƩer than it actually is. 
These issues will be discussed at the end of 
the secƟon.

Since we repeat the same geometric process to find x2 from x1, we have

x2 = x1 −
f(x1)
f ′(x1)

.

In general, given an approximaƟon xn, we can find the next approximaƟon, xn+1
as follows:

xn+1 = xn −
f(xn)
f ′(xn)

.

We summarize this process as follows.

Key Idea 4.1.1 Newton’s Method

Let f be a differenƟable funcƟon on an interval I with a root in I. To ap-
proximate the value of the root, accurate to d decimal places:

1. Choose a value x0 as an iniƟal approximaƟon of the root. (This is
oŌen done by looking at a graph of f.)

2. Create successive approximaƟons iteraƟvely; given an approxima-
Ɵon xn, compute the next approximaƟon xn+1 as

xn+1 = xn −
f(xn)
f ′(xn)

.

3. Stop the iteraƟons when successive approximaƟons do not differ
in the first d places aŌer the decimal point.

Let’s pracƟce Newton’s Method with a concrete example.

Example 4.1.1 Using Newton’s Method
Approximate the real root of x3 − x2 − 1 = 0, accurate to the first 3 places aŌer
the decimal, using Newton’s Method and an iniƟal approximaƟon of x0 = 1.

SÊ½çã®ÊÄ To begin, we compute f ′(x) = 3x2 − 2x. Then we apply the
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Figure 4.1.2: A graph of f(x) = x3−x2−1
in Example 4.1.1.

Newton’s Method algorithm, outlined in Key Idea 4.1.1.

x1 = 1− f(1)
f ′(1)

= 1− 13 − 12 − 1
3 · 12 − 2 · 1

= 2,

x2 = 2− f(2)
f ′(2)

= 2− 23 − 22 − 1
3 · 22 − 2 · 2

= 1.625,

x3 = 1.625− f(1.625)
f ′(1.625)

=
1.6253 − 1.6252 − 1

1.625 − 
3 · 1.6252 − 2 · 1.625

 1.48579.

x4 = 1.48579− f(1.48579)
f ′(1.48579) 

1.46596

x5 = 1.46596− f(1.46596)
f ′(1.46596) 

1.46557

We performed 5 iteraƟons of Newton’s Method to find a root accurate to the 
first 3 places aŌer the decimal; our final approximaƟon is 1.465. The exact value 
of the root, to six decimal places, is 1.465571; It turns out that our x5 is accurate 
to more than just 3 decimal places.

A graph of f(x) is given in Figure 4.1.2. We can see from the graph that our 
iniƟal approximaƟon of x0 = 1 was not parƟcularly accurate; a closer guess 
would have been x0 = 1.5. Our choice was based on ease of iniƟal calculaƟon, 
and shows that Newton’s Method can be robust enough that we do not have to 
make a very accurate iniƟal approximaƟon.

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calculaƟon. Start by pressing 1 and then Enter.
(We have just entered our iniƟal guess, x0 = 1.) Now compute

Ans− f(Ans)
f ′(Ans)

by entering the following and repeatedly press the Enter key:

Ans-(Ans^3-Ans^2-1)/(3*Ans^2-2*Ans)

Each Ɵme we press the Enter key, we are finding the successive approximaƟons, 
x1, x2, …, and each one is geƫng closer to the root. In fact, once we get past 
around x7 or so, the approximaƟons don’t appear to be changing. They actually 
are changing, but the change is far enough to the right of the decimal point that 
it doesn’t show up on the calculator’s display. When this happens, we can be 
preƩy confident that we have found an accurate approximaƟon.

Using a calculator in this manner makes the calculaƟons simple; many iter-
aƟons can be computed very quickly.

≐ 

≐ 

≐ 
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Figure 4.1.3: A graph of f(x) = cos x − x
used to find an iniƟal approximaƟon of its
root.

Example 4.1.2 Using Newton’s Method to find where funcƟons intersect
Use Newton’s Method to approximate a soluƟon to cos x = x, accurate to 5
places aŌer the decimal.

SÊ½çã®ÊÄ Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equaƟons like f(x) = g(x). However, this is
not a problem; we can rewrite the laƩer equaƟon as f(x) − g(x) = 0 and then
use Newton’s Method.

So we rewrite cos x = x as cos x − x = 0. WriƩen this way, we are finding
a root of f(x) = cos x − x. We compute f ′(x) = − sin x − 1. Next we need a
starƟng value, x0. Consider Figure 4.1.3, where f(x) = cos x − x is graphed. It
seems that x0 = 0.75 is preƩy close to the root, so we will use that as our x0.
(The figure also shows the graphs of y = cos x and y = x, drawn with dashed
lines. Note how they intersect at the same x value as when f(x) = 0.)

We now compute x1, x2, etc. The formula for x1 is

x1 = 0.75− cos(0.75)− 0.75
− sin(0.75)− 1

≈ 0.7391111388.

Apply Newton’s Method again to find x2:

x2 = 0.7391111388− cos(0.7391111388)− 0.7391111388
− sin(0.7391111388)− 1

≈ 0.7390851334.

We can conƟnue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing 0.75, then Enter, inpuƫng 
our iniƟal approximaƟon. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

Repeatedly pressing the Enter key gives successive approximaƟons. We 
quickly find:

x3 = 0.7390851332
x4 = 0.7390851332.

Our approximaƟons x2 and x3 did not differ for at least the first 5 places aŌer 
the decimal, so we could have stopped. However, using our calculator in the 
man-ner described is easy, so finding x4 was not hard. It is interesƟng to see 
how we found an approximaƟon, accurate to as many decimal places as our 
calculator displays, in just 4 iteraƟons.

■

■

≐ 

≐ 
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Figure 4.1.4: A graph of f(x) = x3−x2−1,
showing why an iniƟal approximaƟon of
x0 = 0 with Newton’s Method fails.
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Figure 4.1.5: Newton’s Method fails to
find a root of f(x) = x1/3, regardless of
the choice of x0.

Convergence of Newton’s Method

What should one use for the iniƟal guess, x0? Generally, the closer to the 
actual root the iniƟal guess is, the beƩer. However, some iniƟal guesses should 
be avoided. For instance, consider Example 4.1.1 where we sought the root to 
f(x) = x3 − x2 − 1. Choosing x0 = 0 would have been a parƟcularly poor choice. 
Consider Figure 4.1.4, where f(x) is graphed along with its tangent line at    
x = 0. Since f ′(0) = 0, the tangent line is horizontal and does not intersect the 
x–axis. Graphically, we see that Newton’s Method fails.

We can also see analyƟcally that it fails. Since

x1 = 0− f(0)
f ′(0)

and f ′(0) = 0, we see that x1 is not well defined.
This problem can also occur if, for instance, it turns out that f ′(x5) = 0.

AdjusƟng the iniƟal approximaƟon x0 by a very small amount will likely fix the
problem.

It is also possible forNewton’sMethod to not convergewhile each successive
approximaƟon is well defined. Consider f(x) = x1/3, as shown in Figure 4.1.5. It
is clear that the root is x = 0, but let’s approximate this with x0 = 0.1. Figure
4.1.5(a) shows graphically the calculaƟon of x1; noƟce how it is farther from the
root than x0. Figures 4.1.5(b) and (c) show the calculaƟon of x2 and x3, which are
even farther away; our successive approximaƟons are geƫng worse. (It turns
out that in this parƟcular example, each successive approximaƟon is twice as far
from the true answer as the previous approximaƟon.)

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

While Newton’s Method does not always work, it does work “most of the
Ɵme,” and it is generally very fast. Once the approximaƟons get close to the root,
Newton’s Method can as much as double the number of correct decimal places 
with each successive approximaƟon. A course in Numerical Analysis will 
introduce the reader to more iteraƟve root finding methods, as well as give 
greater detail about the strengths and weaknesses of Newton’s Method.

Note   In the modern world, one would normally use a scientific calculator or a computer algebraic systems to 
solve equations. Life is too short or time too valuable to do otherwise. 
     However, it is good to understand how the equation solver on your calculator or computer works. If you are 
writing a computer program to solve another problem and need to solve equations, you might wish to write a 
routine including Newton's Method.

Read and understand only. The following material   
discusses how Newton's Method can fail.
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Exercises 4.1
Terms and Concepts
1. T/F: Given a funcƟon f(x), Newton’s Method produces an

exact soluƟon to f(x) = 0.

2. T/F: In order to get a soluƟon to f(x) = 0 accurate to d
places aŌer the decimal, at least d + 1 iteraƟons of New-
tons’ Method must be used.

Problems
In Exercises 3 – 8, the roots of f(x) are known or are easily
found. Use 5 iteraƟons of Newton’s Method with the given
iniƟal approximaƟon to approximate the root. Compare it to
the known value of the root.

3. f(x) = cos x, x0 = 1.5

4. f(x) = sin x, x0 = 1

5. f(x) = x2 + x− 2, x0 = 0

6. f(x) = x2 − 2, x0 = 1.5

7. f(x) = ln x, x0 = 2

8. f(x) = x3 − x2 + x− 1, x0 = 1

In Exercises 9 – 12, use Newton’s Method to approximate all
roots of the given funcƟons accurate to 3 places aŌer the dec-

imal. If an interval is given, find only the roots that lie in
that interval. Use technology to obtain good iniƟal approx-
imaƟons.

9. f(x) = x3 + 5x2 − x− 1

10. f(x) = x4 + 2x3 − 7x2 − x+ 5

11. f(x) = x17 − 2x13 − 10x8 + 10 on (−2, 2)

12. f(x) = x2 cos x+ (x− 1) sin x on (−3, 3)

In Exercises 13 – 16, use Newton’s Method to approximate
when the given funcƟons are equal, accurate to 3 places af-
ter the decimal. Use technology to obtain good iniƟal approx-
imaƟons.

13. f(x) = x2, g(x) = cos x

14. f(x) = x2 − 1, g(x) = sin x

15. f(x) = ex
2
, g(x) = cos x

16. f(x) = x, g(x) = tan x on [−6, 6]

17. Why does Newton’s Method fail in finding a root of f(x) =
x3 − 3x2 + x+ 3 when x0 = 1?

18. Why does Newton’s Method fail in finding a root of f(x) =
−17x4 + 130x3 − 301x2 + 156x+ 156 when x0 = 1?

Solutions 4.1

1. F

2. F

3. x0 = 1.5, x1 = 1.5709148, x2 = 1.57018. The approxima ons 
alternate between x = 1, x = 2 and x = 3.7963, x3 = 1.5707963, 
x4 = 1.5707963, x5 = 1.5707963

4. x0 = 1, x1 = −0.55740772, x2 = 0.065936452,
x3 = −0.000095721919, x4 = 2.9235662 ∗ 10−13, x5 = 0

5. x0 = 0, x1 = 2, x2 = 1.2, x3 = 1.0117647, x4 = 1.0000458, x5 = 
1

6. x0 = 1.5, x1 = 1.4166667, x2 = 1.4142157, x3 = 1.4142136,

x4 = 1.4142136, x5 = 1.4142136

7. x0 = 2, x1 = 0.6137056389, x2 = 0.9133412072,
x3 = 0.9961317034, x4 = 0.9999925085, x5 = 1

8. x0 = 1, x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1

9. roots are: x = −5.156, x = −0.369 and x = 0.525

10. roots are: x = −3.714, x = −0.857, x = 1 and x = 1.571

11. roots are: x = −1.013, x = 0.988, and x = 1.393

12. roots are: x = −2.165, x = 0, x = 0.525 and x = 1.813

13. x = ±0.824,

14. x = −0.637, x = 1.410

15. x = ±0.743

16. x = ±4.493, x = 0

17. The approximaƟons alternate between x = 1 and x = 2. 

18. The approximaƟons alternate between x = 1, x = 2 and x = 3.
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A
B

Asymptotic Equality 
     It’s time to review the new ‘near equality’ that will be be useful in doing theory and applications 
in the next few chapters and sustain good calculus style later in your work life. It applies to  
infinitesimal, finite hyperreal, and infinite number calculations.

Definition  A is asymptotically  equal  to  B  written  A ≈ B  means       =  1 + ϵ  where  ϵ  is an 

infinitesimal.
Properties  (proofs left as easy exercises)  

1. A ≈ A
2. A ≈ B  ⟺  B ≈ A
3. A ≈ B, B ≈ C  ⟺  A ≈ C

Theorem   a ≈ A, b ≈ B  ⟺  a·A ≈ b·B
Theorem   a ≈ A, b ≈ B  ⟺  aA  ≈ bB

Note:  A ≈ 0  is never true. This will never be a serious problem in calculus. We can ignore this case 

there because the final answer will never be affected.

Examples in detail. Examine each graph carefully. Understand.

Infinitesimal Case    2 dx - dx2  ≈  2 dx

Proof 2 dx - dx2
=  1 - dx

2 dx 2 =  1 + ϵ   where  ϵ   is an infinitesimal.

Next we illustrate the above with approximations of  dx  by ‘small’ real numbers.
Graphically, compare the ratio with 1:

 2 dx-dx2

2 dx ,  1

-1 1 X
-0.5

0.5
1.0
1.5
2.0

↖
dx

-0.1 0.1 X
-0.5

0.5
1.0
1.5
2.0

↖
dx

X
-0.5

0.5
1.0
1.5
2.0

↖
dx

Graphically, compare individually:

 2dx - dx2, 2dx 

-1 1 X

-3
-2
-1

1
2

↖dx -0.1 0.1 X

-0.2

-0.1

0.1

0.2

↖
dx

-0.01 0.01 X

-0.02

-0.01

0.01

0.02

↖
dx

0.01-0.01

NOTE again that  ≈  is an excellent 
hyperreal approximation but yields an 
exact extended real; it's really a 'real =' !
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Finite Hyperreal Case   9 + 6 dx + dx2  ≈  9  because
9 +6 dx + dx2

9
= 1 + 2

3 dx + dx2

9   =   1 + ϵ .

Graphically, compare ratio with 1:

9 +6 dx + dx2

9
, 1

↖dx1 1 X

1

↖dx-0.1 0.1 X

1

↖dx-0.01 0.01 X

1

Graphically, compare individually:

           9 + 6 dx+dx2 ,  9 

↖dx
1 1 X

9

↖dx
-0.1 0.1 X

9

↖dx
-0.01 0.01 X

9

Infinite Case   X2 - 3X + 2  ≈  X2  because
X2-3 X+ 2

X2   =  1- 3
X
+ 2
X2   =  1 + ϵ   for  X  a positive infinite number.

Graphically, compare ratio with  1:
X2-3 X+ 2

X2  ,  1

1 10 X
0.5

1.0

1.5

2.0

1 100 X
0.5

1.0

1.5

2.0

1 1000X
0.5

1.0

1.5

2.0

Graphically, compare individually:

X2 - 3X + 2 ,  X 
2 

1 10 X
20
40
60
80

100

1 100 X
2000
4000
6000
8000

10000

1000X
200000
400000
600000
800000
1×106
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4.2 Related Rates
When two quanƟƟes are related by an equaƟon, knowing the value of one quan-
Ɵty can determine the value of the other. For instance, the circumference and 
radius of a circle are related by C = 2πr ; knowing that C = 6π in determines 
the radius must be 3 in.

The topic of related rates takes this one step further: knowing the rate 
at which one quanƟty is changing can determine the rate at which another 
changes.

We demonstrate the concepts of related rates through examples.

Example 4.2.1 Understanding related rates
The radius of a circle is growing at a rate of 5 in/hr. At what rate is the 
circumference growing?

SÊ½çã®ÊÄ  The circumference and radius of a circle are related by  C = 2πr .    
We are given informaƟon about how the length of r changes with respect to 
Ɵme; that is, we are told dt

dr = 5in/hr. We want to know how the length of C
changes with respect to Ɵme, i.e., we want to know dCdt .

Implicitly differenƟate both sides of C = 2πr with respect to t:

C = 2πr
d
dt
(
C
)
=

d
dt
(
2πr
)

dC
dt

= 2π
dr
dt
.

As we know dr
dt = 5in/hr, we know

dC
dt

= 2π5 = 10π    31.4in/hr.

Consider another, similar example.

Example 4.2.2 Finding related rates
Water streams out of a faucet at a rate of 2in3/s onto a flat surface at a constant
rate, forming a circular puddle that is 1/8in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

-

≐  
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SÊ½çã®ÊÄ

1. We can answer this quesƟon two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 2in3/s, where

volume of puddle= area of circle× depth.

Since the depth is constant at 1/8in, the area must be growing by 16in2/s.
This approach reveals the underlying related–rates principle. Let V and A
represent the Volume and Area of the puddle. We know V = A× 1

8 . Take
the derivaƟve of both sides with respect to t, employing implicit differen-
ƟaƟon.

V =
1
8
A

d
dt
(
V
)
=

d
dt

(
1
8
A
)

dV
dt

=
1
8
dA
dt

As dV
dt = 2, we know 2 = 1

8
dA
dt , and hence dA

dt = 16. Thus the area is
growing by 16in2/s.

2. To start, we need an equaƟon that relates what we know to the radius.
We just learned something about the surface area of the circular puddle,
and we know A = πr2. We should be able to learn about the rate at which
the radius is growing with this informaƟon.
Implicitly derive both sides of A = πr2 with respect to t:

A = πr2

d
dt
(
A
)
=

d
dt
(
πr2
)

dA
dt

= 2πr
dr
dt

Our work above told us that dA
dt = 16in2/s. Solving for dr

dt , we have

dr
dt

=
8
πr

.

Note how our answer is not a number, but rather a funcƟon of r. In other
words, the rate at which the radius is growing depends on how big the

185



.. B = 1/2.

C

.

A
=

1/
2

.

N

. E.

Officer

.
Car

Figure 4.2.1: A sketch of a police car
(at boƩom) aƩempƟng to measure the
speed of a car (at right) in Example 4.2.3.

circle already is. If the circle is very large, adding 2in3 of water will not
make the circle much bigger at all. If the circle is dime–sized, adding the
sameamount ofwaterwillmake a radical change in the radius of the circle.

In someways, our problemwas (intenƟonally) ill–posed. Weneed to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of 10in, the radius is growing at a rate of

dr
dt

=
8

10π
=

4
5π 
≈

0.25in/s.

Example 4.2.3 Studying related rates
Radar gunsmeasure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “55mph” means the object is moving
away from the gun at a rate of 55 miles per hour, whereas a measurement of
“−25mph” would mean that the object is approaching the gun at a rate of 25
miles per hour.

If the radar gun is moving (say, aƩached to a police car) then radar readouts
are only immediately understandable if the gun and the object aremoving along
the same line. If a police officer is traveling 60mph and gets a readout of 15mph,
he knows that the car ahead of him is moving away at a rate of 15 miles an hour,
meaning the car is traveling 75mph. (This straight–line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

Suppose an officer is driving due north at 30 mph and sees a car moving due
east, as shown in Figure 4.2.1. Using his radar gun, he measures a reading of
20mph. By using landmarks, he believes both he and the other car are about
1/2 mile from the intersecƟon of their two roads.

If the speed limit on the other road is 55mph, is the other driver speeding?

SÊ½çã®ÊÄ Using the diagram in Figure 4.2.1, let’s label what we know
about the situaƟon. As both the police officer and other driver are 1/2mile from
the intersecƟon, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/

√
2 ≐ 0.707.

We know the police officer is traveling at 30mph; that is, dA
dt = −30. The

reason this rate of change is negaƟve is that A is geƫng smaller; the distance
between the officer and the intersecƟon is shrinking. The radar measurement
is dC

dt = 20. We want to find dB
dt .

We need an equaƟon that relatesB toA and/or C. The Pythagorean Theorem

≐ 

≐ 

■

■≐ 
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Note: Example 4.2.3 is both interesƟng
and impracƟcal. It highlights the difficulty
in using radar in a non–linear fashion, and
explains why “in real life” the police offi-
cer would follow the other driver to de-
termine their speed, and not pull out pen-
cil and paper.
The principles here are important,
though. Many automated vehicles make
judgments about other moving objects
based on perceived distances, radar–like
measurements and the concepts of
related rates.

..

θ

.10Ō.

x

.

100mph

Figure 4.2.2: Tracking a speeding car (at
leŌ) with a rotaƟng camera.

is a good choice: A2 + B2 = C2. DifferenƟate both sides with respect to t:

A2 + B2 = C2

d
dt
(
A2 + B2

)
=

d
dt
(
C2
)

2A
dA
dt

+ 2B
dB
dt

= 2C
dC
dt

We have values for everything except dB
dt . Solving for this we have

dB
dt

=
C dC

dt − A dA
dt

B    58.28mph.

The other driver appears to be speeding slightly.

Example 4.2.4 Studying related rates
A camera is placed on a tripod 10Ō from the side of a road. The camera is to turn
to track a car that is to drive by at 100mph for a promoƟonal video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.2.2 shows the proposed
setup.

How fast must the camera be able to turn to track the car?

SÊ½çã®ÊÄ We seek informaƟon about how fast the camera is to turn;
therefore, we need an equaƟon that will relate an angle θ to the posiƟon of the
camera and the speed and posiƟon of the car.

Figure 4.2.2 suggests we use a trigonometric equaƟon. Leƫng x represent
the distance the car is from the point on the road directly in front of the camera,
we have

tan θ =
x
10

. (4.1)

As the car is moving at 100mph, we have dx
dt = −100mph (as in the last example,

since x is geƫng smaller as the car travels, dx
dt is negaƟve). We need to convert

the measurements so they use the same units; rewrite −100mph in terms of
Ō/s:

dx
dt

= −100
m
hr

= −100
m
hr

· 5280 Ō
m

· 1
3600

hr
s

= −146.6Ō/s.

Now take the derivaƟve of both sides of EquaƟon (4.1) using implicit differenƟaƟon:

≐ 
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tan θ =
x
10

d
dt
(
tan θ

)
=

d
dt

( x
10

)
sec2 θ

dθ
dt

=
1
10

dx
dt

dθ
dt

=
cos2 θ
10

dx
dt

(4.2)

Wewant to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when θ = 0). Our mathe-
maƟcs bears this out. In EquaƟon (4.2) we see this is when cos2 θ is largest; this
is when cos θ = 1, or when θ = 0.

With dx
dt ≈ −146.67Ō/s, we have

dθ
dt

= −1rad
10Ō

146.67Ō/s = −14.667radians/s.

We find that ddt
θ is negaƟve; this matches our diagram in Figure 4.2.2 for θ is 

geƫng smaller as the car approaches the camera.
What is the pracƟcal meaning of −14.667radians/s? Recall that 1 circular 

revoluƟon goes through 2π radians, thus 14.667rad/s means 14.667/(2π)   
2.33 revoluƟons per second. The negaƟve sign indicates the camera is rotaƟng 
in a clockwise fashion.

We introduced the derivaƟve as a funcƟon that gives the slopes of tangent 
lines of funcƟons. This chapter emphasizes using the derivaƟve in other ways. 
Newton’s Method uses the derivaƟve to approximate roots of funcƟons; this 
secƟon stresses the “rate of change” aspect of the derivaƟve to find a relaƟon-
ship between the rates of change of two related quanƟƟes.

In the next secƟon we use Extreme Value concepts to opƟmize quanƟƟes.

■≐ 

≐ 
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Exercises 4.2
Terms and Concepts
1. T/F: Implicit differenƟaƟon is oŌen used when solving “re-

lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems
3. Water flows onto a flat surface at a rate of 5cm3/s forming a

circular puddle 10mm deep. How fast is the radius growing
when the radius is:

(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

4. A circular balloon is inflated with air flowing at a rate of
10cm3/s. How fast is the radius of the balloon increasing
when the radius is:

(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

5. Consider the traffic situaƟon introduced in Example 4.2.3.
How fast is the “other car” traveling if the officer and the
other car are each 1/2mile from the intersecƟon, the other
car is traveling due west, the officer is traveling north at
50mph, and the radar reading is−80mph?

6. Consider the traffic situaƟon introduced in Example 4.2.3.
Calculate how fast the “other car” is traveling in each of the
following situaƟons.

(a) The officer is traveling due north at 50mph and is
1/2 mile from the intersecƟon, while the other car
is 1 mile from the intersecƟon traveling west and the
radar reading is−80mph?

(b) The officer is traveling due north at 50mph and is
1 mile from the intersecƟon, while the other car is
1/2 mile from the intersecƟon traveling west and the
radar reading is−80mph?

7. An F-22 aircraŌ is flying at 500mph with an elevaƟon of
10,000Ō on a straight–line path thatwill take it directly over
an anƟ–aircraŌ gun.

.

.

.

. θ.

x

.

10,000 Ō

How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) 1 mile away?

(b) 1/5 mile away?

(c) Directly overhead?

8. An F-22 aircraŌ is flying at 500mph with an elevaƟon of
100Ō on a straight–line path that will take it directly over
an anƟ–aircraŌ gun as in Exercise 7 (note the lower eleva-
Ɵon here).
How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) 1000 feet away?

(b) 100 feet away?

(c) Directly overhead?

9. A 24Ō. ladder is leaning against a house while the base is
pulled away at a constant rate of 1Ō/s.

.

.

.

24
Ō

.
1 Ō/s

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) 1 foot from the house?

(b) 10 feet from the house?

(c) 23 feet from the house?

(d) 24 feet from the house?

10. A boat is being pulled into a dock at a constant rate of
30Ō/min by a winch located 10Ō above the deck of the
boat.

. .

.

.

10Ō

At what rate is the boat approaching the dock when the
boat is:

(a) 50 feet out?

(b) 15 feet out?

(c) 1 foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than 10 feet long?

11. An inverted cylindrical cone, 20Ō deep and 10Ō across at
the top, is being filled with water at a rate of 10Ō3/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) 1 foot?

(b) 10 feet?

(c) 19 feet?

How long will the tank take to fill when starƟng at empty?
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12. A rope, aƩached to a weight, goes up through a pulley at
the ceiling and back down to a worker. The man holds the
rope at the same height as the connecƟon point between
rope and weight.

..
30

Ō
.

2 Ō/s

Suppose the man stands directly next to the weight (i.e., a
total rope length of 60 Ō) and begins to walk away at a rate
of 2Ō/s. How fast is the weight rising when the man has
walked:

(a) 10 feet?
(b) 40 feet?

How far must the man walk to raise the weight all the way
to the pulley?

13. Consider the situaƟon described in Exercise 12. Suppose
the man starts 40Ō from the weight and begins to walk
away at a rate of 2Ō/s.

(a) How long is the rope?

(b) How fast is theweight rising aŌer theman haswalked
10 feet?

(c) How fast is theweight rising aŌer theman haswalked
30 feet?

(d) How far must themanwalk to raise the weight all the
way to the pulley?

14. A hot air balloon liŌs off from ground rising verƟcally. From
100 feet away, a 5’ woman tracks the path of the balloon.
When her sightlinewith the balloonmakes a 45◦ anglewith
the horizontal, she notes the angle is increasing at about
5◦/min.

(a) What is the elevaƟon of the balloon?

(b) How fast is it rising?

15. A company that produces landscapingmaterials is dumping
sand into a conical pile. The sand is being poured at a rate
of 5Ō3/sec; the physical properƟes of the sand, in conjunc-
Ɵon with gravity, ensure that the cone’s height is roughly
2/3 the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?

19. A parabolic tank is obtained by rotating the parabola y = x2, 0 ≤ x ≤ 10 cm, about the y-axis. Water is
being poured into the tank at the rate 100 cm 3/min. How fast is the water level rising when the level is
10cm?

__
second
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Solutions 4.2

1. T

2. F

3. (a) 5/(2π)      0.796cm/s
(b) 1/(4π)     0.0796 cm/s
(c) 1/(40π)     0.00796 cm/s

4. (a) 5/(2π)      0.796cm/s
(b) 1/(40π)      0.00796 cm/s
(c) 1/(4000π)      0.0000796 cm/s

5. 63.14mph

6. (a) 64.44 mph
(b) 78.89 mph

7. Due to the height of the plane, the gun does not have to rotate 
very fast.

(a) 0.0573 rad/s
(b) 0.0725 rad/s
(c) In the limit, rate goes to 0.0733 rad/s

8. Due to the height of the plane, the gun does not have to rotate 
very fast.

(a) 0.073 rad/s
(b) 3.66 rad/s (about 1/2 revoluƟon/sec)
(c) In the limit, rate goes to 7.33 rad/s (more than 1

revoluƟon/sec)

9. (a) 0.04 Ō/s
(b) 0.458 Ō/s
(c) 3.35 Ō/s
(d) Not defined; as the distance approaches 24, the rates 

approaches ∞.

10. (a) 30.59 Ō/min
(b) 36.1 Ō/min
(c) 301 Ō/min
(d) The boat no longer floats as usual, but is being pulled up by

the winch (assuming it has the power to do so).

11. (a) 50.92 Ō/min
(b) 0.509 Ō/min
(c) 0.141 Ō/min

As the tank holds about 523.6Ō3, it will take about 52.36 minutes.

12. (a) 0.63 Ō/sec
(b) 1.6 Ō/sec

About 52 Ō.

13. (a) The rope is 80Ō long.
(b) 1.71 Ō/sec
(c) 1.84 Ō/sec
(d) About 34 feet.

14. (a) The balloon is 105Ō in the air.
(b) The balloon is rising at a rate of 17.45Ō/min. (Hint: convert

all angles to radians.)

15. The cone is rising at a rate of 0.003Ō/s.

≐ 
≐ 

≐ 
≐ 

≐ 
≐ 

18.

dy
x

-2 0 2 4 
6 8 10 12

X

10

20

30

40

Y Front-right quarter of tank shown.
y = 8x - 40
dV = (2 x)2 dy

      =  4x2dy
=  4  y

8 + 52 dy

dV
dt = 4  y

8 + 52 dy
dt

dy
dt  = 

dy/dt

4 
y
8
+5

2

     = -10
4 (5+5)2

     = - 1
40

y

16. dy
dt  =  1

20
meter

minute

17 a.  dy
dt  =  - 1

25π
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minute

b. dy
dt  =  - 1

9π
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minute

19. dy
dt π

=   10 
minuteminute
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 cm
second
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Figure 4.3.1: A sketch of the enclosure in
Example 4.3.1.

4.3 OpƟmizaƟon
In SecƟon 3.1 we learned about extreme values – the largest and smallest values 
a funcƟon aƩains on an interval. We moƟvated our interest in such values by 
discussing how it made sense to want to know the highest/lowest values of a 
stock, or the fastest/slowest an object was moving. In this secƟon we apply 
the concepts of extreme values to solve “word problems,” i.e., problems 
stated in terms of situaƟons that require us to create the appropriate 
mathemaƟcal framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic 
of opƟmizaƟon.

Example 4.3.1 OpƟmizaƟon: perimeter and area
A man has 100 feet of fencing, a large yard, and a small dog. He wants to create 
a rectangular enclosure for his dog with the fencing that provides the maximal 
area. What dimensions provide the maximal area?

SÊ½çã®ÊÄ One can likely guess the correct answer – that is great. We 
will proceed to show how calculus can provide this answer in a context that 
proves this answer is correct.

It helps to make a sketch of the situaƟon. Our enclosure is sketched twice 
in Figure 4.3.1, either with green grass and nice fence boards or as a simple 
rectangle. Either way, drawing a rectangle forces us to realize that we need to 
know the dimensions of this rectangle so we can create an area funcƟon – aŌer 
all, we are trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle funcƟons with 2 variables; we need to 
reduce this down to a single variable. We know more about the situaƟon: the 
man has 100 feet of fencing. By knowing the perimeter of the rectangle must 
be 100, we can create another equaƟon:

Perimeter = 100 = 2x + 2y.

We now have 2 equaƟons and 2 unknowns. In the laƩer equaƟon, we solve 
for y:

y = 50 − x.

Now subsƟtute this expression for y in the area equaƟon:

Area = A(x) = x(50 − x).

Note we now have an equaƟon of one variable; we can truly call the Area a 
funcƟon of x.
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This funcƟon onlymakes sensewhen 0 ≤ x ≤ 50, otherwisewe get negaƟve
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the criƟcal points, we take the derivaƟve of A(x) and set it equal to
0, then solve for x.

A(x) = x(50− x)
= 50x− x2

A′(x) = 50− 2x

We solve 50− 2x = 0 to find x = 25; this is the only criƟcal point. We evaluate
A(x) at the endpoints of our interval and at this criƟcal point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625Ō2. This is the max-
imum. Since we earlier found y = 50 − x, we find that y is also 25. Thus the
dimensions of the rectangular enclosure with perimeter of 100 Ō. with maxi-
mum area is a square, with sides of length 25 Ō.

This example is very simplisƟc and a bit contrived. (AŌer all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equaƟons that de-
scribe a situaƟon, reduce an equaƟon to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equaƟons are oŌen
not reducible to a single variable (hence mulƟ–variable calculus is needed) and
the equaƟons themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundaƟon for the mathemaƟcs you will likely en-
counter later.

We outline here the basic process of solving these opƟmizaƟon problems.

Key Idea 4.3.1 Solving OpƟmizaƟon Problems

1. Understand the problem. Clearly idenƟfy what quanƟty is to be
maximized or minimized. Make a sketch if helpful.

2. Create equaƟons relevant to the context of the problem, using the
informaƟon given. (One of these should describe the quanƟty to
be opƟmized. We’ll call this the fundamental equaƟon.)

3. If the fundamental equaƟon defines the quanƟty to be opƟmized
as a funcƟon of more than one variable, reduce it to a single vari-
able funcƟon using subsƟtuƟons derived from the other equa-
Ɵons.

(conƟnued). . .
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Figure 4.3.2: A sketch of the enclosure in
Example 4.3.2.

Key Idea 4.3.1 Solving OpƟmizaƟon Problems – ConƟnued

4. IdenƟfy the domain of this funcƟon, keeping in mind the context
of the problem.

5. Find the extreme values of this funcƟon on the determined do-
main.

6. IdenƟfy the values of all relevant quanƟƟes of the problem.

We will use Key Idea 4.3.1 in a variety of examples.

Example 4.3.2 OpƟmizaƟon: perimeter and area
Here is another classic calculus problem: A woman has a 100 feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

SÊ½çã®ÊÄ We will follow the steps outlined by Key Idea 4.3.1.

1. We are maximizing area. A sketch of the region will help; Figure 4.3.2
gives two sketches of the proposed enclosed area. A key feature of the
sketches is to acknowledge that one side is not fenced.

2. We want to maximize the area; as in the example before,

Area = xy.

This is our fundamental equaƟon. This defines area as a funcƟon of two
variables, so we need another equaƟon to reduce it to one variable.
We again appeal to the perimeter; here the perimeter is

Perimeter = 100 = x+ 2y.

Note how this is different than in our previous example.

3. We now reduce the fundamental equaƟon to a single variable. In the
perimeter equaƟon, solve for y: y = 50− x/2. We can now write Area as

Area = A(x) = x(50− x/2) = 50x− 1
2
x2.

Area is now defined as a funcƟon of one variable.
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Figure 4.3.3: Running a power line from
the power staƟon to an offshore facility
with minimal cost in Example 4.3.3.
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Figure 4.3.4: Labeling unknown distances
in Example 4.3.3.

4. We want the area to be nonnegaƟve. Since A(x) = x(50− x/2), we want
x ≥ 0 and 50 − x/2 ≥ 0. The laƩer inequality implies that x ≤ 100, so
0 ≤ x ≤ 100.

5. We nowfind the extreme values. At the endpoints, theminimum is found,
giving an area of 0.
Find the criƟcal points. We have A′(x) = 50 − x; seƫng this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50 − x/2; thus y = 25. Thus our rectangle will have
two sides of length 25 and one side of length 50, with a total area of 1250
Ō2.

Keep in mind as we do these problems that we are pracƟcing a process; that
is, we are learning to turn a situaƟon into a system of equaƟons. These equa-
Ɵons allow us to write a certain quanƟty as a funcƟon of one variable, which we
then opƟmize.

Example 4.3.3 OpƟmizaƟon: minimizing cost
A power line needs to be run from a power staƟon located on the beach to an
offshore facility. Figure 4.3.3 shows the distances between the power staƟon to
the facility.

It costs $50/Ō. to run a power line along the land, and $130/Ō. to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

SÊ½çã®ÊÄ Wewill follow the strategy of Key Idea 4.3.1 implicitly, with-
out specifically numbering steps.

There are two immediate soluƟons that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connecƟng the two locaƟons with a straight line. However, this requires
that all the wire be laid underwater, the most costly opƟon. Second, we could
minimize the underwater length by running a wire all 5000 Ō. along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non–minimal cost.

The opƟmal soluƟon likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
distances – the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure 4.3.4.
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By choosing x as we did, wemake the expression under the square root sim-
ple. We now create the cost funcƟon.

Cost = land cost + water cost
$50× land distance + $130× water distance

50(5000− x) + 130
√
x2 + 10002.

So we have c(x) = 50(5000 − x) + 130
√
x2 + 10002. This funcƟon only

makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we sƟll evaluate c(x) at each to verify.

c(0) = 380, 000 c(5000)    662, 873.

We now find the criƟcal values of c(x). We compute c ′(x) as

c ′(x) = −50+
130x√

x2 + 10002
.

Recognize that this is never undefined. Seƫng c ′(x) = 0 and solving for x,
we have:

−50+
130x√

x2 + 10002
= 0

130x√
x2 + 10002

= 50

1302x2

x2 + 10002
= 502

1302x2 = 502(x2 + 10002)
1302x2 − 502x2 = 502 · 10002

(1302 − 502)x2 = 50, 0002

x2 =
50, 0002

1302 − 502

x =
50, 000√
1302 − 502

50, 000
120

1250
3

x = =     416.67.

EvaluaƟng c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000− 416.67 = 4583.33 Ō., and the under-

water distance is 
√
416.672 + 10002     1083 Ō.

In the exercises you will see a variety of situaƟons that require you 
to combine problem–solving skills with calculus. Focus on the process; 
learn how to form equaƟons from situaƟons that can be manipulated 
into what you need. Eschew memorizing how to do “this kind of 
problem” as opposed to “that kind of problem.” Learning a process will 
benefit one far longer than memorizing a specific technique.

The next secƟon introduces our final applicaƟon of the derivaƟve: 
differenƟals. Given y = f (x), they offer a method of approximaƟng the 
change in y aŌer x changes by a small amount.

≐  

≐

≐
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1. T/F: An “opƟmizaƟon problem” is essenƟally an “extreme
values” problem in a “story problem” seƫng.

2. T/F: This secƟon teaches one to find the extreme values of
a funcƟon that has more than one variable.

Problems

3. Find the maximum product of two numbers (not necessar-
ily integers) that have a sum of 100.

4. Find the minimum sum of two posiƟve numbers whose
product is 500.

5. Find the maximum sum of two posiƟve numbers whose
product is 500.

6. Find the maximum sum of two numbers, each of which is
in [0, 300] whose product is 500.

7. Find the maximal area of a right triangle with hypotenuse
of length 1.

8. A rancher has 1000 feet of fencing in which to construct
adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

9. A standard soda can is roughly cylindrical and holds 355cm3

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of
206in3 that minimizes the surface area.
The “#10 can”is a standard sized can used by the restau-
rant industry that holds about 206in3 with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
were chosen with minimizaƟon in mind?

11. The United States Postal Service charges more for boxes
whose combined length and girth exceeds 108” (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross secƟon, i.e., 2w+ 2h).

What is the maximum volume of a package with a square
cross secƟon (w = h) that does not exceed the 108” stan-
dard?

12. The strength S of a wooden beam is directly proporƟonal
to its cross secƟonal widthw and the square of its height h;
that is, S = kwh2 for some constant k.

12 h

w

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

13. A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 2
miles at sea and 5miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

14. A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 5
miles at sea and 2miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

15. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about 22Ō/s and
swims about 1.5Ō/s.
How far along the shore should the dog run to minimize
the Ɵme it takes to get to the sƟck? (Hint: the figure from
Example 4.3.3 can be useful.)

16. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about 22Ō/s and
swims about 1.5Ō/s.
How far along the shore should the dog run tominimize the
Ɵme it takes to get to the sƟck? (Google “calculus dog” to learn
more about a dog’s ability to minimize Ɵmes.)

17. What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?
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Solutions 4.3

1. T
2. F

3. 2500; the two numbers are each 50.

4. The minimum sum is 2
√
500; the two numbers are each

√
500.

5. There is no maximum sum; the fundamental equaƟon has only 1
criƟcal value that corresponds to a minimum.

6. The only criƟcal point of the fundamental equaƟon corresponds
to a minimum; to find maximum, we check the endpoints.
If one number is 300, the other number y saƟsfies 300y = 500;
y = 5/3. Thus the sum is 300+ 5/3.
The other endpoint, 0, is not feasible as we cannot solve
0 · y = 500 for y. In fact, if 0 < x < 5/3, then x · y = 500 forces
y > 300, which is not a feasible soluƟon.
Hence the maximum sum is 301.6.

7. Area = 1/4, with sides of length 1/
√
2.

8. Each pen should be 500/3    166.67 feet by 125 feet.

9. The radius should be about 3.84cm and the height should be 2r
= 7.67cm. No, this is not the size of the standard can.

10. The radius should be about 3.2in and the height should be
2r = 6.4in. As the #10 is not a perfect cylinder (with extra 
material to aid in stacking, etc.), the dimensions are close enough
to assume that minimizing surface area was a consideraƟon.

11. The height and width should be 18 and the length should be 36, 
giving a volume of 11, 664in3.

12. w = 4
√
3, h = 4

√
6

13. 5− 10/
√
39    3.4 miles should be run underground, giving a

minimum cost of $374,899.96.
14. The power line should be run directly to the off shore facility,

skipping any underground, giving a cost of about $430,813.

15. The dog should run about 19 feet along the shore before starƟng
to swim.

16. The dog should run about 13 feet along the shore before starƟng
to swim.

17. The largest area is 2 formed by a square with sides of length
√
2.

≐

≐

198



4.4  Differentials - Preliminary Overview
The derivative and the differential provide simple, effective ways of approximating a function.

Tangent Line Approximations  The tangent line to  y = f(x)  at x = a  is
y  =  f(a) + f ‘(a)(x - a).

The tangent line approximation to  y = f(x)  at  x = a  is

f (x) ≐ f (a) + f ' (a) (x - a)  .  

Example  
a. Find the tangent line approximation to  y = x   at  x = 4.

f(x) = x ,  f(4) = 4  = 2
f ‘(x) = 1

2 x
,   f ‘(x) = 1

2 4
 = 1

4

⟹  x  ≐ 2 + 1
4 (x - 4)    near  x = 4. 

2 4 6 8 X
0.5

1.0

1.5

2.0

2.5

3.0

x , 2 +
1
4
(x-4)

b. Use the above approximation to to calculate  4.08 .
4.08  ≐ 2 + 1

4 (4.08 - 4) =  2.02

      Exact answer  
4.08 =  2.0199009876724 ⋯

Differentials

Definition The differential of the function  y = f(x):
1. dx  is an infinitesimal
2. dy = f ‘(x)dx.

     You can readily change any derivative formula   = f ‘(x)  into its differential form  dy = f ‘(x)dx  if you 
want. (The  =  should really be a  ≈, but we won’t be compulsive about this.)

     Historically, the differential played a central, beginning role in calculus. You find the differential of a 
quantity  y, often a simple equation, by examining its behavior over a short interval. If you divided the 
result by  dx, you get the slope. If you divided it by  dt, you get the growth rate. If you did a suitable 
sum of the  dy’s  you would its total change (later called its definite integral).
     Now-a-days you usually see in textbooks that  dx  is taken to be any real number -∞ < dx < +∞ . This bit of 

silliness is to allow you, without knowing about infinitesimals, later on to feel comfortable with doing seemingly 
illegal things in standard calculus like making a change of variables in integrals, setting up integrals for 
applications or separating variables in differential equations. 

_dy
dx
_
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General Formulas   Let  u = u(x)  and  v = v(x)  be differentiable.

I. Constant Multiple Rule
II. Sum Rule

d(c u)  =  c du 
d(u + v)  =  du + dv   

III. Product Rule

IV. Quotient Rule

d(u v)  =  v du + u dv 

V. Chain Rule d(u (v))  =  u ’(v) dv

Special Differential Formulas
d (c) = 0
d (sinx) = cos x dx
d (tanx) = sec2 x dx
d (secx) = sec x tanx dx

d (xn) = n x 
n-1 dx

d (cosx) = -sin x dx
d (cotx) = -csc2 x dx  
d(cscx) = -csc x cot xdx

d ex = ex dx d (ln x) = dx
x

Example  d(x2+ 3 sin x) = (2x + 3 cos x)dx

Differential Approximations

The differential approximation associated with  dy ≈ f ‘(x) dx  is

Δy ≐ f ' (x)Δx

Example  Illustrate the difference between  the exact  ΔA  and the approximate  ΔA  for a square.

x

x

dΔ

Δx

x
2 xΔx

xΔx Δx2

A = x2

exact  ⟹ ΔA  =  (x + Δx)2 - x2 =  (x2 + 2x Δx + Δx2) - x2 =  2x Δx + Δx2

approximate  ⟹ ΔA  ≐  2x Δx
⟹  very close if  Δx  is a small real number!

d(          ) =   v du - u dvu
v v2

The differential approximation says that, near  x,  dy  is  
approximately proportional to  dx, everyones favorite 
relationship between two quantities.
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Example  How much paint is required to paint a sphere of radius  1 meter  with a coating  1 mm  
thick. Use  V = 3

4 π r3.  1 meter = 1000 mm.

r
dr

ΔV  ≐  4π r2 Δr
        =  4π 10002(1)

        =  4π  litres
        ≐ 3 gallons of paint

Error Analysis   Suppose  y = f(x).  If the error in measuring  x  is  Δx, then the error in
calculating  y  is  y ± Δy = f(x ± Δx)  where

Δy ≐ f ' (x)Δx .

Example  The height of a can is  h = 30 cm. Its radius is measured to be  10 ± 0.1 cm. 

What is the volume and possible error in its calculated volume?

V =  π r2h  =  π 102·30  =  3000π cm3

⟹  ΔV  =  2π r h Δr  =  2π10·20·0.1  =  40π cm3

⟹  V  =  (3000π ± 40π) cm3

Note: in the APEX Calculus exercises, use the notations and definitions above.

Nominal Volume
Possible Error

Volume with Possible Error

.
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1. y = sin x 2. y = ex(x2 + 2) 3. y =
√
x2 + 3x− 1

SÊ½çã®ÊÄ

1. y = sin x: As  f(x) = sin x, f ′(x) = cos x. Thus

dy = cos(x)dx.

2. y = ex(x2 + 2): Let f(x) = ex(x2 + 2). We need f ′(x), requiring the
Product Rule.

We have f ′(x) = ex(x2 + 2) + 2xex, so

dy =
(
ex(x2 + 2) + 2xex

)
dx.

4.4  Differentials - Further Examples

     Historically differentials were invented to discover physical laws or to solve some difficult 
mathematical problems because over a short interval of time or space these laws tend to be 
approximately simple proportions of the form  dQ = f(z)dz. Such problems will be explored in 
the next chapter and especially in the next calculus course.

To extend the formula  dQ = f(z)     dz  to larger regions of space or time, we introduce the process 
called integration in the Chapter 5.  In that process it is often necessary to start with 
differentials of functions. Let us get fluent at calculating differentials.

Example 4.4.1  Finding differenƟals.
In each of the following, find the differenƟal dy.

3. y =
√
x2 + 3x− 1: Let f(x) =

√
x2 + 3x− 1; we need f ′(x), requiring

the Chain Rule.

We have f ′(x) =
1
2
(x2 + 3x− 1)−

1
2 (2x+ 3) = √ 2x+ 3

2 x2 + 3x− 1
. Thus

dy =
(2x+ 3)dx

2
√
x2 + 3x− 1

.

Finding the differenƟal dy of y = f (x) i s really no harder than finding the 
derivaƟve of f; we just mulƟply  f ′(x)  by  dx. It is important to remember that 
we are not simply adding the symbol “dx” at the end.

We have seen a pracƟcal use of differenƟals as they offer a good method of 
making certain approximaƟons. Another use is error propagaƟon. Suppose a 
length is measured to be x, although the actual value is x +∆x (where ∆x is the 
error, which we hope is small). This measurement of x may be used to compute 
some other value; we can think of this laƩer value as f(x) for some funcƟon f. 
As the true length is x + ∆x, one really should have computed f(x + ∆x). The 
difference between f(x) and f(x + ∆x) is the propagated error.
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Error Analysis  We can approximate the propagated error using 
differenƟals.

A steel ball bearing is to be manufactured with a diameter of 2cm. The 
manu-facturing process has a tolerance of ±0.1mm in the diameter. Given 
that the density of steel is about 7.85g/cm3, esƟmate the propagated error in 
the mass of the ball bearing.

SÊ½çã®ÊÄ Themass of a ball bearing is found using the equaƟon “mass
= volume× density.” In this situaƟon themass funcƟon is a product of the radius
of the ball bearing, hence it ism = 7.85 4

3πr
3. The differenƟal of the mass is

dm = 31.4πr2dr.

The radius is to be 1cm; the manufacturing tolerance in the radius is±0.05mm,
or±0.005cm. The propagated error is approximately:

∆m         dm

= 31.4π(1)2(±0.005)
= ±0.493g

 Example  4.4.2  Using differenƟals to approximate propagated error

⟶ 

Is this error significant? It certainly depends on the applicaƟon, but we can get
an idea by compuƟng the relaƟve error. The raƟo between amount of error to
the total mass is

dm
m

= ± 0.493
7.85 4

3π

= ±0.493
32.88

= ±0.015,

or±1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball was

supposed to be 10cm, the same manufacturing tolerance would give a propa-
gated error inmass of±12.33g, which corresponds to apercent error of±0.188%.
While the amount of error is much greater (12.33 > 0.493), the percent error
is much lower.

We first learned of the derivaƟve in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the derivaƟve by studying how it relates to the graph of a funcƟon
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the derivaƟve to yet more uses:

• EquaƟon solving (Newton’s Method),

• Related Rates (furthering our use of the derivaƟve to find instantaneous
rates of change),

• OpƟmizaƟon (applied extreme values), and

• DifferenƟals (useful for various approximaƟons and for something called
integraƟon).

     In the next chapters, we will consider the “reverse” problem to compuƟng  the 
derivaƟve: given a funcƟon f, can we find a funcƟon whose derivaƟve is f?         
Being able to do so opens up an incredible world of mathemaƟcs and applicaƟons.
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Exercises 4.4
Terms and Concepts
1. T/F: Given a differenƟable funcƟon y = f(x), we are gen-

erally free to choose a value for dx, which then determines
the value of dy.

2. T/F: The symbols “dx” and “∆x” represent the same con-
cept.

3. T/F: The symbols “dy” and “∆y” represent the same con-
cept.

4. T/F: DifferenƟals are important in the study of integraƟon.

5. How are differenƟals and tangent lines related?

6. T/F: In real life, differenƟals are used to approximate func-
Ɵon values when the funcƟon itself is not known.

Problems
In Exercises 7 – 16, use differenƟals to approximate the given
value by hand.

7. 2.052

8. 5.932

9. 5.13

10. 6.83

11.
√
16.5

12.
√
24

13. 3√63

14. 3√8.5

15. sin 3

16. e0.1

In Exercises 17 – 30, compute the differenƟal dy.

17. y = x2 + 3x− 5

18. y = x7 − x5

19. y = 1
4x2

20. y = (2x+ sin x)2

21. y = x2e3x

22. y = 4
x4

23. y = 2x
tan x+ 1

24. y = ln(5x)

25. y = ex sin x

26. y = cos(sin x)

27. y = x+ 1
x+ 2

28. y = 3x ln x

29. y = x ln x− x

30. f(x) = ln
(
sec x

)
Exercises 31 – 34 use differenƟals to approximate propagated
error.

31. A set of plasƟc spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

32. The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t2. The depth of a hole is to be approximated by
dropping a rock and listening for it to hit the boƩom. What
is the propagated error if the Ɵmemeasurement is accurate
to 2/10ths of a second and the measured Ɵme is:

(a) 2 seconds?

(b) 5 seconds?

33. What is the propagated error in the measurement of the
cross secƟonal area of a circular log if the diameter is mea-
sured at 15′′, accurate to 1/4′′?

34. A wall is to be painted that is 8′ high and is measured to
be 10′, 7′′ long. Find the propagated error in the measure-
ment of the wall’s surface area if the measurement is accu-
rate to 1/2′′.

Exercises 35 – 39 explore some issues related to surveying in
which distances are approximated using other measured dis-
tances and measured angles. (Hint: Convert all angles to ra-
dians before compuƟng.)
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l =?

θ

25′

(a) What is the measured length l of the wall?
(b) What is the propagated error?
(c) What is the percent error?

36. Answer the quesƟons of Exercise 35, but with a measured
angle of 71.5◦, accurate to 1◦, measured from a point 100′
from the wall.

37. The length l of a long wall is to be calculated by measuring
the angle θ shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143◦, accurate to 1◦.

l =?θ 50′

(a) What is the measured length of the wall?

(b) What is the propagated error?

(c) What is the percent error?

38. The length of the walls in Exercises 35 – 37 are essenƟally
the same. Which setup gives the most accurate result?

39. Consider the setup in Exercise 37. This Ɵme, assume the
angle measurement of 143◦ is exact but the measured 50′
from the wall is accurate to 6′′. What is the approximate
percent error?

Solutions 4.4
1. T

2. F

3. F

4. T

5. Answers will vary.

6. T

7.

8.

Use y = x2; dy = 2x · dx with x = 2 and dx = 0.05. Thus dy 
= .2; knowing 22 = 4, we have 2.052 ≈ 4.2.
Use y = x2; dy = 2x · dx with x = 6 and dx = −0.07. Thus 
dy = −0.84; knowing 62 = 36, we have 5.932     35.16.

9. Use y = x3; dy = 3x2 · dx with x = 5 and dx = 0.1. Thus dy 
= 7.5; knowing 53 = 125, we have 5.13    132.5.

10. Use y = x3; dy = 3x2 · dx with x = 7 and dx = −0.2. Thus
dy = −29.4; knowing 73 = 343, we have 6.83     313.6.

11. ( 1Use y =
√
x; dy = 1/ 2

√
x) · dx with x = 6 and dx = 0.5. Thus

dy = .0625; knowing
√
16 = 4, we have

√
16.5    4.0625.

12. Use y =
√
x; dy = 1/

√
· 25 and dx = −1. Thus(2 x) dx with x =

dy = −0.1; knowing
√
25 = 5, we have

√
24   4.9.

3 313. Use y =
√
x; dy = 1/(3

√
x2) · dx with x = 64 and dx = −1.

− 3
Thus dy = −1/48     0.0208; we could use

1/48     −1/50 = −0.02; knowing 
√
64 = 4, we have√3

63     3.98.
3 314. Use y =
√
x; dy = 1/(3

√x2) · dx with x = 8 and dx = 0.5. Thus

3dy = 1/24     1/25 = 0.04; knowing   
√
8 = 2, we have√3

8.5    2.04.
15. Use y = sin x; dy = cos x · dx with x = π and dx    −0.14. Thus dy 

= 0.14; knowing sin π = 0, we have sin 3    0.14.

16. Use y = ex; dy = ex · dx with x = 0 and dx = 0.1. Thus dy = 0.1; 
knowing e0 = 1, we have e0.1   1.1.

17. dy = (2x + 3)dx

18. dy = (7x6 − 5x4)dx

19. dy = 4
−
x3
2 dx

20. dy = 2(2x + sin x)(2 + cos x)dx

23. dy = 2(tan
(

x+1)
+

−2
)

x
2
sec2 x

tan x 1 dx

1
x24. dy = dx

25. dy = (ex sin x+ ex cos x)dx
26. dy = (− sin(sin x) cos x)dx
27. dy =

( +
1

x 2)2 dx

28. dy = ((ln 3)3x ln x+ 3
x
x
)dx

29. dy = (ln x)dx
30. dy =

(
tan x

)
dx

31. dV = ±0.157
32. (a) ±12.8 feet

(b) ±32 feet

33. ±15π/8    ±5.89in2

34. ±48in2, or 1/3Ō2

35. (a) 297.8 feet
(b) ±62.3 Ō
(c) ±20.9%

36. (a) 298.8 feet
(b) ±17.3 Ō
(c) ±5.8%

37. (a) 298.9 feet
(b) ±8.67 Ō

(c)

±2.9%
38. The isosceles triangle setup works the best with the smallest

percent error.
39. 1%

22. dy = −
x5
16dx

21. dy = 2xe3x + 3x2e3x
)
dx

(

35. The length l of a long wall is to be approximated. The angle

θ, as shown in the diagram (not to scale), is measured to be
85.2◦, accurate to 1◦. Assume that the triangle formed is a
right triangle.

# 35, 36

≐

≐  

≐

≐

≐

≐

≐

≐

≐
≐ 

≐

≐
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We have spent considerable Ɵme considering the derivaƟves of a funcƟon and 
their applicaƟons. In the following chapters, we are going to starƟng thinking 
in “the other direcƟon.” That is, given a funcƟon f(x), we are going to consider 
funcƟons F(x) such that F ′(x) = f(x). There are numerous reasons this will 
prove to be useful: these funcƟons will help us compute area, volume, mass, 
force, pressure, work, and much more.

4.5  AnƟderivaƟves and Indefinite IntegraƟon
Given a funcƟon y = f(x), a differenƟal equaƟon is one that incorporates y, x, 
and the derivaƟves of y. For instance, a simple differenƟal equaƟon is:

y ′ = 2x.

Solving a differenƟal equaƟon amounts to finding a funcƟon y that saƟsfies 
the given equaƟon. Take a moment and consider that equaƟon; can you find a 
funcƟon y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one soluƟon: y = x2. “Find-

ing another” may have seemed impossible unƟl one realizes that a funcƟon like
y = x2 + 1 also has a derivaƟve of 2x. Once that discovery is made, finding “yet
another” is not difficult; the funcƟon y = x2 + 123, 456, 789 also has a deriva-
Ɵve of 2x. The differenƟal equaƟon y ′ = 2x has many soluƟons. This leads us
to some definiƟons.

DefiniƟon 4.5.1 AnƟderivaƟves and Indefinite Integrals

Let a funcƟon f(x) be given. An anƟderivaƟve of f(x) is a funcƟon F(x)
such that F ′(x) = f(x).

The set of all anƟderivaƟves of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.

Make a note about our definiƟon: we refer to an anƟderivaƟve of f, as op-
posed to the anƟderivaƟve of f, since there is always an infinite number of them.
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We oŌen use upper-case leƩers to denote anƟderivaƟves.
Knowing one anƟderivaƟve of f allows us to find infinitely more, simply by

adding a constant. Not only does this give usmore anƟderivaƟves, it gives us all
of them.

Theorem 4.5.1 AnƟderivaƟve Forms

Let F(x) and G(x) be anƟderivaƟves of f(x) on an interval I. Then there
exists a constant C such that, on I,

G(x) = F(x) + C.

Given a funcƟon f defined on an interval I and one of its anƟderivaƟves F,
we know all anƟderivaƟves of f on I have the form F(x) + C for some constant
C. Using DefiniƟon 5.1.1, we can say that∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notaƟon.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

IntegraƟon
symbol

.

DifferenƟal
of x

.

One
anƟderivaƟve

.

Constant of
integraƟon

Figure 5.1.1 shows the typical notaƟon of the indefinite integral. The inte-
graƟon symbol,

∫
, is in reality an “elongated S,” represenƟng “take the sum.”

We will later see how sums and anƟderivaƟves are related.
The funcƟon we want to find an anƟderivaƟve of is called the integrand. It

contains the differenƟal of the variable we are integraƟngwith respect to. The
∫

symbol and the differenƟal dx are not “bookends” with a funcƟon sandwiched in
between; rather, the symbol

∫
means “find all anƟderivaƟves of what follows,”

and the funcƟon f(x) and dx are mulƟplied together; the dx does not “just sit
there.”

Let’s pracƟce using this notaƟon.

Figure 4.5.1: Understanding the indefinite integral notaƟon.
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EvaluaƟng indefinite integrals
Evaluate
Example ∫4.5.1

sin x dx.

SÊ½çã®ÊÄ We are asked to find all funcƟons F(x) such that F ′(x) =
sin x. Some thoughtwill leadus to one soluƟon: F(x) = − cos x, because d

dx (− cos x) =
sin x.

The indefinite integral of sin x is thus − cos x, plus a constant of integraƟon.
So: ∫

sin x dx = − cos x+ C.

A commonly asked quesƟon is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of anƟdifferenƟaƟon is really solving a differenƟal quesƟon. The
integral ∫

sin x dx

presents us with a differenƟal, dy = sin x dx. It is asking: “What is y?” We found
lots of soluƟons, all of the form y = − cos x+ C.

Leƫng dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What funcƟons have a differenƟal of the form dy?” The answer
is “FuncƟons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.

Understanding all of this is more important later as we try to find anƟderiva-
Ɵves of more complicated funcƟons. In this secƟon, we will simply explore the
rules of indefinite integraƟon, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s pracƟce once more before staƟng integraƟon rules.

EvaluaƟng indefinite integrals
Evaluate
Example ∫4.5.2

(3x2 + 4x+ 5) dx.

SÊ½çã®ÊÄ We seek a funcƟon F(x) whose derivaƟve is 3x2 + 4x + 5.
When taking derivaƟves, we can consider funcƟons term–by–term, so we can
likely do that here.

What funcƟons have a derivaƟve of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.
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What funcƟons have a derivaƟve of 4x? Here the x term is raised to the first
power, so we likely seek a quadraƟc. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what funcƟons have a derivaƟve of 5? FuncƟons of the form 5x+C3,
where C3 is a constant.

Our answer appears to be

∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integraƟon; combine them as one
constant, giving the final answer of

∫
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivaƟve of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5.

This final step of “verifying our answer” is important both pracƟcally and
theoreƟcally. In general, taking derivaƟves is easier than finding anƟderivaƟves
so checking our work is easy and vital as we learn.

We also see that taking the derivaƟve of our answer returns the funcƟon in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

DifferenƟaƟon “undoes” the work done by anƟdifferenƟaƟon.

Our derivative tables gave a list of the derivaƟves of common funcƟons we 
had learned at that point. We restate part of that list here to stress the 
relaƟonship between derivaƟves and anƟderivaƟves. This list will also be useful 
as a glossary of common anƟderivaƟves as we learn.
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Theorem 4.5.2 DerivaƟves and AnƟderivaƟves

Common DifferenƟaƟon Rules
1. d

dx(cf(x))
 = c · f ′(x)

2. d
dx
(
f(x)±g(x)

)
= f ′(x)± g′(x)

3. d
dx (C 

)
= 0

4. d
dx

(
x
)
= 1

5. d
dx

(
xn
)
= n · xn−1

6. d
dx

(
sin x

)
= cos x

7. d
dx

(
cos x

)
= − sin x

8. d
dx

(
tan x

)
= sec2 x

9. d
dx

(
csc x

)
= − csc x cot x

10. d
dx

(
sec x

)
= sec x tan x

11. d
dx

(
cot x

)
= − csc2 x

12. d
dx

(
ex
)
= ex

13. d
dx

(
ax
)
= ln a · ax

14. d
dx

(
ln x
)
= 1

x

Common Indefinite Integral Rules
1. ∫ c · f(x) dx = c · ∫ f(x) dx

2.. ∫ (
f(x)± g(x))dx =  f(x)dx ±    

∫
g(x)dx

3.
∫
0 dx = C

4.
∫
1 dx =

∫
dx = x+ C

5.
∫
xn dx = 1

n+1x
n+1 + C (n ̸= −1)

6.
∫
cos x dx = sin x+ C

7.
∫
sin x dx = − cos x+ C

8.
∫
sec2 x dx = tan x+ C

9.
∫
csc x cot x dx = − csc x+ C

10.
∫
sec x tan x dx = sec x+ C

11.
∫
csc2 x dx = − cot x+ C

12.
∫
ex dx = ex + C

13.
∫
ax dx = 1

ln a · a
x + C

14.
∫ 1

x dx = ln |x|+ C

We highlight a few important points from Theorem 5.1.2:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant MulƟple

Rule: we can temporarily ignore constants when finding anƟderivaƟves,
just as we did when compuƟng derivaƟves (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being mulƟplied by

* * * * * * * * *

∫

5, but “5 Ɵmes a constant” is sƟll a constant, so we just write “C ”.
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• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
5.1.2. So:∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C

In pracƟce we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #5 is the Power Rule of indefinite integraƟon. There are two impor-
tant things to keep in mind:

1. NoƟce the restricƟon that n ≠ −1. This is important:
∫ 1

x dx ≠
“ 10x

0 + C”; rather, see Rule #14.
2. We are presenƟng anƟdifferenƟaƟon as the “inverse operaƟon” of

differenƟaƟon. Here is a useful quote to remember:
“Inverse operaƟons do the opposite things in the opposite
order.”

When taking a derivaƟve using the Power Rule, we first mulƟply by
the power, then second subtract 1 from the power. To find the an-
ƟderivaƟve, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

• Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

IniƟal Value Problems

In SecƟon 2.3we saw that the derivaƟve of a posiƟon funcƟon gave a velocity
funcƟon, and the derivaƟve of a velocity funcƟon describes acceleraƟon. We
can now go “the other way:” the anƟderivaƟve of an acceleraƟon funcƟon gives
a velocity funcƟon, etc. While there is just one derivaƟve of a given funcƟon,
there are infinitely many anƟderivaƟves. Therefore we cannot ask “What is the
velocity of an object whose acceleraƟon is−32Ō/s2?”, since there is more than
one answer.
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We can find the answer if we provide more informaƟon with the quesƟon, 
as done in the following example. OŌen the addiƟonal informaƟon comes in the 
form of an iniƟal value, a value of the funcƟon that one knows beforehand.

Example 4.5.3 Solving iniƟal value problems
The acceleraƟon due to gravity of a falling object is −32 Ō/s2. At Ɵme t = 3, 
a falling object had a velocity of −10 Ō/s. Find the equaƟon of the object’s 
velocity.

SÊ½çã®ÊÄ We want to know a velocity funcƟon, v(t). We know two
things:

• The acceleraƟon, i.e., v ′(t) = −32, and

• the velocity at a specific Ɵme, i.e., v(3) = −10.

Using the first piece of informaƟon, we know that v(t) is an anƟderivaƟve of
v ′(t) = −32. So we begin by finding the indefinite integral of−32:∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86

Thus v(t) = −32t+ 86. We can use this equaƟon to understand the moƟon
of the object: when t = 0, the object had a velocity of v(0) = 86 Ō/s. Since the
velocity is posiƟve, the object was moving upward.

When did the object begin moving down? Immediately aŌer v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object 
knowing just its acceleraƟon and its velocity at a single point in Ɵme.

Example 4.5.4 Solving iniƟal value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

SÊ½çã®ÊÄ We start by finding f ′(t), which is an anƟderivaƟve of f ′′(t):∫
f ′′(t) dt =

∫
cos t dt = sin t+ C = f ′(t).
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So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the iniƟal value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integraƟng again.

f(t) =
∫

f ′(t) dt =
∫

(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6.

This secƟon introduced anƟderivaƟves and the indefinite integral. We found
they are needed when finding a funcƟon given informaƟon about its deriva-
Ɵve(s). For instance, we found a velocity funcƟon given an acceleraƟon func-
Ɵon.

In the next secƟon, we will see how posiƟon and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity funcƟon. Then,
in SecƟon 5.4, wewill see howareas and anƟderivaƟves are closely Ɵed together.
This connecƟon is incredibly important, as indicated by the nameof the theorem
that describes it: The Fundamental Theorem of Calculus.
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Exercises 4.5
Terms and Concepts
1. Define the term “anƟderivaƟve” in your own words.

2. Is it more accurate to refer to “the” anƟderivaƟve of f(x) or
“an” anƟderivaƟve of f(x)?

3. Use your own words to define the indefinite integral of
f(x).

4. Fill in the blanks: “Inverse operaƟons do the
things in the order.”

5. What is an “iniƟal value problem”?

6. The derivaƟve of a posiƟon funcƟon is a
funcƟon.

7. The anƟderivaƟve of an acceleraƟon funcƟon is a
funcƟon.

8. If F(x) is an anƟderivaƟve of f(x), and G(x) is an anƟderiva-
Ɵve of g(x), give an anƟderivaƟve of f(x) + g(x).

Problems
In Exercises 9 – 27, evaluate the given indefinite integral.

9.
∫

3x3 dx

10.
∫

x8 dx

11.
∫

(10x2 − 2) dx

12.
∫

dt

13.
∫

1 ds

14.
∫

1
3t2

dt

15.
∫

3
t2

dt

16.
∫

1√
x
dx

17.
∫

sec2 θ dθ

18.
∫

sin θ dθ

19.
∫

(sec x tan x+ csc x cot x) dx

20.
∫

5eθ dθ

21.
∫

3t dt

22.
∫

5t

2
dt

23.
∫

(2t+ 3)2 dt

24.
∫

(t2 + 3)(t3 − 2t) dt

25.
∫

x2x3 dx

26.
∫

eπ dx

27.
∫

a dx

28. This problem invesƟgates why Theorem 5.1.2 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?
(b) Find d

dx

(
ln x
)
.

(c) What is the domain of y = ln(−x)?
(d) Find d

dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of anƟderiva-
Ɵves, depending on whether x > 0 or x < 0. In
one expression, give a formula for

∫
1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 29 – 39, find f(x) described by the given iniƟal
value problem.

29. f ′(x) = sin x and f(0) = 2

30. f ′(x) = 5ex and f(0) = 10

31. f ′(x) = 4x3 − 3x2 and f(−1) = 9

32. f ′(x) = sec2 x and f(π/4) = 5

33. f ′(x) = 7x and f(2) = 1

34. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3

35. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10
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36. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

37. f ′′(θ) = sin θ and f ′(π) = 2, f(π) = 4

38. f ′′(x) = 24x2 + 2x − cos x and f ′(0) = 5, f(0) = 0

39. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

Review

40. Use informaƟon gained from the first and second deriva-
Ɵves to sketch f(x) = 1

ex + 1
.

41. Given y = x2ex cos x, find dy.

Solutions 4.5
1. Answers will vary.
2. “an”
3. Answers will vary.
4. opposite; opposite
5. Answers will vary.
6. velocity
7. velocity
8. F(x) + G(x)

9. 3/4x4 + C

10. 1/9x9 + C

11. 10/3x3 − 2x+ C

12. t+ C

13. s+ C

14. −1/(3t) + C

15. 3/(t) + C

16. 2

−
√
x+ C

17. tan θ + C

18. − cos θ + C

19. sec x− csc x+ C

20. 5eθ + C

21.

22.

3t/ ln 3+ C

2
5
ln
t

5 + C

23. 4/3t3 + 6t2 + 9t+ C

24. t6/6+ t4/4− 3t2 + C

25. x6/6+ C

26. eπx+ C

27. ax+ C

28. (a) x > 0

(b) 1/x

(c) x < 0

(d) 1/x

(e) ln |x|+ C. ExplanaƟons will vary.

29. − cos x+ 3

30. 5ex + 5

31. x4 − x3 + 7

32. tan x+ 4

33. 7x/ ln 7+ 1− 49/ ln 7

34. 5/2x2 + 7x+ 3

35. 7x3
6 − 9x

2 + 3
40

36. 5ex − 2x

37. θ − sin(θ)− π + 4

38. 2x4 + cos x+
(ln

2x
2)2 + (5− ln

1
2 )x− 1−

(
1

ln 2)2

39. 3x − 2

40. No answer provided.
41. dy = (2xex cos x + x2ex cos x − x2ex sin x)dx
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Chapter 5      The Definite Integral

If you know the differential of a quantity  Q = f(t), dQ = r(t)dt, then by dividing by dt  you got

Δx

ΔA

xi 2
X0

1

2

3

4

The area approximation with  n  approximating rectangles is then

A  ≐  ∑
i = 1

n

(xi)
2Δx

    =  x1
2Δx + x2

2Δx + x3
2Δx + ⋯ + xn

2Δx
    =   1 · 2

n


2
· 2

n
 + 2 · 2

n


2
· 2

n
 +⋯ + n · 2

n


2
· 2

n

    =  8
n3 [12 + 22 + ⋯ +  n2]

To compute the table below, you need a good calculator or a Computer Algebra System unless you 
have lots of time to kill.

           Δx           n An

1. 2 5.00000
0.1 20 2.87000

200 2.686860.01 
0.001 2000 2.66868
0.0001 20000 2.66686

  ↓                      ↓       ↓
   0  +∞              A = 8/3 ?

  y = x2

5.1   We Need (something called) the Definite Integral

Difficult Problems   A basic calculus method is to approximate a difficult problem by 
chopping it up into a large number of approximately simple, easily solved problems. The 
greater the number of the simple problems, hopefully the better the approximation to the exact 
answer.

Problem 1   Find the area under the curve  y = f(x) = x2  for  0 ≤ x ≤ 2.

Note:  ΔA  ≐ f(xi)Δx.  We choose to approximate the area with  n  rectangles of height  f(xi),  

n  
2 .  Then  x i  =   i Δx =  i· .

|

 

dQ     =  r(t), the derivative (or growth rate).

tQ(t) - Q(0)  =  ∫0
 
 
  r (t)dt, the  integral (or the net change of  Q  from  time  0  to  time  t).

dt

Example Calculation
If  n = 2,

A  = 2

To compute the table below, you need a good calculator or a Computer Algebra System unless you 
have lots of time to kill.

 8
23 [1  + 2 ]22

= 5

 right-hand approximation, and width   Δx =    n
2 - 0

If you sum up  dQ i = r(t i) dt  over a suitable infinite number of  t  values you will get in this chapter

i

i .
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Problem 2  The velocity of our charging moose was  v(t) = dx
dt

 = 10 sin t m

sec ,  0 ≤ t ≤ π  seconds. 

How close can you safely approach this moose?  Use RH approximations.
Note:  dx

dt
= v(t)  ⇒  Δx ≐ v(t) Δt, a simple problem.  π = 3.14159···

ππ
T0

10

V

t

dx

dt

          Δt          n xn

1 3 18.9189
0.1 31 19.9955
0.01 314 19.9999
0.001 3141 19.9999
0.0001 31415 20.0000
  ↓              ↓                 ↓
  0             +∞              x = 20

Problem 3  The growth rate of a fungus is  r(t) = dm
dt = 2t gm

hour ,  1 ≤ t ≤ 5 hours. 

By how much does its mass increase for  1 ≤ t ≤ 5 hours?  Use RH approximations.
Note:  dm

dt
= r(t)  ⇒ Δm ≐ r(t)Δt, a simple problem.

1 5 T
5

10

15

20

25

30

35
R

t

dm
dt

Δt             n

1   4  54.0000             
0.1   40      44.7982
0.01             400                43.4310
0.001   4000      43.2959
0.0001   40000      43.2824

   ↓         ↓ ↓

   0    +∞    m = 43.2 · · ·

mn

Example Calculation
If  n = 3.

x   =  10sin1   1 +  10sin 2   1 + 10sin 3   1

     = 8.4147 + 9.0929 + 1.4112
     = 18.9189

 3
. . .

Example Calculation
If  n = 4.

m   = 2    1 + 3     1 + 4    1 + 5

      = 54

4
2 2 22. . . . 1
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Summary   It looks like to find the exact area under a curve  y = f(x),  we should try

A  =  lim n→+∞ ∑
i= 1

n
f(xi)Δx

or to recover the size of a quantity whose growth rate is  dQ
dt = r(t),  try

Q =  lim n→+∞ ∑
i= 1

n
r(ti)Δt

y = f(x)

X

       Y

x
i

*
x
N

*
x1

*

dx dx dx

a x1 xi-1 xi xN-1 xN= b

Note  In this definition we require getting the same answer regardless of whether we choose the  xi
*

 's 

to be the left-hand, right-hand, mid-point or any other approximation.  The most critical step is 
finding an approximation, while imperfect, gives the exact answer when  N  is an infinite integer.

Exercises  Show all calculation details.

1. Work #1  with  n = 1.

2. Work #2  with  n = 3.

3. Work #3  with  n = 4.

4. Work #1  with  n = 10.
5. Find the area under the curve  y = f(x) = x  for  0 ≤ x ≤ 5. Use  5  right-hand approximating rectangles. 
Compare your answer with the exact answer using the formula for the area of a triangle.
6. Find the area under the curve  y = f(x) = x  for  0 ≤ x ≤ 5. Use  5  left-hand approximating rectangles. 
Compare your answer with the exact answer using the formula for the area of a triangle.

If you find these calculations interesting, 
perhaps you should make an appointment 
with one of our fine school psychologists.

Hyperreal Definition of the (Riemann) Definite Integral
Let  f  be defined on the interval  a ⩽ x ⩽ b. Let  xi

* be a point in the  ith sub-interval. 

NLet  dx = b -  a Then the definite integral of  f  on the interval is

∑
i= 1

N

f(xi
*) dx  ≈>  ∫a

b 
f(x) dx

provided the same result is obtained for any choice of the  xi
*

 ’s.

, N  a positive infinite integer.

Here is the official name for the above limit of the sum stated in its hyperreal form.
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7. Find the area under the curve  y = f(x) = x  for  0 ≤ x ≤ 5. Use  5  midpoint approximating rectangles.

8. Comment on the results of #5, 6 and 7.

Solutions
1 to 7.  For a dollar, I'll do one or two in 
class or by email upon request, perhaps.

8. #5 gives an over approximation.
#6 gives an under approximation.
#7 gives the exact answer.
Do you understand why?

219



 5.2  The Definite Integral
In the last lecture we learned how to find the area under the curve  y = f(x)  for  a ≤ x ≤ b  by 
approximating the area with  n  rectangles and then expect to get the exact area by letting  
n -> +∞.  It will be helpful in proving theorems about the definite integral to let  n = N, 
an infinite integer (the hyperreal approach), and rounding off to get the exact real area.

Hyperreal Definition of the (Riemann) Definite Integral
Let  f  be defined on the interval  a ⩽ x ⩽ b. Let  xi

* be a point in the  ith sub-interval. 

N
Let  dx = b -  a Then the definite integral of  f  on the interval is

∑
i= 1

N

f(xi
*) dx  ≈>  ∫a

b 
f(x) dx

provided the same result is obtained for any choice of the  xi
*

 ’s.

y = f(x)

X

Y

xi
*

xN
*

x1
*

dx dx dx

a x1 xi-1 xi xN-1 xN= b

∑
i = 1

n

provided the same result is obtained for any choice of the  xi
*’s.

y = f(x)

X

Y

xi
*

xn
*

x1
*

dx dx dx

a x1 xi-1 xi xn-1 xn= b

, N  a positive infinite integer.

Limit Definition of the (Riemann) Definite Integral
Let  f  be defined on the interval  a ⩽ x ⩽ b. Let  xi

*  be a point in the  ith sub-
interval.  Let  dx =                                                                                                           

b
 
 
  n
-        

    
a  .   Then the definite integral of  f  on the interval is 

∫a

b 
f(x) dx  = 

n → 
lim  

+∞

f(xi
*) dx
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The sum ∑
N

f(xi
*) dx  or ∑

i=1

n

f(xi
*) dx  is called a  Riemann Sum.  ∫a

b
f(x) dx  is called a Riemann Integral.

y = f(x)

ϵ1

ϵi
ϵN

X

Y

xi
*

xN
*

x1
*

dx dx dx

a x1 xi-1 xi xN-1 xN= b

∑i=1
N ϵi dx 

≤  ∑i
N
=1 ϵ dx 

=  ϵ  ∑i=1
N dx 

=  ϵ (b - a) type i·h

≈>  0. End of Proof

Corollary   If  f  is integrable, then any choice of the  xi
* s  can be used to evaluate  ∫ a

b 
f(x) dx.

Example  Let's do that for finding the area under the curve  y = f(x) =      for  0 ≤ x ≤ 2  taking              , the 

right-hand end point. We got  A  ≐  ∑i 
n
=1 (xi)

2Δx  = 

i=1

Proof
By the continuity of  f, the error rectangles for any choice of the  xi

*  all have an infinitesimal height  ≤ ϵi. Let  ϵ  

be the largest of these heights; it also is an infinitesimal. Then the error in calculating  ∑   =N
1 f(xi 

*)dx  is i

less than or equal to 

Bernhard Riemann, a German mathematician, 1826 to 1866 used these sums. We usually will omit the 
‘Riemann’ because we will only use the Riemann Integral in this course. f is said to be Riemann 
integrable on the interval if the integral exits.

For differentiating a function, it must be smooth.
For integrating a function, it is only expected to be continuous.

Integrability Theorem  Let  f  be continuous on the closed interval  a ⩽ x ⩽ b.
Then  f   is Riemann integrable over the interval.

Proof

xi
* = xix

2

[12 + 22 + 32  + · · · + n2]  for  n  subdivisions numerically.8
n3
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You should have learned sigma notation in high school. We will use it sparingly now 
and treat it in more detail later in calculus. We will use the sum formula

n
formula   ∑ i 2 =                                 to do this example from the last section exactly using the

i=1
     hyperreal  definition of definite integral.

2
X0

4

Y

xi

dx

y = x2

Subdivide the interval  0 ≤ x ≤ 2  into  n = N, an infinite whole number of subdivisions. 

Note:  dx =     and  xi   = i dx =  i 2
N . Then

∑
i = 1

N

(xi
*)2 dx  = ∑

i = 1

N

xi
2 dx  = ∑

i = 1

N

i 2
N


2 2
N

  =  23

N3 ∑
i = 1

N

i 2  =  23

N3 ·
1
6 N(N + 1)(2N+1)

 =   23

6
N

N

N+ 1
N

2 N+1
N

 
8
3≈>  2 6

3 
·1·1·2  =    =  ∫0

2 
x2 dx.

Read it again and agree there has got to be a better way of evaluating integrals exactly! 

Outcome Examples  The outcomes the hyperreal integral calculation and rounding 
off can only be:

1. A real number.  One example is the problem above. You will see many more of these later.

2. +∞  or  -∞.  Area under  y = 1
x2 , 0 ≤ x ≤ 1.

The area of the first approximating rectangle alone is  dA  =  1
dx2 ·dx  =  1

dx  ≈>  +∞ !

x1 1
X

10

Y

dx

dA y = 1
x

2

1
6
· N(N + 1)(2N+1) 

2
N
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3. DNE.  The area under  y = f(x)  = 
1 /2 x rational
1 x irrational .

1
X

1

1

2

f(x)

If the  xi
* are chosen rational, the area of the sum of the approximating rectangles is 1/2. If the  xi

* 

are chosen irrational, their area is 1.
⟹  The Riemann Integral ∫ 0

1 
f(x) dx  DNE.

a b X

Y

y = f(x)

A

a b T

Y

y = f(t)

A

∫a

b f(x) dx  as live math   It is often thought that  ∫a

b 
f(x) dx  is just the name or symbol for ∑

i= 1

N

f(xi
*) dx  

rounded off.  If  f  is continuous on a closed interval a ⩽ x ⩽ b, f(x)  and  dx  as hyperreal quantities can be 

substituted for in  ∫a

b 
f(x) dx; so it is live math.  So you can usually use  ∫a

b 
f(x) dx  instead of the uglier

∑
i= 1

N

f(xi
*) dx  in both theory and applications.

     Compare this with the derivative situation for  y = f(x): dy
dx  =  

f(x+dx) - f(x)
dx  ≈>  f ‘(x).  dy

dx  is a complete, concise 

summary of  f (x+dx) - f (x)
dx  which  ≈>  f ‘(x); that is  dy

dx  is live math, only infinitesimally wrong, and not just a name  
for the derivative.

*What do you call a dog without any legs?

a You don't bother, it won't come anyway. 

NOTES
There is a more advanced integral, the Lebesque integral, which evaluates the integral as  1. That 
will make sense because there are many more irrational numbers than rational ones.

For the rest of this course we will mostly deal with continuous functions. In the next course, in the 
topic of  generalized functions, you will learn about discontinuous function calculus.

Let  f  be continuous.  Then by the Integrability Theorem we can choose  x i 
*=  x i. Then            the

definition of Definition Integral is much easier to use. But it’s still a pain. The really   easy way 
to integrate (evaluate the definite integral of  f) is found in the Fundamental Theorem  of  
Calculus which we will do in section 4. 

Dummy Variable  The variable of integration is a dummy variable:  ∫a

b 
f(x) dx = ∫a

b 
f(t) dt.

Note: The word dummy has largely fallen in disuse. In this context, however, it is an appropriate  

adjective. Dumb is an Old English word for ‘cannot speak’ (because of a hearing impairment) which in 

this context implies ‘it does not matter what you call it’*. See the graphs below.
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Algebraic or Signed Area  In most applications of integration, the integrand can be positive or

negative. But if  f(x)  is negative, so is the area. For uniformity we will allow ourselves  to talk about 
algebraic (signed) area.

Example  Find the algebraic area for  f(x) = x  for  -1 ≤ x ≤ 1. Use the area interpretation.

-1 1 X

-1

1

Y

Algebraic area:   A = - 1
2  + 1

2  =  0.  Geometric area:  A =  1
2  + 1

2  =  1.

MidPoint Approximation for  ∫a

b 
f(x) dx.  Take  n  large and finite (i.e.,  Δx  small) and  xi

*  to be 

the midpoint in the definition of the definite integral.

There are many ways of approximating a Riemann integral. The midpoint approximation is especially 
effective because the ‘error triangles' often nearly cancel if there is local linearity.

Example  Evaluate  ∫1
2 1

x dx. Use the mid-point approximation with  n = 2.

∫1
2 1

x dx ≐ 1
5/4 ·

1
2 +  1

7/4 ·
1
2 ≐ 0.686

Exact value  ≐  0.693
Not bad!

0.5 1.0 1.5 2.0
X

0.2

0.4

0.6

0.8

1.0

1.2

Y

y = 1
x

Exercises
1. Read this section carefully several times. Make sure you understand everything.

2. Evaluate   ∫ 
4    

x dx   using the midpoint formula with two subdivisions. Graph. Would you expect your

answer to be somewhat, fairly or extremely accurate?

3.  

⟶
 

⟶
 

   over
estimate

   under
estimate

_    

Find the area under the curve  y = f(x) = x3  for  0 ≤ x ≤ 2  taking  xi
* = xi, the right hand end point.

Hint: use the formula  

i = 1

0

∑
i = 1

N

i 3  =  
 2N  (N+ 1)2

4 .
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5.3  Properties of  the Definite Integral

REVIEW  Hyperreal Definition of the (Riemann) Definite Integral

y = f(x)

X

Y

x
i

*
x
N

*
x1
*

dx dx dx

a x1 xi-1 xi xN-1 xN = b

Let  f  be defined on the interval  a ⩽ x ⩽ b. Then the definite integral of  f  on the

interval is 

∑
i= 1

N

f(xi
*) dx  ≈> ∫a

b
f(x) dx, for N a positive infinite integer and dx =

provided the same result is obtained for every choice of the  xi
*' s.

The Secret of Integral Calculus  Over a short interval a continuous function appears constant.

dx

dA

x X

y = f(x)

x X

y = f(x)

dx

dA

⋯■

On the left diagram with  dx  shown infinitely magnified. It appears there may be a significant error in 
writing  dA = f(x)dx. On the right diagram the X-axis is infinitely magnified. If  f  is continuous, then  f(x)  

appears constant (dx  an infinitesimal ⇒ dy, an infinitesimal) and so  dA ≈ f(x)dx.

Properties of Integrals  The proofs of most of these are left as exercises; they are

completely intuitive in terms of the area interpretation.

In the definition of Definite Integral, it was assumed that  a < b. Sometimes it is desirable to remove 
this restriction.

b - a
N 

⟶
 

dy
dx

225



Properties 1   Generalized Limits of Integration (in the definition of definite integral it was 
assumed that  b > a, a  and  b  real numbers.

A. ∫a

a 
f (x) dx = 0

X

y = f(x)

a

      The area under a point is  0.

Generalized Integrals: a related note      

a b
X

y = f(x)

xi
*

dx

In some applications a function may be undefined at a point  xi* in  the interval of integration. Then  
f(xi*)dx  is undefined and so  ∫ a

b f(x)dx  is undefined. However, since the area under a point is  0, we will

usually ignore this ‘undefined infinitesimal area’. With this understanding the integral is defined and   
is called the ‘generalized integral of  f  on the on the interval  a ≤ x ≤ b.” In applications, this 

understanding is universally accepted.

B. ∫b

a f(x) dx = -∫ a

b f(x) dx

a b
X

y = f(x)

xi

dx

i = 1

1. ∫a

b 
cf (x) dx = c∫a

b
f (x) dx

2. ∫a

b [f (x) + g(x)] dx = ∫a

b
f (x) dx + ∫a

b 
g(x) dx

Discussion
1. If you multiply the height of each approximating rectangle by  c, you multiply the area of each

rectangle by  c.
2. If you add the heights of two rectangles, you add their areas.

Property 3.  Piecewise Continuous Function Property 

∫a

b 
f (x) dx + ∫b

c 
f (x) dx = ∫a

c 
f (x) dx

a b X

y = f(x)

c

Properties 2.  Linearity Properties

                  N

For  ∫b

a         dx,  the  dx’s  in   ∑  f(xi*) dx  are all negative.f(x)

226



Property 4.  Inequality property

f(x) ≤ g(x)  ⇒ ∫a

b 
f (x) dx ≤ ∫a

b 
f (x) dx

X

Y

y = f(x)

y = g(x)

a b

dQ
dt   =  r(t).

To find its total amount of accumulation of  Q,  you sum the differential over the 
 time interval obtaining its integral:

ΔQ  =  ∫t1

t2 
r(t) dt

There you go. Just about all you need to know about elementary calculus!

Details of the last calculation.

dQ  =  r(t) dt

summing / integrating from  t1  to  t2∫t1

t2 dQ  =  ∫t1

t2 
r(t) dt

Q(t) 
t
t

1

2  =  ∫t1

t2 
r(t) dt

Q(t2) - Q(t2)  =  ∫t1

t2 
r (t) dt

Q2 -  Q2  =  ∫t1

t2 
r(t) dt

or 

or 

or

ΔQ = ∫t1
t2 r (t)dt The Net Change Theorem (as some call it)

Think again about this picture. In early calculus,

the differential was the key ingredient.

ΔQ = ∫t
t

1
2 r(t) dt the definite integral

↑
dQ = r(t) dt the differential

↓
dQ
dt

= r(t) the derivative

A Historical / Application Note
Historically to find a quantity  Q,  you begin by finding its differential  dQ, because over an  
infinitesimal time interval, its behavior should be quit simple:  

                 dQ  ≈   r(t) dt. 

To find its rate you divide you divide by dt to get its rate of change, the derivative:
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Exercises  Read the section carefully. Semi-memorize the properties of integrals.

1. Use Property 3 to evaluate  ∫0
6 f(x) dx.

0 2 4 6 8
X

1

2

3

f(x)

2. Use Property 3 to evaluate the generalized integral ∫0
6  

g(x) dx.

0 2 4 6 8
X

1

2

3

g(x)

3. Use Property 3 to evaluate   ∫
- 
0

2 
h(x) dx. Comment: Property 3 sometimes holds even if there are an

infinite number of discontinuities.

y = h(x)
-2 -1

X

1

Y

Hint: A geometric Series.  Answer:  A = 4
3 .

4. Carefully prove Properties 2 using the definition of definite integral. Illustrate graphically.

5. Carefully prove Property 4 using the definition of definite integral.

Solution
3. Area = 1  + (  )  +  (  )  +2 21

2
. . .1

4

4
3 = Simplifying and using the Geometric Series formula.

_

2
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5.4 A   The Fundamental Theorem of Calculus, I
This is step 1 in finding an easy way to evaluate integrals!

Fundamental Theorem of Calculus, Part I   Let  f  be continuous for  a ≤ x ≤ b,  then

Fa(x) = ∫a
x f (t) dt

is the antiderivative of  f(x)  for  a ≤ x ≤ b  satisfying  Fa (a) = 0.

dx

Fa(x)

dFa

T

Y

y = f(x)

xa

Proof

Let  Fa(x) be the area under the curve  y = f(t)  for  a ≤ t ≤ b.  Then
dFa

dx ≈ f (x) dx
dx

            =  f(x)

So   Fa(x)  is an antiderivative of  f(x). 
Also, clearly  Fa(a) = 0.

 End of Proof

Recall,  A ≈ B,  A  is asymptotically equal to  B  means  A

B
 =  1 + ϵ  where  ϵ  is an infinitesimal.

d

dx ∫ a

x
f(t) dt = f(x)Alternate Form of FTof C, I  

Example   
d

dx ∫ 2
x

1+ t2 dt  =  1+x2

Example   
d

dx ∫x

3(t3 + 3dt  =  - d

dx ∫3
x (t3 + 3dt = -(x3 + 3

Example   
d

dx ∫ 0

x3
sin4 t dt   Hint: Chain Rule.  Think  d

du ∫ 0

usin4 t dt , u = x3

=  sin4 u · 3x2

= 3x2sin4 x3

I

229



Example*   f(x)  is the function shown below.  Find the antiderivative  Fo(x). It is difficult to guess an 
antiderivative of a piecewise defined function; you will learn how to do this in the next calculus course. 
We will do it now numerically using the area interpretation, the area between  0 and  x. Computers 
programs can do this accurately even for very complicated functions.

-2 2 4 6
T

1

2
Y

         x            -2        -1        0        1        2        3        4        5        6       7
  F0(x)         0     0        0     1/2 2      7/2 4        4        4       4

Next, plot the points and join with a smooth curve to get the graph of  F0(x).

-2 2 4 6
X

1

2

3

4

F0(x)

y = f(t)

1. Prove that if  f(x)  is continuous, then  Fa(x)  is smooth (differentiable).

2. Evaluate

NOTE  If  f(x)  is continuous, then  Fa(x)  is smooth (differentiable). (The proof is an exercise.)

Finally we are almost at the point where evaluating definite integrals is easy. Just let  x = b  
in the Fundamental Theorem of Calculus, I:    

∫a

b
f(t) dt =  Fa(b).

But we can still do better. It is often easier to find  F(x), any antiderivative,  than  Fa(x).

Exercises 

a.  

b. 

d

dx∫3
xsin2t dt =

d

c. 

dx∫ x

5 sin2t dt =

d

dx∫x

5
2 sin2t dt =

3. Memorize and understand the statement  and proof of the Fundamental Theorem of Calculus, Part I.
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4. Find an antiderivative of  y = g(x)  graphed below numerically.

1 2 3 4 5 6
T

-3

-2

-1

1
y = g(t)

Y

Solutions
1. In the proof of the Fundamental Theorem of Calculus, Part I, we showed that  F (x) is

differentiable for all  x  in the interval  a< x < b.  Differentiable means smooth. Remember?

2. a.  sin 2  x
b. -sin 2  x

c. -2x sin  2  (x  2 )

3. Your job.

4.

1 2 3 4 5 X

- 2

- 1

1

2

G(x)

y = G(x)

6
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∫a

b 
f(t) dt = F(b) - F(a)

where  F(x)  is any antiderivative of  f(x). 

Proof  By the FT of C, I

∫ a

x
f(t) dt  =  Fa (x)

         =  F(x) - F(a)

The antiderivative satisfying  Fa(a) = 0 

Equivalent form of  Fa(x) where  F(x)  is any 

 antiderivative of  f(x). 
               Check: 

1. F(x) - F(a)  is an antiderivative.
2. When  x = a,  F(x) - F(a) = F (a) = 0.

Set x = b:

∫a

b
f(t) dt =  F(b) - F(a)

 End of Proof

5.4 B  The Fundamental Theorem of Calculus, Part II
Finally we are almost at the point where evaluating definite integrals is easy. Just let  x = b  in 
the Fundamental Theorem of Calculus, I:    

∫a

b
f(t) dt =  Fa(b).

But we can still do better. It is often easier to find (any) antiderivative  F(x)  than  Fa(x).

Fundamental Theorem of Calculus, Part II  Let  f  be continuous for  a ≤ t ≤ b, then
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For easy evaluation, the  FTof C, II  is usually written

∫a

b
f(x)dx = F(x)

a

b

which is read “F(x)  evaluated between  a  and  b.”

Recall, antiderivative formulas are easier to write and remember in indefinite integral form. 

Recall:   Definition  ∫ f(x) dx = F(x) + C

Example   ∫ x3 dx  =  x4

4 + C  is shorter than  "If  f(x) = x3, then  F(x) = 
         

+ C."

Application   For the quick evaluation of a definite integral, once  F(x)  is known.

Example  ∫ 0
4

x3 dx  =  x4

4 0

4
  = 44

4 - 04

4  = 64

The following memory list was derived by ‘turning around’ derivative formulas.
In the future you will get more such formulas in a similar way.

       Integral Table 

∫dx = x + C ∫ xn dx = x
n+1

n+1
+ C

∫ex dx = ex + C ∫ax dx = a
x

ln a
+ C


dx
x

=  ln|x| + C

∫ cosx dx = sin  x + C

∫ sec2 x dx = tan  x + C

∫ secx tanx dx = sec  x + C

∫ sinx dx = -cos  x + C

∫ csc2 x dx = -cot x + C ∫ 
cscx cotx dx = -csc x + C

x4

4
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Example   Our old friend. Find the area under the curve  y = x2  for  0 ≤ x ≤ 2. Finally, the easy way!

Recall  F(x)  = x3

3 .  Then

A = 
0

2
x2 dx =

x3

3

2

0
=

23

3
-

03

3
=

8
3

Example  Distance traveled by our moose in section 5.1 with velocity  v = 10 sin t meters
second , 

 0 ≤ t ≤ π.  F(t)  = -10 cos t.  Then

x = 
0

π
10 sin t dt = -cost   = - 10 cos π - (- 10 cos 0) = 10 + 10  =  20 meter.

Example  The fungus problem from Section 5.1.  The antiderivative will be found next semester.

m =  ∫1
52t dt =  2

t

ln 2

5

1
 = 2

5

ln 2
 - 2

1

ln 2
= 30

ln 2
 gram

 Example   Area under the curve in Example* from  2  to  6.

A = 
2

6
f(x)dx = F (x)

6

1
= F (6) - F (2) = 4 - 2 = 2.

As we remarked at the beginning of this lesson, we have found the easy, almost magical, way of evaluating 
definite integrals. The problem, though, it is not completely easy to find additional integral formulas. In 
your next calculus course you will greatly increase the indefinite integral list. However, there will always be 
many antiderivatives for which you cannot find in a 'nice' form and you may have to evaluate the integrals 
the 'hard way' (numerically) or ask a Computer Algebra System to do the calculation.

0

π
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Exercises 5.4   Part B
Terms and Concepts
1. How are definite and indefinite integrals related?

2. What constant of integraƟon is most commonly used when
evaluaƟng definite integrals?

3. T/F: If f is a conƟnuous funcƟon, then F(x) =
∫ x

a
f(t) dt is

also a conƟnuous funcƟon.

4. The definite integral can be used to find “the area under a
curve.” Give two other uses for definite integrals.

Problems
In Exercises 5 – 28, evaluate the definite integral.

5.
∫ 3

1
(3x2 − 2x + 1) dx

6.
∫ 4

0
(x − 1)2 dx

7.
∫ 1

−1
(x3 − x5) dx

8.
∫ π

π/2
cos x dx

9.
∫ π/4

0
sec2 x dx

10.
∫ e

1

1
x

dx

11.
∫ 1

−1
5x dx

12.
∫ −1

−2
(4 − 2x3) dx

13.
∫ π

0
(2 cos x − 2 sin x) dx

14.
∫ 3

1
ex dx

15.
∫ 4

0

√
t dt

16.
∫ 25

9

1√
t

dt

17.
∫ 8

1

3
√

x dx

18.
∫ 2

1

1
x

dx

19.
∫ 2

1

1
x2 dx

20.
∫ 2

1

1
x3 dx

21.
∫ 1

0
x dx

22.
∫ 1

0
x2 dx

23.
∫ 1

0
x3 dx

24.
∫ 1

0
x100 dx

25.
∫ 4

−4
dx

26.
∫ −5

−10
3 dx

27.
∫ 2

−2
0 dx

28.
∫ π/3

π/6
csc x cot x dx

29. Explain why:

(a)
∫ 1

−1
xn dx = 0, when n is a posiƟve, odd integer, and

(b)
∫ 1

−1
xn dx = 2

∫ 1

0
xn dx when n is a posiƟve, even

integer.

30. Explain why
∫ a+2π

a
sin t dt = 0 for all values of a.
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In Exercises 31 – 34, do mentally.

31.
∫ 2

0
x2 dx

32.
∫ 2

−2
x2 dx

33.
∫ 1

0
ex dx

34.
∫ 16

0

√
x dx

In Exercises 35 – 40, find the average value of the funcƟon on
the given interval.

35. f(x) = sin x on [0, π/2]

36. y = sin x on [0, π]

37. y = x on [0, 4]

38. y = x2 on [0, 4]

39. y = x3 on [0, 4]

40. g(t) = 1/t on [1, e]

In Exercises 41 – 46, a velocity funcƟon of an object moving
along a straight line is given. Find the displacement of the
object over the given meḁ interval.

41. v(t) = −32t + 20Ō/s on [0, 5]

42. v(t) = −32t + 200Ō/s on [0, 10]

43. v(t) = 10Ō/s on [0, 3].

44. v(t) = 2tmph on [−1, 1]

45. v(t) = cos t Ō/s on [0, 3π/2]

46. v(t) = 4
√

t Ō/s on [0, 16]

In Exercises 47 – 50, an acceleraƟon funcƟon of an object 
moving along a straight line is given. Find the change of the 
object’s velocity over the given interval.

47. a(t) = −32Ō/s2 on [0, 2]

48. a(t) = 10Ō/s2 on [0, 5]

49. a(t) = t Ō/s2 on [0, 2]

50. a(t) = cos t Ō/s2 on [0, π]

In Exercises 51 – 54, sketch the given funcƟons and find the
area of the enclosed region.

51. y = 2x, y = 5x, and x = 3.

52. y = −x + 1, y = 3x + 6, x = 2 and x = −1.

53. y = x2 − 2x + 5, y = 5x − 5.

54. y = 2x2 + 2x − 5, y = x2 + 3x + 7.

In Exercises 55 – 58, find F ′(x).

55. F(x) =
∫ x3+x

2

1
t

dt

56. F(x) =
∫ 0

x3
t3 dt

57. F(x) =
∫ x2

x
(t + 2) dt

58. F(x) =
∫ ex

ln x
sin t dt
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Solutions 5.4 B

1
8

1
4

1. Chain Rule.

2. T

3. (x3 − 5)8 + C

4. (x2 − 5x + 7)4 + C

5. 1
18 x2 + 1
( )9

+ C

1
36. (3x2 + 7x − 1)6 + C

7. ln |2x + 7|+ C

8.

1
2
√

2x + 3 + C

9. 2
3

2
3(x + 3)3/2 − 6(x + 3)1/2 + C = (x − 6)

√
x + 3 + C

10. 2
21 x3/2 (3x2 − 7

)
+ C

x + C11. 2e
√

12. 2
√

x5+1
5 + C

13. 1− 2x2
1
x− + C

14. ln2(x)
2 + C

15. sin3(x)
3 + C

−16. cos4(x)
4 + C

1
6

1
2

20. tan3(x)
3

17. − sin(3 − 6x) + C

18. − tan(4 − x) + C

19. ln | sec(2x) + tan(2x)|+ C

+ C

21. sin 2(
2
x )

+ C

22. tan(x) − x + C

17. 45/4

18. ln 2

19. 1/2

20. 3/8

21. 1/2

22. 1/3

23. 1/4

24. 1/101

25. 8

26. 15

27. 0

28. 2 − 2/
√

3

29. ExplanaƟons will vary. A sketch will help.

30.
∫ a+2π

a sin t dt = cos(a + 2π)− cos(a). Since cosine is periodic
with period 2π, cos(a + 2π) = cos(a), and hence the integral is
0.

31. c = 8/3

32. c = 16/3

43. 30Ō

44. 1.5/ ln(2) ≐ 2.164miles

45. −1Ō

46. 128/5Ō

47. −64Ō/s

48. 50Ō/s

49. 2Ō/s

50. 0Ō/s

51. 27/2

52. 21

53. 9/2

54. 343/6 

55. F′(x) = (3x2 + 1) 3
1
+x x

56. F′(x) = −3x11

57. F′(x) = 2x(x2 + 2) − (x + 2)
58. F′(x) = ex sin(ex) − 1/x sin(ln x) 

--

31.

32.
33. 128/3

34. 2/π

35. 2/pi

36. 2

37. 16/3

38. 16

39. 1/(e − 1)

40. −300Ō

41. 400Ō

■■
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5.5 A   The Method of Substitution, Indefinite Integrals
In applications, simple integrals like  ∫cos x dx  are rare.  It is more likely you will encounter 

integrals like  ∫cos (2π k) dx  or  ∫cos(2.34 x + 7 .49) dx. Fortunately these can often be 

worked with a slightly modified table of integrals.

Integral Table 

∫ dx = x + C ∫ x
n dx = x

n+1

n+1
+ C

∫ e
x dx = e

x + C ∫ a
x dx = a

x

ln a
+ C


dx
x

=  ln|x| + C

∫ cos  x dx = sin  x + C

∫ sec2 
x dx = tan  x + C

∫ sec  x tan  x dx = sec  x + C

∫ sin  x dx = -cos  x + C

∫ csc2 
x dx = -cot  x + C         

∫ csc  x cot  x dx = -csc x + C

Integral Table (Change of variable Form)

∫ du = u + C      

∫ eu du = eu + C

∫ un du = 

∫ au du =   
ln a

+ C

+ C


du
u

=  ln|u| + C

∫ cos  u du = sin  u + C

∫ sec2
u du = tan  u + C

∫ sec  u tanu du = sec  u + C

∫ sinu du = -cos  u + C          

∫ csc2
u du = -cot u + C          

∫ csc  u  cot  u  du = -csc u + C

Method of Substitution

  f(g(x)) g ' (x) dx
=

du= g ' (x)dx

u= g(x)
∫ f(u)du

Proofs: an integral is live mathematics.

∫
a

b
f(g(x)) g ' (x) dx =

du= g ' (x)dx

u= g(x)
∫
g(a)

g(b)
f(u)du

_

_a_u
_ u

n+1

n+1
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The Method 
Choose a  u  for which there is (up to a constant)

      a  du  in the correct position.
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Example 5.5.1

Evaluate

IntegraƟng by subsƟtuƟon

              x sin(x2 + 5) dx.

SÊ½çã®ÊÄ 

Let u = x2 + 5, hence du = 2x dx. 

du = 2x dx ⇒ 1
2

du = x dx.∫
x sin(x2 + 5) dx =

∫
sin(x︸2︷︷+ 5︸

u

) x︸︷︷︸dx
1
2 du

=

∫
1
2

sin u du

= −1
2

= −1
2

cos u + C 

 cos(x2 + 5) + C.

Example ∫5.2

Evaluate

IntegraƟng by subsƟtuƟon
sin x cos x dx.

SÊ½çã®ÊÄ 
In this example, let’s set u = sin x. Then du = cos x dx, which we have as 

part of the integrand! The subsƟtuƟon becomes very straighƞorward:∫ ∫
sin x cos x dx = u du

=
1
2

u2 + C

=
1
2

sin2 x + C.

∫

SÊ½çã®ÊÄ   Let  u = 5x, then du = 5dx. ∫
cos(5x) dx =

∫
cos( 5︸︷︷︸x

u

) dx︸︷︷︸
1
5 du

=

∫
1
5

cos u du

=
1
5

sin u + C

=
1

sin(5x) + C.

Example 5.5.3 IntegraƟng by subsƟtuƟon  

   cos(5x) dx.
∫

5

5.5A SubsƟtuƟon Method, Indefinite Integrals, Readings 
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We see a  u 
and except for a  2, a  du.

We see a  u 
and exactly, a  du.

We see a  u 
and except for a  5, a  du.

Eventually you can do these in your head with 
perhaps a little 'massaging' of the integrand.

 x sin(x2 + 5) dx.
∫∫

= 1
2

∫ Thinking  u = x 2 + 5, du = 2x dx

=   - 1
2 cos(x  + 5) + C2-
- sin(x2 + 5)(2x dx)
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Exercises 5.5A
Terms and Concepts

1. SubsƟtuƟon “undoes” what derivaƟve rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems
In Exercises 3 – 14, evaluate the indefinite integral to develop
an understanding of SubsƟtuƟon.

3.
∫

3x2 (x3 − 5
)7

dx

4.
∫

(2x − 5)
(

x2 − 5x + 7
)3

dx

5.
∫

x
(

x2 + 1
)8

dx

6.
∫

(12x + 14)
(

3x2 + 7x − 1
)5

dx

7.
∫

1
2x + 7

dx

8.
∫

1√
2x + 3

dx

9.
∫

x√
x + 3

dx

10.
∫

x3 − x√
x

dx

11.
∫

e
√

x
√

x
dx

12.
∫

x4

√
x5 + 1

dx

13.
∫ 1

x + 1
x2 dx

14.
∫

ln(x)
x

dx

In Exercises 15 – 24, use SubsƟtuƟon to evaluate the indefi-
nite integral involving trigonometric funcƟons.

15.
∫

sin2(x) cos(x)dx

16.
∫

cos3(x) sin(x)dx

17.
∫

cos(3 − 6x)dx

18.
∫

sec2(4 − x)dx

19.
∫

sec(2x)dx

20.
∫

tan2(x) sec2(x)dx

21.
∫

x cos
(

x2) dx

22.
∫

tan  x dx

Let  u = x+3

Simplify integrand

Simplify integrand

Hint: Wolfram Alpha

Hint: tan  x  =  1 - sec  x22

Solutions 5.5
1. Chain Rule.

2.

3.

T
1
8 (x3 − 5)8 + C

1
44. (x2 − 5x + 7)4 + C

5. 1
18 x2 + 1
( )9

+ C

6. 1

7.

3 (3x2 + 7x − 1)6 + C

1
2 ln |2x + 7|+ C

8.
√

2x + 3 + C
2
3

2
39. (x + 3)3/2 − 6(x + 3)1/2 + C = (x − 6)

√
x + 3 + C

10. 2
21 x3/2 (3x2 − 7

)
+ C

x + C11. 2e
√

12. 2
√

x5+1
5 + C

−13. 1
2x2

1
x− + C

14. ln2(x)
2 + C

15. sin3(x)
3 + C

−16. cos4(x)
4 + C

1
617. − sin(3 − 6x) + C

18. − tan(4 − x) + C

19. 1
2 ln | sec(2x) + tan(2x)|+ C

20. tan3(x)
3 + C

21. sin 2(
2
x )

+ C

22. tan(x) − x + C

2 
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5.5B  The Method of SubsƟtuƟon, Definite Integrals

1. Start with a definite integral
∫ b

a
f(x) dx that requires subsƟtuƟon.

2. Ignore the bounds; use subsƟtuƟon to evaluate
∫

f(x) dx and find an an-

ƟderivaƟve F(x).

∣∣∣3. Evaluate F(x) at the bounds; that is, evaluate F(x)
b

a
= F(b)− F(a).

This workflow works fine, but subsƟtuƟon offers an alternaƟve that is powerful
and amazing (and a liƩle Ɵme saving).

At its heart, (u ing the notaƟon of Theorem 6.1.1) subsƟtuƟon∫ converts inte-∫s
grals of the form F ′(g(x))g ′(x) dx into an integral of the form F ′(u) du with
the subsƟtuƟon of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the subsƟtuƟon is performed.

Theorem 6.1.4 SubsƟtuƟon with Definite Integrals

Let F and g be differenƟable funcƟons, where the range of g is an interval
I that is contained in the domain of F. Then∫ b

a
F ′
(
g(x)

)
g ′(x) dx =

∫ g(b)

g(a)
F ′(u) du.

In effect, Theorem 6.1.4 states that once you convert to integraƟng with re-
spect to u, you do not need to switch back to evaluaƟng with respect to x. A few
examples will help one understand.

Example .16 Definite integrals and subsƟtuƟon: changing the bounds

0

∫6.12
Evaluate cos(3x− 1) dx using Theorem 6.1.4.

SÊ½çã®ÊÄ Observing the composiƟon of funcƟons, let u = 3x − 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the laƩer
equaƟon by 3 to get du/3 = dx.

By seƫng u = 3x− 1, we are implicitly staƟng that g(x) = 3x− 1. Theorem
6.1.4 states that the new lower bound is g(0) = −1; the new upper bound is

Proof: the integral is live mathematics.∫
a

b
f(g(x)) g ' (x) dx

u= g(x)
=

du= g ' (x)dx
∫
g(

g

a

(

)

b)
f(u)du

         This secƟon has focused on evaluaƟng indefinite integrals as we are learning a 
new technique for finding anƟderivaƟves. However, much of the Ɵme integraƟon is 
used in the context of a definite integral. Definite integrals that require subsƟtuƟon 
can be calculated using the following workflow:

We see a  u 
and except for a         .. . .
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y = cos(3x − 1)

−1 1 2 3 4 5

−1

−0.5

0.5

1

x

y

(a)

1
3y = cos(u)

−1 1 2 3 4 5

−1

−0.5

0.5

1

u

y

(b)

Figure 6.1.1: Graphing the areas de-
fined by the definite integrals of Example
6.1.16.

y = sin x cos x

1

−0.5

0.5

1

π
2

x

y

(a)

y = u

1

−0.5

0.5

1

π
2

u

y

(b)

Figure 6.1.2: Graphing the areas de-
fined by the definite integrals of Example
6.1.17.

g(2) = 5. We now evaluate the definite integral:∫ 2

0
cos(3x− 1) dx =

∫ 5

−1
cos u

du
3

=
1
3

∣∣∣sin u
5

−1

=
1
3
(
sin 5− sin(−1)

)
≐−0.039.

NoƟce how once we converted the integral to be in terms of u, we never went 
back to using x.

The graphs in Figure 6.1.1 tell more of the story. In (a) the area defined by 
the original integrand is shaded, whereas in (b) the area defined by the new in-
tegrand is shaded. In this parƟcular situaƟon, the areas look very similar; the 
new region is “shorter” but “wider,” giving the same area.

Example 6.1.17     Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫6.1.1π/2

0
sin x cos x dx using Theorem 6.1.4.

SÊ½çã®ÊÄ Wesaw the corresponding indefinite integral in Example 6.1.4.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the laƩer here.

Let u = g(x) = cos x, giving du = − sin x dx and hence sin x dx = −du. The
new upper bound is g(π/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have∫ π/2

0
sin x cos x dx =

∫ 0

1
−u du (switch bounds & change sign)

=

∫ 1

0
u

=
1
2

∣∣∣u2
1

0

du

= 1/2.

In Figure 6.1.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 6.1.4 guarantees that they have the same area.

■■■■
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Exercises 5.5.  Definite Integrals

Evaluate the definite integral.

1.
∫ 3

1

1
x− 5

dx

2.
∫ 6

2
x
√
x− 2dx

3.
∫ π/2

−π/2
sin2 x cos x dx

4.
∫ 1

0
2x(1− x2)4 dx

5.
∫ −1

−2
(x+ 1)ex

2+2x+1 dx

6.
∫ 1

−1

1
1+ x2

dx

7.
∫ 4

2

1
x2 − 6x+ 10

dx

8.
∫ √

3

1

1√
4− x2

dx

79. − ln 2

80. 352/15

81. 2/3

82. 1/5

83. (1 − e)/2

84. π/2

85. π/2

86. π/6

Solutions

|
1.

2.

3.

4.

5.

6.

7.

8.

DONE  (Not Really)

If you are an arts student, CONGRATULATIONS.  
c You deserve a fulfilling life!
If you a serious biology or business student,

       take at least one more calculus course.
If you in physical sciences or engineering,

finish the basic calculus sequence and take 
another math course every term including 
linear algebra and complex variables.

Calculus I introduces you to the main ideas of the calculus.
Calculus II gives you a solid foundation in the calculus and  
c applications and will be able to engage in an            
c    intelligent conversation with an engineer.

  
You can take more advanced calculus based theory and 
c  applications courses for the rest of your life.

The calculus is the predominant mathematical tool which was required for the development of our modern 
industrial and scientific world. While other mathematics topics give us deep insights how the universe works, 
we would still, with perhaps a little slowdown, be pretty much where we are today with only the calculus.   
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