
Concordia University College of Alberta

Master of Information Systems Security Management (MISSM) Program

7128 Ada Boulevard, Edmonton, AB

Canada T5B 4E4

Measuring performance of two Application Servers for Java

developed Web Services under heavy loads

by

GILBERT, Vincent

A research paper submitted in partial fulfillment of the requirements for the degree of

Master of Information Systems Security Management

Date: May 2009

Research advisors:

Pavol Zavarsky, Director of Research and Associate Professor, MISSM

Dale Lindskog, Associate Professor, MISSM

Measuring performance of two Application Servers for Java

developed Web Services under Heavy Loads

by

GILBERT, Vincent

Research advisors:

Pavol Zavarsky, Director of Research and Associate Professor, MISSM

Dale Lindskog, Associate Professor, MISSM

Reviews Committee:

Andy Igonor, Assistant Professor, MISSM

Dale Lindskog, Assistant Professor, MISSM

Ron Ruhl, Assistant Professor, MISSM

Pavol Zavarsky, Associate Professor, MISSM

The author reserve all rights to the work unless (a) sprecifically stated otherwise or (b) refers to referenced

material the right to which is reserved by the so referenced authors.

The author acknowledges the significant contributions to the work by Academic Advisors and Review

Committee Members and gives the right to Concordia Univeristy College to reproduce the work for the

Concordia Library, Concordia Websites and Concordia MISSM classes.

Concordia University College of Alberta

Information Systems Security Management

7128 Ada Boulevard, Edmonton, AB

Canada T5B 4E4

Measuring performance of two Application Servers for Java

developed Web Services under heavy loads

by

Vincent Gilbert
vgilbert.pro@gmail.com

Research advisors:

Pavol Zavarsky, Director of Research and Associate Professor, MISSM

Dale Lindskog, Assistant Professor, MISSM

February 2008

2

Abstract

Businesses are increasingly migrating legacy web

applications towards Web Services (WS) however

there is a limited choice available for platforms

which can support this technology. Furthermore

these same legacy applications are increasingly the

prey of DoS attacks in order to deprive businesses

of their ability to operate normally. Many security

mechanisms exist to protect the confidentiality and

the integrity of Web Services but there is little

emphasis on availability. During this research I

have developed a secure java Web Service which I

deployed on two separate platforms, the Oracle

Business Process Execution Language (BPEL)

Process Manager (PM) as well as the Sun Java

System Application Server 9.1 under a Windows

operating system. I then tested the performance of

these afore mentioned configurations by exposing

them to heavy concurrent load situations with

varying types of requests. Results were concluding

as both platforms were vulnerable to DDoS attacks

but yet performed very differently. The Sun

platform’s latency was at best 5 times higher than

the Oracle platform, and its throughput was in the

best scenario 4 times lower than its Oracle

counterpart.

1. Introduction

As businesses rely increasingly on Web Service

technology to deploy critical IS assets, they

proportionally expose key backend systems

(Application servers, databases, LDAP, etc.)

through these Web Services. Therefore Web

Service security is critical and should be handled

with care.

Strong and efficient mechanisms have been

developed to secure Web Services data

confidentiality and integrity through the

emergence of standards such as WS-Security,

SecureConversation or WS-Trust. However little

has been done towards securing availability of

these IS assets. This is even more alarming when

one looks at the findings of Arber Networks inc.

who surveyed 36 tier 1, tier 2 and hybrid IP

network operators and found that 90% of the

participants identified DDoS to be the main threat

they were facing [8].

The aim of this research is to provide businesses

with a comparative of performances of two main

platforms supporting Web Services, faced with

DDoS attacks using different types of requests.

This paper will be constructed as follows. This

introductory part will be divided into two main

sections, the first section will deal with the

functioning of web services as well as their related

security features. Companies who want to migrate

from web applications to web services will often

have requirements for security, therefore for this

research to be both accurate and useful, it has to

take into account the effects of adding security

features to the performance of these platforms

supporting the web services. The second section of

the introductory part will provide an overview on

the type of DoS which will be used for the

experimentation, additional information on various

types of DoS attacks can be found in this paper [7]

as well as in section B.5 of this document [4]. The

next part will describe the experimental

methodology that I will put into place. I will then

provide the results that I have gathered through

several tables (figure 7, 8, 9, 10 and 12, 13, 14) and

compare results from both platforms. Finally the

last section will sum up my findings and my

comments on the results I have found.

1.1. Web Services and the SOA paradigm

The service oriented architecture (SOA) is a

paradigm where functionality is broken up into

small parts, called web services, deployed at

various places of a network, inside or outside of a

single company. The purpose of SOA is to allow

these different web services to communicate by

exchanging data and thus being part of a business

process no matter the underlying programming

language or operating system. This architecture

allows companies to design, develop and deploy

reusable web services, independently, and to later

assemble them together through the use of

standard-based communication protocols. This

allows companies to develop systems that are

scalable, extendable, evolvable and therefore cost-

effective.

1.1.1. SOAP

SOAP is a XML-based messaging protocol

fundamentally allowing a one-way transmission

between a SOAP sender and a SOAP receiver;

3

however SOAP is generally used to perform remote

procedure calls allowing request response

dialogues. SOAP is platform and programming

language independent allowing it to be very

interoperable; SOAP is, in the majority of cases,

transmitted using HTTP as a transport protocol

even though other protocols are sometimes used

such as SMTP and POP. The main reason HTTP is

the preferred transport protocol used for SOAP is

that corporate firewalls are already setup to accept

HTTP traffic whereas the usage of other transport

protocols will necessitate firewalls and other

network devices to be reconfigured, exposing the

network to security breaches and creating lengthy

discussions with the network administrators.

1.1.2. Web Services Description Language

WSDL is a language used to describe web services

which is structured using the XML format. A WSDL

file describes messages and ports both at an

abstract and concrete level. At the abstract level

the WSDL will describe messages exchanged

between the requester and the provider, and port

types which are abstract collections of supported

operations. At the concrete layer the WSDL

describes bindings which specify the transport and

wire format details for the interfaces; endpoints

which associate bindings with network addresses;

and finally services group together endpoints that

implement interfaces. [2]

Thanks to the WSDL web services can interconnect

by determining how the messages they will

exchange will be structured.

1.1.3. Web Services

A web service is a software system which allows to

provide a functionality on behalf of its owner to a

remote machine or system, no matter the

underlying programming language or operating

system, and this thanks to the use of SOAP as a

messaging protocol. The machine or entity offering

the web service is known as the provider and the

machine or entity consuming the web service is

known as the requester. Web services have “an

interface described in a machine processable

format (specifically WSDL)” [1].

The W3C describes 4 broad steps to the use of a

web service. These steps describe a typical use that

could be made of a web service, however in

practice one could identify many other steps or a

different order in which they occur. The first step is

the discovery of the web service. In most cases this

step is initiated by the requester. Therefore the

requestor has to find or become aware of the

provider, which in practice means finding out the

address of the provider. This can be done either by

questioning directly the provider entity if the

requestor has this information or otherwise use a

discovery service such as interrogating the UDDI

registry. This registry is an authoritative store of

information which contains information (WSDLs in

particular) for many web services with the

associated addresses so as to allow requesters to

find the appropriate provider. One could make an

analogy with a DNS server providing IP addresses

to machines which are trying to contact a server on

a particular domain. In addition there are other

mechanisms than UDDI registries such as indexes,

which are not authoritative and do not allow the

provider owner to determine the data which is

contained in the index as it is for UDDI registries,

and finally peer-to-peer discovery.

The second step consists in the requestor agreeing

with the provider to the service description and

the semantics which will govern the way both

parties will interact with one another. In practice

this means that by reading the WSDL file the

requester will understand the exact way in which

the request must be formulated for it to be

accepted by the provider, as well as the form in

which the provider will reply to the requester.

The third step sees the requester and the provider

implement the semantics on which they have

agreed, this is generally more the case for the

requestor which adapts itself to the provider’s

semantics.

 The fourth step is when the requester and the

provider actually exchange the SOAP messages.

1.1.4. Web Services Security

Web services suffer from the same security issues

as regular web applications: buffer overflow

4

attacks, cross-site scripting (XSS) and distributed

denial of service (DDOS). Web services also suffer

from the fact that several transport layer protocols

can be used such as HTTP, SMTP, or TELNET which

means that firewalls have to let through many

types of traffic to many different ports increasing

the vulnerability of the application server.

Additionally and most importantly interfaces for

applications and legacy web applications were not

publicly known and therefore not as easily

accessible, whereas in the web service context,

UDDI registries provide a listing of web services

interfaces along with their WSDL file which gives a

description of the interface and how to access it.

This increases the visibility of these resources and

therefore increases the probability with which they

will suffer attacks.

In the beginning web services were secured the

same way as were legacy web applications: at the

transport layer using SSL/TLS or IPSEC which

offered security features such as authentication,

confidentiality and integrity. The problem is that

nowadays web service topologies are complex and

include a number of gateways, proxies, load

balancers, and even other web services who act as

intermediaries between the requester and the

provider. SSL/TLS or IPSEC will be able to offer

security between a provider and an intermediary

for example, but then the intermediary will have to

use SSL/TLS again between itself and the

requester. In the end the requester has no other

choice than to trust the intermediary to not have

meddled with the data which it received from the

provider. Therefore something had to be done to

provide end-to-end security instead of point-to-

point security.

Figure 1: End-to-end compared to point-to-point

security

1.1.4.1. WS-Security

SOAP as it was originally specified does not provide

any security features, however this was modified

with the emergence of the WS-Security standard.

This standard provides several security features

which are incorporated in the header of the SOAP

message. These security features use XML security

standards which are based on well-known

cryptographic and security technologies as well as

emerging XML technologies in order to provide a

flexible and extensible end-to-end security solution

at the message protocol layer.

The first feature provides message integrity by

using XML signature. It consists of a SignedInfo

element which specifies which part of the

document has been signed with what algorithm,

and a KeyInfo element which provides information

to the recipient about the key and the eventual

manipulation which has to be done with the

signature before validating it.

The second feature provides message

confidentiality by using XML encryption, which

allows encrypting the data using various

asymmetric cryptographic algorithms. The SOAP

header will contain an EncryptedData element

which withholds a cipher text as well as a KeyInfo

element which provides information to what

keying material to use to decrypt the data.

The third feature provides SOAP messaging with a

Public Key Infrastructure (PKI) by using the XML

Key Management Specification (XKMS) which

defines a protocol to distribute and register public

keys. This feature is essential to the functioning of

XML Signature and XML encryption because a

private key is necessary to sign or encrypt the data

and a public key is necessary to verify the signature

or decrypt the data. Therefore the web service

provider must make sure that the public key is sent

to the requester in order for this one to

acknowledge or be able to read the data. [3]

WS-Security provides web services with a fourth

feature: authentication. This feature supports

many different security tokens such as usernames,

X.509 certificates, Kerberos tickets, SAML

assertions and REL tokens.

End to end

security

WS Requester Intermediary WS Provider

Point to point

security

Point to point

security

5

The main drawback of WS-Security is that it uses

asymmetric cryptography for the encryption and

the signing, which is very processor intensive. This

is why the standard SecureConversation was

created allowing web services to use symmetric

algorithms instead of asymmetrical ones, reducing

dramatically the overhead.

1.1.4.2. WS-Trust

Because of the nature of SOA and the large

number of web services which can be binded

together in inter-company business processes,

trust relationships need to be established between

remote web services. A message signed with WS-

Security XML encryption but from a machine which

is not trustworthy is of no use. Therefore a trust

model is necessary for web services to trust the

messages they are receiving, especially in an

architecture where a web service is communicating

with machines outside of the organization or from

a different branch of the organization.

WS-Trust is one of several trust models and is

based on extensions brought to the WS-Security

standard. It allows to issue, renew and validate

security tokens and to establish and broker trust

relationships between web services. Requesters

contact the provider’s Security Token Service (STS)

to obtain, through a challenge-response

mechanism, the appropriate claim to include in the

request. Claims can be either X.509 certificates or

XML-based tokens such as SAML assertions.

Furthermore WS-Federation allows for several WS-

Trust realms to trust each other, for example in the

case of web services belonging to two separate

companies but which need to communicate.

1.2. Denial of Service

A Denial of Service (DoS) attack is an action or a

series of actions taken by a malevolent person or

group, to prevent a service offered by an

information system from being accessed by its

intended users. There are three main ways in

which a DoS can be performed: by consuming part

or all of the resources of an information system

(CPU, bandwidth, disk space or memory); by

destroying or altering configuration information;

by physically destroying or altering network

components; or by disrupting state information

such as TCP states.

The most renowned type of DoS attack is the

consumption of computational resources. This

category can be decomposed into the consumption

of network connectivity, bandwidth or computer

resources.

Attacks which aim network connectivity want to

prevent a victim machine from communicating

with other hosts. A typical example is a SYN flood

attack where an attacker creates a number of half-

open connections with the victim machine it wants

to perform DoS on, until this computer has used up

all the structures in which it keeps track of

connections. Therefore if a rightful user tries to

connect, it will be unable to do so because the

computer will have nowhere to save information

concerning the connection. This attack is known as

an asymmetric attack as it could be performed

from a dial-up connection to a computer residing

on a very fast network. The attacker is not

consuming bandwidth but instead he is using up all

the structures the computer has reserved to save

connection state information.

Attacks which aim bandwidth consumption want

to prevent traffic from flowing on the network

where the victim machine lies. Typical examples

are the use of the ICMP protocol such as in the

legendary smurf attack where the attacker floods

the victim’s network with ICMP echo requests with

a spoofed source address corresponding to the

victim machine in order for all the other machines

on that network to respond with ICMP echo

responses. The network the victim lies on will be

jammed with ICMP echo traffic and the victim

machine will be unable to respond to any

legitimate requests. Another example is a peer-to-

peer attack where attackers trick peer-to-peer

users into making continual requests to the

intended victim creating an enormous load on it.

This can result in the victim’s machine crashing or

taking so long to respond to legitimate requests

that by the time it does respond the connection

has timed out. These types are especially effective

if the attacker’s bandwidth is greater than the

victim’s bandwidth.

6

Attacks which aim computer resources want to

prevent the victim machine from being able to

operate. Attackers might try to consume the victim

machine’s entire disk space. A typical example is

the use of a worm running on the victim machine

duplicating itself until the disk space is full.

Another example would be a buffer overflow

attack where instead of trying to run malicious

code on the victim machine, the attacker only

wants to fill up the victim’s memory thus slowing

down or crashing the victim machine altogether.

Many other variants of this type of attack exist.

1.2.1. Distributed Denial of service

A Distributed Denial of Service (DDoS) is a DoS

attack performed by several machines at the same

time against a same victim machine. DDoS attacks

are always types of attack aiming to consume the

computational resources of a victim, and in most

cases consuming the victim’s bandwidth. As

explained earlier these types of attacks are

effective if the attacker’s bandwidth is greater than

the victim’s. Therefore if there are several

machines performing DoS at the same time on the

same machine there are more chances for the

attack to succeed. A good example of such an

attack is the MyDoom worm which spread rapidly

to millions of machines worldwide. The infected

machines were set to launch a multitude of

requests to a particular website on the 1
st

 of

February 2004, thus denying access to legitimate

users.

1.2.2. Availability for WS

In the context of web services the NIST defines

Quality of Service (QoS) as the assurance that a

web service is consistently operating at the

expected level of performance; reliability as the

assurance the web service operates correctly and

as expected in the presence of unexpected faults;

and availability the assurance the web service

operates correctly and as expected in the presence

of intentional faults and that if it were to fail it

would do it in a safe state.

The NIST argue that availability, Quality of Service

(QoS) and reliability are related to one another as

availability ensures that QoS and reliability are

maintained even if there is an attempt to

compromise the web service’s operations, such as

a DoS attack.

Furthermore it enumerates three objectives the

web service should do to achieve availability. The

first is to recognize the attack patterns of a DoS,

the second is to shut down safely if failure is

inevitable and avoid the DoS from spreading, and

thirdly to recover and resume secure operations as

soon as possible after a DoS attack.

This third point will be of particular interest in this

research as one of the criteria we will observe will

be the time the application servers will need, to

recover completely from the heavy load situation.

2. Experiments

An application server will be exposed to heavy

loads of requests and a number of its

characteristics will be monitored to assess its

behaviour. In this section I will explain all the

aspects of my experiments. I begin by describing

the characteristics of the platforms I have chosen

to study as well as the reason for this choice. I then

continue describing the characteristics of the web

service I will be using for this test. The last section

describes the exact experimental methodology I

will be using as well as the tools and the types of

requests I will be performing.

2.1. Platforms

I have chosen to test the performance of two

application servers which support Java developed

web services: Oracle’s BPEL Process Manager

10.1.3.1.0 and Sun’s Java System Application

Server 9.1. Both Oracle and Sun are major actors in

the application server world and have been

working on the SOA paradigm and on web services

since the introduction of this technology. I could

have also chosen to test IBM’s WebSphere

application Server which is also another major

actor in this field; however the trial version offered

by IBM seemed to be very different from its

commercial counterpart.

7

2.1.1. Oracle BPEL Process Manager

10.1.3.1.0 for OC4J

This application server supports Java 2EE, XML,

WSIF, WSIL and WSDL standards. Furthermore it

contains the Oracle Web Services Manager which

allows deploying, publishing, managing, and

monitoring web services. In particular Oracle’s

WSM allows viewing details of execution such as

success, failure, failure due to lack of

authentication, authorization, latency etc. It also

provides graphs of these parameters over time,

such as graphs of variance of latency.

These features are important as they will help me

assess how the application server is behaving

during the experiments.

2.1.2. Sun Java System Application Server

9.1

This application server is entirely based on the

Glassfish V2 application server, which is an open

source project released under an OSI approved

license (CDDL). It implements Java EE 5

technologies and supports JAX-WS 2.0 and JAX-B

2.0. This server offers a BPEL engine much like

Oracle’s application server.

Most importantly the administrator’s interface of

this application server proposes several tools to

monitor the performance of the application server

much like Oracle’s application server.

2.2. WS Deployed

During my experiments I will be testing the

behaviour of these two application servers

therefore I have to make sure that all the other

parameters are identical for the experiments to be

reliable. This is why I will be deploying an identical

web service to them. This web service is very

simple and is not at all greedy of resources. It

consists in summing two integers that it will have

received from the requester and sending back the

result of this addition. By choosing to add two

integers I will be able also to test how the

application servers react when they will receive a

request with a type mismatch and that the sum

will be done with something different than

integers, as this might be a strategy chosen by an

ill-intentioned person to trick or slow down these

servers.

2.2.1. Security features implemented

For my experiments to be useful and interesting

for companies wishing to migrate their web

applications to web service technologies I have

implemented security features on the web service

which will be tested. Therefore any impact that

implementation of security features have on the

performance of application servers will be taken

into account in the results of the experimentation.

Through the use of WS-Security I have

implemented authentication using a username and

password pair as a security token for the requester

to authenticate to the provider. I have decided not

to implement encryption or digital signing because

of the very significant overhead that they imply

due to the use of asymmetric encryption. This

would significantly change the results and not be

accurate as this overhead can be easily mitigated

using the SecureConversation standard which uses

symmetric encryption.

The result is a web service which is secured and

resembles to a web service a company might

decide to deploy.

8

2.2.2. WSDL’s

Here are the WSDLs for both web services:

<definitions
 name="SimpleAddition"

targetNamespace="http://addition.mon.org/"

xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://addition.mon.org/"

xmlns:soap12="http://schemas.xmlsoap.org/ws
dl/soap12/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl
/mime/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema
"

xmlns:soap="http://schemas.xmlsoap.org/wsdl
/soap/"
 >
 <types>
 <schema
xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://addition.mon.org/"
 elementFormDefault="qualified"
xmlns:tns="http://addition.mon.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl
/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema
-instance" xmlns:soap11-
enc="http://schemas.xmlsoap.org/soap/encodi
ng/">
 <element name="add"
type="tns:add"/>
 <complexType name="add">
 <sequence>
 <element name="i"
type="int"/>
 <element name="j"
type="int"/>
 </sequence>
 </complexType>
 <element name="addResponse"
type="tns:addResponse"/>
 <complexType
name="addResponse">
 <sequence>
 <element name="return"
type="int"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 <message name="SimpleAddition_add">
 <part name="parameters"
element="tns:add"/>
 </message>
 <message
name="SimpleAddition_addResponse">
 <part name="parameters"
element="tns:addResponse"/>
 </message>
 <portType name="SimpleAddition">
 <operation name="add">
 <input message="tns:
SimpleAddition_add"/>
 <output message="tns:
SimpleAddition_addResponse"/>
 </operation>
 </portType>

 <binding name="SimpleAdditionHttp"
type="tns: SimpleAddition">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/
http"/>
 <operation name="add">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="SimpleAddition">
 <port name="SimpleAdditionPort"
binding="tns: SimpleAdditionHttp">
 <soap:address
location="http://10.0.0.2:8888/WSResProj-O-
SimpleAddition-context-
root/SimpleAdditionHttpPort"/>
 </port>
 </service>
</definitions>

Figure 2: WSDL of web service deployed to Oracle

Application Server

<definitions
 xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl
/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema
"

xmlns:soap="http://schemas.xmlsoap.org/wsdl
/soap/" name="SimpleAdditionService"
targetNamespace="http://addition.mon.org/"
xmlns:tns="http://addition.mon.org/"
 >
 <message name="add"/>
 <message name="addResponse"/>
 <portType name="SimpleAddition">
 <operation name="add">
 <input message="tns:add"/>
 <output
message="tns:addResponse"/>
 </operation>
 </portType>
 <binding
name="SimpleAdditionPortBinding"
type="tns:SimpleAddition">
 <operation name="add">
 <input/>
 <output/>
 </operation>
 </binding>
 <service name="SimpleAdditionService">
 <port name="SimpleAdditionPort"
binding="tns:SimpleAdditionPortBinding"/>
 </service>
</definitions>

Figure 3: WSDL of web service deployed to Sun

Application Server

The differences in the WSDL can be explained

mainly by the way both IDE’s (Jdeveloper for

9

Oracle and Netbeans for Sun) compile the same

instructions and the detail they put in the WSDL

document. However both web services perform

the same operations and both WSDL’s are very

similar to one another.

2.3. Experimental Methodology

This section will provide you with the details of

how the experiments were conducted as well as

the methodology I used.

2.3.1. Network Setup

I will be using three machines throughout my

experimentation. One machine will host the

application servers, and the two other ones will

generate the heavy loads of requests. All three

machines will be on an isolated network so as to

make sure that no other traffic can come on the

network and affect the experimentation. By using

two machines to generate requests I will be able to

create a heavier load than by using one, and

therefore have a bigger impact on the application

server.

The machine running the application server has a

3.2 GHz AMD Athlon 64 bit processor, 2.0 GB of

Ram and a 100 Mbps Ethernet card. One of the

attacker machines creating the heavy load has a

1.73 GHz Intel Pentium M processor, and the

second one has a 3.0 GHz AMD Athlon 64 bit

processor; both have 512 MB of RAM and a 100

Mbps network card, which is largely sufficient to

run Jmeter and flood the application server. All

three machines are connected to one another

through a 100 Mbps switch.

Figure 4: Network Topology

2.3.2. Jmeter

Jmeter is a tool to perform load testing of

functional behaviour as well as to measure

performance. It can be used to simulate heavy load

on a network, on a server or on a particular object

to analyze its behaviour or its performances under

different types of load. It is part of the Apache

Jakarta Project which is open source.

Furthermore Jmeter can test performance of HTTP,

HTTPS, FTP, JDBC, etc as well as web services.

Finally Jmeter allows you to make a graphical

analysis of performance by incorporating various

data in a same graph.

To use Jmeter one has to create a test plan which

is made of different elements such as controllers,

listeners, pre/post-processors, assertions, timers,

etc which allow us to completely customize any

kind of test that we may decide to do. The test

plan for my experiments is the following:

Figure 5: Test Plan for experiments

This test plan creates 500 threads which each

make 10 requests the total of requests summing

up to 5000. There is no ramp up time meaning all

of the threads start making their requests at the

same time; however I inserted a Gaussian random

timer which allows the client requests to have a

more chaotic distribution so as to hit the server at

random intervals.

10

I setup different kinds of listeners to collect various

data such as a graphical representation of the

throughput, its average and its median, or a spline

visualiser which provides a view of all the sample

times allowing us to see if there is a saturation

phenomenon of the server after a certain number

of requests.

Because I will have two machines running Jmeter I

will be able to have more precise results as well as

compare them in order to detect an eventual

anomaly in the experimentation not due to the

application server itself (an example would be if

one of the computer’s memory filled up and was

not able to receive to operate correctly thus

altering the results of the experimentation).

2.3.3. Types of DoS performed

In my experimentation I will be attempting a DoS

by consuming the bandwidth of the tested

application servers. This will be achieved by

creating a very large number of requests to the

application servers from numerous different

threads. Because the attacking machine will be on

the same local subnet as the application servers,

my attacks will be comparable to a DDoS, an attack

performed by many machines, as the number of

requests achieved per second will be far greater

than what would be possible if the two attackers

where on a distant network separated from the

victim by many routers and a long distance.

2.3.4. Types of requests

Each application server will be tested with 3 types

of requests: a normal authenticated request which

asks to sum up two integers, a request with wrong

authentication credentials which asks to sum up

two integers, and an authenticated request which

asks to sum up an integer with a character.

The second and third type of requests will produce

particularly interesting results as we will see how

the respective application servers react to events

such as an unauthenticated request or a type

mismatch and whether this hinders their

performance. If this is the case it could mean that

an attacker could profit from this to perform a DoS

on the application servers more easily.

Here is an example of the SOAP request which is

sent to one of the application servers:

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap
/envelope/" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd">
 <soap:Header>
 <wsse:Security
xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd"
xmlns="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd"
xmlns:env="http://schemas.xmlsoap.org/soap/
envelope/" soap:mustUnderstand="1">
 <wsse:UsernameToken
xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd"
xmlns="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd">

 <wsse:Username>vincent</wsse:Usernam
e>
 <wsse:Password
Type="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-
1.0#PasswordText">pass1</wsse:Password>

 </wsse:UsernameToken></wsse:Security
>
 </soap:Header>
 <soap:Body
xmlns:ns1="http://addition.mon.org/">
 <ns1:add>
 <ns1:i>45</ns1:i>
 <ns1:j>11</ns1:j>
 </ns1:add>
 </soap:Body>
</soap:Envelope>

Figure 6: SOAP request

The SOAP message requests the web service to

sum up two integers 45 and 11 and a simple

plaintext authentication with username and

password is sent in the SOAP header.

2.3.5. Parameters monitored

During my experiments I will be monitoring various

parameters to assess the behaviour of these

application servers. These parameters are:

throughput (requests per second), average,

median and maximum request latencies,

percentage of requests dropped, and the length of

time of the experiment. I will also look at the time

11

the system takes to return to a normal state once

the requests have finished been all treated. I will

not use the monitoring tools provided by the

platforms as under heavy load conditions these

have a lot of trouble providing reliable data.

Instead I will use the monitoring tools provided by

Jmeter and compare the results from both

attackers.

From these parameters I will be able to obtain

several graphs and tables indicating the

performance of the application servers.

3. Results

The first step in my experimentation is to test both

platforms with a small number of requests in order

to establish a baseline on how the platforms

perform in a normal situation. I use a test plan with

10 threads creating 2 requests each with no ramp

up time. The type of request used is the first type,

namely the normal authenticated requests. Here

are the results for this baseline test:

Throughput

(req/sec)

Average

Latency

(ms)

Median

Latency

(ms)

Oracle

platform
14.1 402 406

Sun

platform
21.7 254 266

Maximum

Latency

(ms)

% of

dropped

requests

Length of

Experiment

(s)

Oracle

platform
500 0 ~2

Sun

platform
391 0 ~1

Figure 7: Baseline test results

We can see that both platforms perform similarly

even though the Sun platform offers an average

latency 37% lower than the Oracle platform as well

as a 50% better throughput.

Throughout this section I will be discussing the

percentage of errors, which should be understood

as the percentage of dropped requests.

3.1. Oracle Platform

As the results given in the following section

indicate, the Oracle platform performs in a linear

fashion. Requests from either attacker are dealt

with in the same way, and the fact that the median

latency is close to the average latency suggests

that as a whole the majority of requests had

approaching latencies.

3.1.1. Results for flooding with normal

requests

Throughput

(req/sec)

Average

Latency

(ms)

Median

Latency

(ms)

Attacker

1
18.6 24 599 19 203

Attacker

2
18.2 25 181 19 613

Maximum

Latency

(ms)

% of

dropped

requests

Length of

Experiment

(s)

Attacker

1
81 156 49.3 216

Attacker

2
83 843 34.9 226

Figure 8: Results for type 1 requests on Oracle

platform

The results of the first experimentation show us

that the average and median latency are very high.

They average latency is 61 times what it was in the

baseline test. Furthermore the percentage of

errors (i.e. the percentage of requests not being

answered) is between 35% and 50%. A legitimate

user trying to access the service during this period

of time would have between one out of two and

one out of three chances of never getting the

response to his request; and if he were to receive a

response the user would in average get it 25 000

ms after having sent the request, which would

could have resulted in a connection timeout. All

12

these elements demonstrate that by creating a

heavy load situation using normal authenticated

requests we were able to create a partial denial of

service on the application server.

3.1.2. Results for flooding with badly

authenticated requests

Throughput

(req/sec)

Average

Latency

(ms)

Median

Latency

(ms)

Attacker

1
45.8 12 284 13 703

Attacker

2
42.8 13 138 14 618

Maximum

Latency

(ms)

% of

dropped

requests

Length of

Experiment

(s)

Attacker

1
28 078 35.1 104

Attacker

2
25 219 31.8 101

Figure 9: Results for type 2 requests on Oracle

platform

We can see from these results that the average

latency is 31 times what it was in the baseline test.

We also find a percentage of errors between 32%

and 35%. Compared to the previous

experimentation we can see the platform reacts

better to a heavy load of unauthenticated

requests, probably because as soon as the request

are identified as not properly authenticated the

platform does not need to process the request and

instead just answers with an error message. It is

still resource consuming as the platform has had to

demarshal the content, compare the security

tokens with the stored encrypted value, create a

response, marshal it in a SOAP message and send it

on the wire.

However it is a good point that an attacker could

not perform a DoS as easily if he does not have the

adequate security tokens to perform a request to

the web service. It complicates an attacker’s task.

3.1.3. Results for flooding with requests

which create a type mismatch error

Throughput

(req/sec)

Average

Latency

(ms)

Median

Latency

(ms)

Attacker

1
23.9 15 293 7547

Attacker

2
24.3 14 938 8 022

Maximum

Latency

(ms)

% of

dropped

requests

Length of

Experiment

(s)

Attacker

1
81 875 54.3 190

Attacker

2
81 344 60.3 175

Figure 10: Results for type 3 requests on Oracle

platform

These results are different from both previous

experiments. The median latency is lower than in

both previous experiments but is still around 19

times then during the baseline test. The average

latency is nearly the double of the median, which

indicates that a small number of requests had

extremely high latencies thus creating a large

difference between the average and the median.

However the most important point is that

percentage of errors reached 60% meaning that

the platform was simply unable to respond to

more than one out of two requests. The fact that

these requests contained a type mismatch

between what the web service was expecting and

what it received, seem to indicate that the

platform had problems dealing with this situation

and that it was often discarding the requests

altogether.

Another phenomenon which happened during all

of the three experiments is that the usage of the

CPU shot up to 100% during the attack, and only

decreased 10 to 12 minutes after it ended. This

seems to indicate that the platform has difficulty

13

with achieving the third objective of availability as

described by the NIST [4].

In conclusion, the experiments showed that the

Oracle platform was subject to DoS attacks

especially with normal authenticated requests and

requests containing a type mismatch. It is a very

good point that requests with erroneous security

tokens hindered less the platform as it prevents

attackers from being able to perform a DoS if they

do not have the right security tokens.

3.2. Sun platform

As we are about to see in this section, the Sun

platform behaves very differently than its Oracle

counterpart. It gives priority to the host it received

the request from first, neglecting the second hosts

requests. This has an enormous influence on the

results, as the experiment can be divided into two

phases. During the first phase attacker #1 receives

100% of its request back with latencies averaging

110 000ms while attacker #2 receives 10% of its

requests back with an average latency of

120 000ms. Once the first attacker has received all

of its requests back, the Sun platform concentrates

its efforts to answer the remaining requests of

attacker #2 which it does with 0% of error with

average latency of around 50 000ms.

Figure 11: Behaviour of Sun platform to heavy

load situations

Therefore this means that the results shown in the

graphs will be an average of these two phases, and

would be different if attacker #1 continuously sent

requests. However my experimental methodology

has to be the same to compare these two

platforms, so that the results can be considered as

valid.

This explains why the second attacker has a great

difference between its average and median

latency.

3.2.1. Results for flooding with normal

requests

Throughp

ut

(req/sec)

Average

Latency

(ms)

Median

Latency

(ms)

Attacker

1
3.8 114 844 121 562

Attacker

2
2.9 160 716 58 641

Maximum

Latency

(ms)

% of

dropped

requests

Length of

Experiment

(s)

Attacker

1
123 469 0 1084

Attacker

2
482 484 45 1582

Figure 12: Results for type 1 requests on Sun

platform

The results that are above are very alarming.

Attacker # 1 having started the requests a few

hundred milliseconds before Attacker # 2, it is

given precedence for all of the requests. The Sun

platform strives to answer to all of the requests of

the first attacker, forgetting partially the second

attacker’s requests. However in doing so the

platform provides a very poor service to the first

attacker responding in an average time of 114

seconds, just under two minutes, which means

that the connection will have possibly timed out

and that the requests will not be received by the

requester; the platform provides an ever poorer

service to the second attacker, responding to only

55% of requests and with an average response

time of 160 seconds, two minutes and a half.

The throughput obtained by both attackers

averages around 3.5 requests per second which is

Average Latency: 110 000ms

Errors: 0

Average Latency: 110 000ms

Errors: 90%

Average Latency:

50 000ms

Errors: 0%

Phase 2
Length = 8 minutes

Attacker #1

Attacker #2

Phase 1
Length = 18 minutes

14

5 times less than the Oracle platform did under the

same conditions.

These results clearly show that I was able to

perform a very effective DoS on the Sun platform

as in average requests are answered in two

minutes, which is unacceptable for a component of

a business information system.

3.2.2. Results for flooding with badly

authenticated requests

Throughp

ut

(req/sec)

Average

Latency

(ms)

Median

Latency

(ms)

Attacker

1
3.9 112 965 121 169

Attacker

2
2.9 162 346 55 178

Maximum

Latency

(ms)

% of

dropped

requests

Length of

Experiment

(s)

Attacker

1
122 804 0 1072

Attacker

2
484 698 48.4 1516

Figure 13: Results for type 2 requests on Sun

platform

These results are very similar to the previous

results, which contrasts with the Oracle platform.

The type mismatch provoked by the content of this

type of request does not seem to aggravate or

better the performance of the Sun platform. This is

possibly due to the fact that the influence of the

type of request is negligible compared to the

influence the heavy load situation is having on the

platform’s performance.

The throughput obtained is very close to what was

found in the previous experiment. This seems to

confirm the results as the behaviour of the

platform seems to be consistent.

3.2.3. Results for flooding with requests

which create a type mismatch error

Throughp

ut

(req/sec)

Average

Latency

(ms)

Median

Latency

(ms)

Attacker

1
3.7 116 285 121 515

Attacker

2
2.9 165 171 54 500

Maximum

Latency

(ms)

% of

dropped

requests

Length of

Experiment

(s)

Attacker

1
122 313 0 1096

Attacker

2
487 797 50.1 1544

Figure 14: Results for type 3 requests on Sun

platform

The results seem to show that the type of requests

does not alter the way in which the Sun platform

behaves, one attacker sees all its requests being

answered while the other attacker gets a response

for one out of two requests, and most importantly

the responses are received very late to the point

that the receiver will probably discard them.

4. Analysis of Results

Results above prove how both platforms hosting a

Web Service are vulnerable to DDoS attacks,

however both platforms behaved differently.

The three types of request had varying impacts on

the Oracle platform. The first experiment with type

1 requests (normal authenticated request

supplying correct arguments) provoked the highest

latencies whereas type 3 requests (normal

authenticated request supplying wrong arguments,

an integer and a character) lead to the highest

percentage of dropped requests. Finally attacking

with type 2 requests (badly authenticated request

supplying correct arguments) was the least

efficient, causing smaller latencies and smaller

percentage of dropped requests. This is very

15

positive as attackers require correct credentials to

efficiently attack Web Services hosted on an Oracle

platform.

On the other hand the Sun platform performed

identically for all three types of requests. This is

problematic as any type of request will allow to

perform a DDoS attack on a Sun platform hosting a

Web Service, including one with erroneous

credentials.

Overall in terms of request latencies, the Oracle

platform behaved better than the Sun platform as

for type 1 requests Oracle platform saw latencies 5

times lower than for the Sun platform, for type 2

requests 11 times lower, and for type 3 requests, 9

times lower.

Figure 15: Graph of average latency per request

and platform type

These latencies impact on the time needed to

handle the 10.000 requests sent by both attackers.

For type 1 requests, the Oracle platform needs 7

times less time than its Sun counterpart to handle

all the requests, for type 2 requests over 14 times

less, and for type 3 requests 8 times less.

Figure 16: Graph of average length of

experimentation per request and platform type

More importantly both platforms behave

differently in terms of handling requests. The

Oracle platform’s behaviour is steady and linear.

Requests from both attackers are treated in the

same way. Throughout each experiment latencies

and percentage of dropped requests are quite

homogeneous.

The Sun platform on the other hand seems to

favour request coming from one host more than

the other, which impacts on results for both

attackers. During a first phase, the Sun platform

drops 0% of attacker #1 requests and drops over

90% of attacker #2 requests. Once all of attacker

#1 requests have been answered, the Sun platform

focuses on the second attacker and drops 0% of its

remaining requests. This behaviour is dangerous as

if an attacker were to continuously flood the Sun

platform with requests 90% of any other request

coming from legitimate users trying to access the

Web Service would be dropped. Furthermore this

behaviour is not efficient at all, as requests coming

from either attacker are answered so late that

chances are normal hosts would treat the

connection as having timed out.

There is one field in which the Sun platform

behaves better than the Oracle one, it is the

percentage of dropped requests. The Sun platform

had approximately 25% of dropped requests for all

three types of requests, whereas the Oracle

platform dropped around 40% of requests for type

1, 33% for type 2, and 57% for type 3. However as

explained above, this is due to the way the Sun

platform behaves in two phases, and the figures

would be different if one were to experiment with

the first attacker continuously sending requests.

Figure 17: Graph of average errors per request

and platform type

Length of Experimentation

16

There is one other point on which the Oracle

platform behaves worse than its Sun equivalent,

this is after the 10.000 requests have been handled

the machine which hosts the Oracle platform has

its CPU usage stuck at 100% between 10 and 12

minutes; this does not happen for the Sun platform

which immediately ceases to use all computational

resources.

The Oracle platform behaved differently for the

three types of requests which were experimented.

The least efficient attack was the one performed

with the erroneous security token which means

that attackers would require obtaining the correct

security tokens to effectively attack the platform.

The attack which obtained the highest latencies

was the one performed with the normal

authenticated request, while the attack which

obtained the most errors or dropped requests was

the attack performed with the type mismatch

requests.

5. Conclusion

The aim of this paper was to measure the

performances of two application servers hosting a

Web Service exposed to a DDoS attack. We first

examined particularities of Web Services and their

security mechanisms, in particular how the use of

SOAP allows providing an end-to-end security

mechanism at the message layer. We then looked

at how a particular type of DDoS attack functions,

DDoS through packet flooding. We then detailed

the experimental methodology used to

appropriately test the two application servers

hosting the Web Service. This experimental

methodology defined three types of requests we

would test the Web Service against: a normal

authenticated request providing two integers, a

badly authenticated request providing two

integers, and a normal authenticated request

providing a character and an integer. The aim was

to see if differences in the type of request with

which the Web Service would be flooded would

alter the way in which the application servers

performed.

The results section above showed just how

vulnerable both application servers hosting the

Web Service could be. However they both

performed differently.

The Oracle platform performed the best for the

following reasons: even though around 50% of

requests were dropped, the remaining 50% were

answered in average in between 12 and 25

seconds depending on the type of requests,

whereas the Sun platform dropped only 25% of

requests but requests were answered in average in

137 seconds at least 5 times higher.

Secondly the Oracle platform was less vulnerable

to the attack when the type of request used did

not have correct authentication, which makes life

harder for attackers who have to have correct

credentials to successfully attack. This was not the

case for the Sun platform which behaved exactly

the same for all three types of requests, facilitating

the task of an attacker.

Thirdly the total time needed for the Oracle

platform to handle the 10.000 request was 8 times

lower to the time needed for the Sun platform

(between one minute and a half and three minutes

for the Oracle platform, and over 25 minutes for

the Sun platform).

Both platforms hosting the same Web Service were

to different extents vulnerable to DDoS attacks but

the Sun platform behaved much worse than its

Oracle counterpart. Businesses deploying Web

Services on any of these two platforms should

carefully plan defence mechanisms to mitigate

these serious problems.

6. Future Work

This research is only the first step towards testing

these two platforms which support Web Service

technology, when faced with DDoS attacks.

One limitation of my experiments was that we did

not expect the Sun platform to behave in a two

phase fashion (cf. figure 11) therefore it would be

interesting to modify the experimental

methodology in order to have one attacker

continuously flood the application servers and test

after various intervals the throughput which can be

obtained. We believe that in this scenario the Sun

platform’s performances would be even poorer as

the continuous flooding of the first attacker would

mobilize all the platform’s resources to answer the

first attacker, neglecting any other hosts requests.

17

It would also be interesting to test both platforms

against several other types of DoS attacks than the

one we chose, such as sending oversized payloads

or XML injection and see what DoS attack is most

efficient.

More importantly future research should focus on

ways to mitigate these problems. Already some

solutions specific to Web Services exists such as

stateful Web Service firewalls, and testing them

against these types of attacks could help

businesses identify the security mechanisms they

should put in place to protect their asset.

7. Acknowledgments

I would like to thank my professors Pavol Zavarsky,

Dale Lindskog and Andy Igonor for their kind

support and their precious help.

8. References

[1] Booth, D., Haas, H., McCabe, F., Newcomer, E.,

Champion, M., Ferris, C., Orchard, D., (2004) Web

Services Architecture

[2] Box, D., Ehnebuske, D., Kakivaya, G., Layman,

A., Mendelsohn, N., Frystyk Nielsen, H., Thatte, S.,

Winer, D., (2000) Simple Object Access Protocol

(SOAP) 1.1

[3] Chinnici, R., Gudgin, M., Moreau, J. J.,

Schlimmer, J., Weerawarana, S., (2003) Web

Services Description Language (WSDL) Version 2.0

[4] Shingal, A., Winograd, T., (2006) Guide To

Secure Web Services (Draft) - NIST

[5] Gruschka, N., Jensen, M., Luttenberger, N.,

(2007) A Stateful Web Service Firewall for BPEL

[6] Vieira, M., Laranjeiro, N., (2007) Comparing

Web Services Performance and Recovery in the

Presence of Faults

[7] Mirkovic, J., Martin, J., Reiher, P., (2001) A

Taxonomy of DDoS Attacks and DDoS Defense

Mechanisms

[8] Arbor Networks. Worldwide ISP Security Report

(September 2005)

[9] Topley, K., (2003) Java Web Services in a

Nutshell - O’Reilly

[10] Mulyar, N., (2005) Pattern-based Evaluation of

Oracle-BPEL (v.10.1.2)

[11] Razmov, V., (2000) Denial of service attacks

and how to defend against them

[12] CERT Coordination Center, Denial of Service

Attacks

http://www.cert.org/tech_tips/denial_of_service.html

[13] CERT Coordination Center, (2001) Trends in

Denial of Service Attack Technology

[14] Hussain, A., Heidemann, J., Papadopoulos, C.,

(2003) A framework for classifying denial of service

attacks

[15] Mirkovic, J., Prier, G., Reiher, P., (2002)

Attacking DDoS at the source

[16] Xu, J., Lee, W., (2003) Sustaining Availability of

Web Services under Distributed Denial of Service

Attacks

